
Tagger: Deep Unsupervised Perceptual Grouping

Klaus Greff*, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao,
Jürgen Schmidhuber*, Harri Valpola

The Curious AI Company {antti,mathias,hotloo,harri}@cai.fi
*IDSIA {klaus,juergen}@idsia.ch

Abstract

We present a framework for efficient perceptual inference that explicitly reasons
about the segmentation of its inputs and features. Rather than being trained for
any specific segmentation, our framework learns the grouping process in an unsu-
pervised manner or alongside any supervised task. We enable a neural network to
group the representations of different objects in an iterative manner through a dif-
ferentiable mechanism. We achieve very fast convergence by allowing the system
to amortize the joint iterative inference of the groupings and their representations.
In contrast to many other recently proposed methods for addressing multi-object
scenes, our system does not assume the inputs to be images and can therefore di-
rectly handle other modalities. We evaluate our method on multi-digit classification
of very cluttered images that require texture segmentation. Remarkably our method
achieves improved classification performance over convolutional networks despite
being fully connected, by making use of the grouping mechanism. Furthermore,
we observe that our system greatly improves upon the semi-supervised result of a
baseline Ladder network on our dataset. These results are evidence that grouping
is a powerful tool that can help to improve sample efficiency.

1 Introduction

Figure 1: An example of per-
ceptual grouping for vision.

Humans naturally perceive the world as being structured into different
objects, their properties and relation to each other. This phenomenon
which we refer to as perceptual grouping is also known as amodal
perception in psychology. It occurs effortlessly and includes a seg-
mentation of the visual input, such as that shown in in Figure 1. This
grouping also applies analogously to other modalities, for example
in solving the cocktail party problem (audio) or when separating the
sensation of a grasped object from the sensation of fingers touching
each other (tactile). Even more abstract features such as object class,
color, position, and velocity are naturally grouped together with the
inputs to form coherent objects. This rich structure is crucial for many
real-world tasks such as manipulating objects or driving a car, where
awareness of different objects and their features is required.

In this paper, we introduce a framework for learning efficient itera-
tive inference of such perceptual grouping which we call iTerative
Amortized Grouping (TAG). This framework entails a mechanism for
iteratively splitting the inputs and internal representations into several
different groups. We make no assumptions about the structure of this
segmentation and rather train the model end-to-end to discover which
are the relevant features and how to perform the splitting.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



PA
RA

M
ETRIC M

A
PPIN

G

PARAMETRICMAPPING

PARAMETRICMAPPING

PARAMETRICMAPPING

q1(x)

iteration 1 iteration 2 iteration 3

q1(x)q1(x|g)

q2(x) q3(x)

x̃

x̃
x

x

z0

m1

z1

m2m0

z2

m3

z3

L(m0)

δz0 δz1

δz i-1 m
i

m
i-1

zi
-1 zi

δz2

L(mi-1)

L(m1) L(m2)

Figure 2: Left: Three iterations of the TAG system which learns by denoising its input using several
groups (shown in color). Right: Detailed view of a single iteration on the TextureMNIST1 dataset.
Please refer to the supplementary material for further details.

By using an auxiliary denoising task we train the system to directly amortize the posterior inference
of the object features and their grouping. Because our framework does not make any assumptions
about the structure of the data, it is completely domain agnostic and applicable to any type of data.
The TAG framework works completely unsupervised, but can also be combined with supervised
learning for classification or segmentation.

2 Iterative Amortized Grouping (TAG)1

Grouping. Our goal is to enable neural networks to split inputs and internal representations into
coherent groups. We define a group to be a collection of inputs and internal representations that are
processed together, but (largely) independent of each other. By processing each group separately the
network can make use of invariant distributed features without the risk of interference and ambiguities,
which might arise when processing everything in one clump. We make no assumptions about the
correspondence between objects and groups. If the network can process several objects in one group
without unwanted interference, then the network is free to do so. The “correct” grouping is often
dynamic, ambiguous and task dependent. So rather than training it as a separate task, we allow the
network to split the processing of the inputs, and let it learn how to best use this ability for any given
problem. To make the task of instance segmentation easy, we keep the groups symmetric in the sense
that each group is processed by the same underlying model.

Amortized Iterative Inference. We want our model to reason not only about the group assignments
but also about the representation of each group. This amounts to inference over two sets of variables:
the latent group assignments and the individual group representations; A formulation very similar to
mixture models for which exact inference is typically intractable. For these models it is a common
approach to approximate the inference in an iterative manner by alternating between (re-)estimation
of these two sets (e.g., EM-like methods [4]). The intuition is that given the grouping, inferring the
object features becomes easy, and vice versa. We employ a similar strategy by allowing our network
to iteratively refine its estimates of the group assignments as well as the object representations.

Rather than deriving and then running an inference algorithm, we train a parametric mapping to arrive
at the end result of inference as efficiently as possible [9]. This is known as amortized inference [31],
and it is used, for instance, in variational autoencoders where the encoder learns to amortize the
posterior inference required by the generative model represented by the decoder. Here we instead
apply the framework of denoising autoencoders [6, 15, 34] which are trained to reconstruct original
inputs x from corrupted versions x̃. This encourages the network to implement useful amortized
posterior inference without ever having to specify or even know the underlying generative model
whose inference is implicitly learned.

1Note: This section only provides a short and high-level overview of the TAG framework and Tagger. For
a more detailed description please refer to the supplementary material or the extended version of this paper:
https://arxiv.org/abs/1606.06724

2

https://arxiv.org/abs/1606.06724


Data: x,K, T, σ, v,Wh,Wu,Θ
Result: zT ,mT , C
begin Initialization:

x̃← x+N (0, σ2I);
m0 ← softmax(N (0, I));
z0 ← E[x];

end
for i = 0 . . . T − 1 do

for k = 1 . . .K do
z̃k ← N (x̃; zik, (v + σ2)I);
δzik ← (x̃− zik)mi

kz̃k;
L(mi

k)← z̃k∑
h z̃h

;

hi
k ← f(Wh

[
zik,m

i
k, δz

i
k, L(mi

k)
]
);

[zi+1
k ,mi+1

k ]←WuLadder(hi
k,Θ);

end
mi+1 ← softmax(mi+1);
qi+1(x)←

∑K
k=1N (x; zi+1

k , vI)mi+1;
end
C ← −

∑T
i=1 log qi(x);

Algorithm 1: Pseudocode for running Tagger on a sin-
gle real-valued example x. For details and a binary-
input version please refer to supplementary material.

Figure 3: An example of how Tagger
would use a 3-layer-deep Ladder Network
as its parametric mapping to perform its
iteration i+ 1. Note the optional class pre-
diction output yi

g for classification tasks.
See supplementary material for details.

Putting it together. By using the negative log likelihoodC(x) = −
∑

i log qi(x) as a cost function,
we train our system to compute an approximation qi(x) of the true denoising posterior p(x|x̃) at
each iteration i. An overview of the whole system is given in Figure 2. For each input element xj we
introduce K latent binary variables gk,j that take a value of 1 if this element is generated by group
k. This way inference is split into K groups, and we can write the approximate posterior in vector
notation as follows:

qi(x) =
∑
k

qi(x|gk)qi(gk) =
∑
k

N (x; zik, vI)mi
k , (1)

where we model the group reconstruction qi(x|gk) as a Gaussian with mean zik and variance v, and
the group assignment posterior qi(gk) as a categorical distributionmk.

The trainable part of the TAG framework is given by a parametric mapping that operates independently
on each group k and is used to compute both zik andmi

k (which is afterwards normalized using an
elementwise softmax over the groups). This parametric mapping is usually implemented by a neural
network and the whole system is trained end-to-end using standard backpropagation through time.

The input to the network for the next iteration consists of the vectors zik and mi
k along with two

additional quantities: The remaining modelling error δzik and the group assignment likelihood ratio
L(mi

k) which carry information about how the estimates can be improved:

δzik ∝
∂C(x̃)

∂zik
and L(mi

k) ∝ qi(x̃|gk)∑
h qi(x̃|gh)

Note that they are derived from the corrupted input x̃, to make sure we don’t leak information about
the clean input x into the system.

Tagger. For this paper we chose the Ladder network [19] as the parametric mapping because its
structure reflects the computations required for posterior inference in hierarchical latent variable
models. This means that the network should be well equipped to handle the hierarchical structure one
might expect to find in many domains. We call this Ladder network wrapped in the TAG framework
Tagger. This is illustrated in Figure 3 and the corresponding pseudocode can be found in Algorithm 1.

3



3 Experiments and results

We explore the properties and evaluate the performance of Tagger both in fully unsupervised settings
and in semi-supervised tasks in two datasets2. Although both datasets consist of images and grouping
is intuitively similar to image segmentation, there is no prior in the Tagger model for images: our
results (unlike the ConvNet baseline) generalize even if we permute all the pixels .

Shapes. We use the simple Shapes dataset [21] to examine the basic properties of our system. It
consists of 60,000 (train) + 10,000 (test) binary images of size 20x20. Each image contains three
randomly chosen shapes (4,5, or �) composed together at random positions with possible overlap.

Textured MNIST. We generated a two-object supervised dataset (TextureMNIST2) by sequentially
stacking two textured 28x28 MNIST-digits, shifted two pixels left and up, and right and down,
respectively, on top of a background texture. The textures for the digits and background are different
randomly shifted samples from a bank of 20 sinusoidal textures with different frequencies and
orientations. Some examples from this dataset are presented in the column of Figure 4b. We use
a 50k training set, 10k validation set, and 10k test set to report the results. We also use a textured
single-digit version (TextureMNIST1) without a shift to isolate the impact of texturing from multiple
objects.

3.1 Training and evaluation

We train Tagger in an unsupervised manner by only showing the network the raw input example
x, not ground truth masks or any class labels, using 4 groups and 3 iterations. We average the cost
over iterations and use ADAM [14] for optimization. On the Shapes dataset we trained for 100
epochs with a bit-flip probability of 0.2, and on the TextureMNIST dataset for 200 epochs with a
corruption-noise standard deviation of 0.2. The models reported in this paper took approximately 3
and 11 hours in wall clock time on a single Nvidia Titan X GPU for Shapes and TextureMNIST2
datasets respectively.

We evaluate the trained models using two metrics: First, the denoising cost on the validation set, and
second we evaluate the segmentation into objects using the adjusted mutual information (AMI) score
[35] and ignore the background and overlap regions in the Shapes dataset (consistent with Greff et al.
[8]). Evaluations of the AMI score and classification results in semi-supervised tasks were performed
using uncorrupted input. The system has no restrictions regarding the number of groups and iterations
used for training and evaluation. The results improved in terms of both denoising cost and AMI score
when iterating further, so we used 5 iterations for testing. Even if the system was trained with 4
groups and 3 shapes per training example, we could test the evaluation with, for example, 2 groups
and 3 shapes, or 4 groups and 4 shapes.

3.2 Unsupervised Perceptual Grouping

Table 1 shows the median performance of Tagger on the Shapes dataset over 20 seeds. Tagger is able
to achieve very fast convergences, as shown in Table 1a. Through iterations, the network improves its
denoising performances by grouping different objects into different groups. Comparing to Greff et al.
[8], Tagger performs significantly better in terms of AMI score (see Table 1b). We found that for
this dataset using LayerNorm [1] instead of BatchNorm [13] greatly improves the results as seen in
Table 1.

Figure 4a and Figure 4b qualitatively show the learned unsupervised groupings for the Shapes and
textured MNIST datasets. Tagger uses its TAG mechanism slightly differently for the two datasets.
For Shapes, zg represents filled-in objects and masksmg show which part of the object is actually
visible. For textured MNIST, zg represents the textures while masksmg capture texture segments.
In the case of the same digit or two identical shapes, Tagger can segment them into separate groups,
and hence, performs instance segmentation. We used 4 groups for training even though there are only
3 objects in the Shapes dataset and 3 segments in the TexturedMNIST2 dataset. The excess group is
left empty by the trained system but its presence seems to speed up the learning process.

2The datasets and a Theano [33] reference implementation of Tagger are available at http://github.com/
CuriousAI/tagger

4

http://github.com/CuriousAI/tagger
http://github.com/CuriousAI/tagger


reconst:

i
=
0

i
=
1

i
=
2

i
=
3

i
=
4

i
=
5

z0 m0 z1 m1 z2 m2 z3 m3

1:00 1:00 1:00 1:00 1:00 0:85 0:60 A B

or
ig
in
a
l

C

re
co
n
st
:

(a
)

R
es

ul
ts

fo
r

Sh
ap

es
da

ta
se

t.
L

ef
tc

ol
um

n:
7

ex
am

pl
es

fr
om

th
e

te
st

se
ta

lo
ng

w
ith

th
ei

rr
es

ul
tin

g
gr

ou
pi

ng
s

in
de

sc
en

di
ng

A
M

Is
co

re
or

de
ra

nd
3

ha
nd

-p
ic

ke
d

ex
am

pl
es

(A
,B

,a
nd

C
)t

o
de

m
on

st
ra

te
ge

ne
ra

liz
at

io
n.

A
:T

es
tin

g
2-

gr
ou

p
m

od
el

on
3

ob
je

ct
da

ta
.

B
:T

es
tin

g
a

4-
gr

ou
p

m
od

el
tr

ai
ne

d
w

ith
3-

ob
je

ct
da

ta
on

4
ob

je
ct

s.
C

:T
es

tin
g

4-
gr

ou
p

m
od

el
tra

in
ed

w
ith

3-
ob

je
ct

da
ta

on
2

ob
je

ct
s.

R
ig

ht
co

lu
m

n:
Ill

us
tra

tio
n

of
th

e
in

fe
re

nc
e

pr
oc

es
s

ov
er

ite
ra

tio
ns

fo
rf

ou
rc

ol
or

-c
od

ed
gr

ou
ps

;m
k

an
d
z
k

.

reconst:

i
=
0

i
=
1

i
=
2

i
=
3

i
=
4

i
=
5

Pred::0

C
la
ss

z0

Pred::noclass

m0

Pred::2

z1

Pred::noclass

m1 z2 m2 z3 m3

0:95 0:92 0:90 0:89 0:87 0:86 0:85 D E1

or
ig
in
a
l

E2

re
co
n
st
:

(b
)R

es
ul

ts
fo

rt
he

Te
xt

ur
eM

N
IS

T
2

da
ta

se
t.

L
ef

tc
ol

um
n:

7
ex

am
pl

es
fr

om
th

e
te

st
se

t
al

on
g

w
ith

th
ei

rr
es

ul
tin

g
gr

ou
pi

ng
s

in
de

sc
en

di
ng

A
M

Is
co

re
or

de
ra

nd
3

ha
nd

-p
ic

ke
d

ex
am

pl
es

(D
,E

1,
E

2)
.

D
:

A
n

ex
am

pl
e

fr
om

th
e

Te
xt

ur
eM

N
IS

T
1

da
ta

se
t.

E
1-

2:
A

ha
nd

-p
ic

ke
d

ex
am

pl
e

fr
om

Te
xt

ur
eM

N
IS

T
2.

E
1

de
m

on
st

ra
te

s
ty

pi
ca

li
nf

er
en

ce
,a

nd
E

2
de

m
on

st
ra

te
s

ho
w

th
e

sy
st

em
is

ab
le

to
es

tim
at

e
th

e
in

pu
tw

he
n

a
ce

rta
in

gr
ou

p
(to

pm
os

t
di

gi
t4

)i
s

re
m

ov
ed

.R
ig

ht
co

lu
m

n:
Il

lu
st

ra
tio

n
of

th
e

in
fe

re
nc

e
pr

oc
es

s
ov

er
ite

ra
tio

ns
fo

rf
ou

rc
ol

or
-c

od
ed

gr
ou

ps
;m

k
an

d
z
k

.

5



Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
Denoising cost 0.094 0.068 0.063 0.063 0.063

AMI 0.58 0.73 0.77 0.79 0.79

Denoising cost* 0.100 0.069 0.057 0.054 0.054
AMI* 0.70 0.90 0.95 0.96 0.97

(a) Convergence of Tagger over iterative inference

AMI
RC [8] 0.61 ± 0.005
Tagger 0.79 ± 0.034

Tagger* 0.97 ± 0.009

(b) Method comparison

Table 1: Table (a) shows how quickly the algorithm evaluation converges over inference iterations
with the Shapes dataset. Table (b) compares segmentation quality to previous work on the Shapes
dataset. The AMI score is defined in the range from 0 (guessing) to 1 (perfect match). The results
with a star (*) are using LayerNorm [1] instead of BatchNorm.

The hand-picked examples A-C in Figure 4a illustrate the robustness of the system when the number
of objects changes in the evaluation dataset or when evaluation is performed using fewer groups.
Example E is particularly interesting; E2 demonstrates how we can remove the topmost digit from
the normal evaluated scene E1 and let the system fill in digit below and the background. We do
this by setting the corresponding group assignment probabilitiesmg to a large negative number just
before the final softmax over groups in the last iteration.

To solve the textured two-digit MNIST task, the system has to combine texture cues with high-level
shape information. The system first infers the background texture and mask which are finalized
on the first iteration. Then the second iteration typically fixes the texture used for topmost digit,
while subsequent iterations clarify the occluded digit and its texture. This demonstrates the need for
iterative inference of the grouping.

3.3 Classification

To investigate the role of grouping for the task of classification, we evaluate Tagger against four
baseline models on the textured MNIST task. As our first baseline we use a fully connected network
(FC) with ReLU activations and BatchNorm [13] after each layer. Our second baseline is a ConvNet
(Conv) based on Model C from [30], which has close to state-of-the-art results on CIFAR-10. We
removed dropout, added BatchNorm after each layer and replaced the final pooling by a fully
connected layer to improve its performance for the task. Furthermore, we compare with a fully
connected Ladder [19] (FC Ladder) network.

All models use a softmax output and are trained with 50,000 samples to minimize the categorical cross
entropy error. In case there are two different digits in the image (most examples in the TextureMNIST2
dataset), the target is p = 0.5 for both classes. We evaluate the models based on classification errors,
which we compute based on the two highest predicted classes (top 2) for the two-digit case.

For Tagger, we first train the system in an unsupervised phase for 150 epochs and then add two
fresh randomly initialized layers on top and continue training the entire system end to end using the
sum of unsupervised and supervised cost terms for 50 epochs. Furthermore, the topmost layer has a
per-group softmax activation that includes an added ’no class’ neuron for groups that do not contain
any digit. The final classification is then performed by summing the softmax output over all groups
for the true 10 classes and renormalizing it.

As shown in Table 2, Tagger performs significantly better than all the fully connected baseline models
on both variants, but the improvement is more pronounced for the two-digit case. This result is
expected because for cases with multi-object overlap, grouping becomes more important. Moreover, it
confirms the hypothesis that grouping can help classification and is particularly beneficial for complex
inputs. Remarkably, Tagger is on par with the convolutional baseline for the TexturedMNIST1 dataset
and even outperforms it in the two-digit case, despite being fully connected itself. We hypothesize
that one reason for this result is that grouping allows for the construction of efficient invariant features
already in the low layers without losing information about the assignment of features to objects.
Convolutional networks solve this problem to some degree by grouping features locally through the
use of receptive fields, but that strategy is expensive and can break down in cases of heavy overlap.

6



Dataset Method Error 50k Error 1k Model details

TextureMNIST1 FC MLP 31.1 ± 2.2 89.0 ± 0.2 2000-2000-2000 / 1000-1000
chance level: 90% FC Ladder 7.2 ± 0.1 30.5 ± 0.5 3000-2000-1000-500-250

FC Tagger (ours) 4.0 ± 0.3 10.5 ± 0.9 3000-2000-1000-500-250
ConvNet 3.9 ± 0.3 52.4 ± 5.3 based on Model C [30]

TextureMNIST2 FC MLP 55.2 ± 1.0 79.4 ± 0.3 2000-2000-2000 / 1000-1000
chance level: 80% FC Ladder 41.1 ± 0.2 68.5 ± 0.2 3000-2000-1000-500-250

FC Tagger (ours) 7.9 ± 0.3 24.9 ± 1.8 3000-2000-1000-500-250
ConvNet 12.6 ± 0.4 79.1 ± 0.8 based on Model C [30]

Table 2: Test-set classification errors in % for both textured MNIST datasets. We report mean and
sample standard deviation over 5 runs. FC = Fully Connected, MLP = Multi Layer Perceptron.

3.4 Semi-Supervised Learning

The TAG framework does not rely on labels and is therefore directly usable in a semi-supervised
context. For semi-supervised learning, the Ladder [19] is arguably one of the strongest baselines with
SOTA results on 1,000 MNIST and 60,000 permutation invariant MNIST classification. We follow
the common practice of using 1,000 labeled samples and 49,000 unlabeled samples for training
Tagger and the Ladder baselines. For completeness, we also report results of the convolutional
(ConvNet) and fully-connected (FC) baselines trained fully supervised on only 1,000 samples.

From Table 2, it is obvious that all the fully supervised methods fail on this task with 1,000 labels.
The best baseline result is achieved by the FC Ladder, which reaches 30.5 % error for one digit but
68.5 % for TextureMNIST2. For both datasets, Tagger achieves by far the lowest error rates: 10.5 %
and 24.9 %, respectively. Again, this difference is amplified for the two-digit case, where Tagger
with 1,000 labels even outperforms the Ladder baseline with all 50k labels. This result matches our
intuition that grouping can often segment even objects of an unknown class and thus help select the
relevant features for learning. This is particularly important in semi-supervised learning where the
inability to self-classify unlabeled samples can mean that the network fails to learn from them at all.

To put these results in context, we performed informal tests with five human subjects. The subjects
improved significantly over training for a few days but there were also significant individual dif-
ferences. The task turned out to be quite difficult and strenuous, with the best performing subjects
scoring around 10 % error for TextureMNIST1 and 30 % error for TextureMNIST2.

4 Related work

Attention models have recently become very popular, and similar to perceptual grouping they help
in dealing with complex structured inputs. These approaches are not, however, mutually exclusive
and can benefit from each other. Overt attention models [28, 5] control a window (fovea) to focus on
relevant parts of the inputs. Two of their limitations are that they are mostly tailored to the visual
domain and are usually only suited to objects that are roughly the same shape as the window. But
their ability to limit the field of view can help to reduce the complexity of the target problem and thus
also help segmentation. Soft attention mechanisms [26, 3, 40] on the other hand use some form of
top-down feedback to suppress inputs that are irrelevant for a given task. These mechanisms have
recently gained popularity, first in machine translation [2] and then for many other problems such as
image caption generation [39]. Because they re-weigh all the inputs based on their relevance, they
could benefit from a perceptual grouping process that can refine the precise boundaries of attention.

Our work is primarily built upon a line of research based on the concept that the brain uses syn-
chronization of neuronal firing to bind object representations together. This view was introduced by
[37] and has inspired many early works on oscillations in neural networks (see the survey [36] for a
summary). Simulating the oscillations explicitly is costly and does not mesh well with modern neural
network architectures (but see [17]). Rather, complex values have been used to model oscillating
activations using the phase as soft tags for synchronization [18, 20]. In our model, we further abstract
them by using discretized synchronization slots (our groups). It is most similar to the models of
Wersing et al. [38], Hyvärinen & Perkiö [12] and Greff et al. [8]. However, our work is the first to
combine this with denoising autoencoders in an end-to-end trainable fashion.

7



Another closely related line of research [23, 22] has focused on multi-causal modeling of the inputs.
Many of the works in that area [16, 32, 29, 11] build upon Restricted Boltzmann Machines. Each
input is modeled as a mixture model with a separate latent variable for each object. Because exact
inference is intractable, these models approximate the posterior with some form of expectation
maximization [4] or sampling procedure. Our assumptions are very similar to these approaches, but
we allow the model to learn the amortized inference directly (more in line with Goodfellow et al. [7]).

Since recurrent neural networks (RNNs) are general purpose computers, they can in principle
implement arbitrary computable types of temporary variable binding [25, 26], unsupervised segmen-
tation [24], and internal [26] and external attention [28]. For example, an RNN with fast weights [26]
can rapidly associate or bind the patterns to which the RNN currently attends. Similar approaches
even allow for metalearning [27], that is, learning a learning algorithm. Hochreiter et al. [10], for ex-
ample, learned fast online learning algorithms for the class of all quadratic functions of two variables.
Unsupervised segmentation could therefore in principle be learned by any RNN as a by-product
of data compression or any other given task. That does not, however, imply that every RNN will,
through learning, easily discover and implement this tool. From that perspective, TAG can be seen as
a way of helping an RNN to quickly learn and efficiently implement a grouping mechanism.

5 Conclusion

In this paper, we have argued that the ability to group input elements and internal representations
is a powerful tool that can improve a system’s ability to handle complex multi-object inputs. We
have introduced the TAG framework, which enables a network to directly learn the grouping and
the corresponding amortized iterative inference in a unsupervised manner. The resulting iterative
inference is very efficient and converges within five iterations. We have demonstrated the benefits
of this mechanism for a heavily cluttered classification task, in which our fully connected Tagger
even significantly outperformed a state-of-the-art convolutional network. More impressively, we have
shown that our mechanism can greatly improve semi-supervised learning, exceeding conventional
Ladder networks by a large margin. Our method makes minimal assumptions about the data and can
be applied to any modality. With TAG, we have barely scratched the surface of a comprehensive
integrated grouping mechanism, but we already see significant advantages. We believe grouping to
be crucial to human perception and are convinced that it will help to scale neural networks to even
more complex tasks in the future.

Acknowledgments

The authors wish to acknowledge useful discussions with Theofanis Karaletsos, Jaakko Särelä, Tapani
Raiko, and Søren Kaae Sønderby. And further acknowledge Rinu Boney, Timo Haanpää and the rest
of the Curious AI Company team for their support, computational infrastructure, and human testing.
This research was supported by the EU project “INPUT” (H2020-ICT-2015 grant no. 687795).

References
[1] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv:1607.06450 [cs, stat], July 2016.
[2] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and translate.

arXiv preprint arXiv:1409.0473, 2014.
[3] Deco, G. Biased competition mechanisms for visual attention in a multimodular neurodynamical system.

In Emergent Neural Computational Architectures Based on Neuroscience, pp. 114–126. Springer, 2001.
[4] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the royal statistical society., pp. 1–38, 1977.
[5] Eslami, S. M., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, Y., and Hinton, G. E. Attend, infer, repeat:

Fast scene understanding with generative models. preprint arXiv:1603.08575, 2016.
[6] Gallinari, P., LeCun, Y., Thiria, S., and Fogelman-Soulie, F. Mémoires associatives distribuées: Une

comparaison (distributed associative memories: A comparison). In Cesta-Afcet, 1987.
[7] Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. Multi-digit number recognition from street

view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013.
[8] Greff, K., Srivastava, R. K., and Schmidhuber, J. Binding via reconstruction clustering. arXiv:1511.06418

[cs], November 2015.
[9] Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pp. 399–406, 2010.

8



[10] Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning to learn using gradient descent. In Proc.
International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

[11] Huang, J. and Murphy, K. Efficient inference in occlusion-aware generative models of images. arXiv
preprint arXiv:1511.06362, 2015.

[12] Hyvärinen, A. and Perkiö, J. Learning to segment any random vector. In The 2006 IEEE International
Joint Conference on Neural Network Proceedings, pp. 4167–4172. IEEE, 2006.

[13] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[14] Kingma, D. and Ba, J. Adam: A method for stochastic optimization. CBLS, 2015.
[15] Le Cun, Y. Modèles Connexionnistes de L’apprentissage. PhD thesis, Paris 6, 1987.
[16] Le Roux, N., Heess, N., Shotton, J., and Winn, J. Learning a generative model of images by factoring

appearance and shape. Neural Computation, 23(3):593–650, 2011.
[17] Meier, M., Haschke, R., and Ritter, H. J. Perceptual grouping through competition in coupled oscillator

networks. Neurocomputing, 141:76–83, 2014.
[18] Rao, R. A., Cecchi, G., Peck, C. C., and Kozloski, J. R. Unsupervised segmentation with dynamical units.

Neural Networks, IEEE Transactions on, 19(1):168–182, 2008.
[19] Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. Semi-supervised learning with ladder

networks. In NIPS, pp. 3532–3540, 2015.
[20] Reichert, D. P. and Serre, T. Neuronal synchrony in complex-valued deep networks. arXiv:1312.6115 [cs,

q-bio, stat], December 2013.
[21] Reichert, D. P., Series, P, and Storkey, A. J. A hierarchical generative model of recurrent object-based

attention in the visual cortex. In ICANN, pp. 18–25. Springer, 2011.
[22] Ross, D. A. and Zemel, R. S. Learning parts-based representations of data. The Journal of Machine

Learning Research, 7:2369–2397, 2006.
[23] Saund, E. A multiple cause mixture model for unsupervised learning. Neural Computation, 7(1):51–71,

1995.
[24] Schmidhuber, J. Learning complex, extended sequences using the principle of history compression. Neural

Computation, 4(2):234–242, 1992.
[25] Schmidhuber, J. Learning to control fast-weight memories: An alternative to dynamic recurrent networks.

Neural Computation, 4(1):131–139, 1992.
[26] Schmidhuber, J. Reducing the ratio between learning complexity and number of time varying variables in

fully recurrent nets. In ICANN’93, pp. 460–463. Springer, 1993.
[27] Schmidhuber, J. A ‘self-referential’ weight matrix. In ICANN’93, pp. 446–450. Springer, 1993.
[28] Schmidhuber, J. and Huber, R. Learning to generate artificial fovea trajectories for target detection.

International Journal of Neural Systems, 2(01n02):125–134, 1991.
[29] Sohn, K., Zhou, G., Lee, C., and Lee, H. Learning and selecting features jointly with point-wise gated

Boltzmann machines. In Proceedings of The 30th International Conference on Machine Learning, pp.
217–225, 2013.

[30] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[31] Srikumar, V., Kundu, G., and Roth, D. On amortizing inference cost for structured prediction. In EMNLP-
CoNLL ’12, pp. 1114–1124, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

[32] Tang, Y., Salakhutdinov, R., and Hinton, G. Robust boltzmann machines for recognition and denoising. In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2264–2271. IEEE, 2012.

[33] Team, The Theano Development. Theano: A Python framework for fast computation of mathematical
expressions. arXiv:1605.02688 [cs], May 2016.

[34] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. Extracting and composing robust features
with denoising autoencoders. In ICML, pp. 1096–1103. ACM, 2008.

[35] Vinh, N. X., Epps, J., and Bailey, J. Information theoretic measures for clusterings comparison: Variants,
properties, normalization and correction for chance. JMLR, 11:2837–2854, 2010.

[36] von der Malsburg, C. Binding in models of perception and brain function. Current opinion in neurobiology,
5(4):520–526, 1995.

[37] von der Malsburg, Christoph. The Correlation Theory of Brain Function. Departmental technical report,
MPI, 1981.

[38] Wersing, H., Steil, J. J., and Ritter, H. A competitive-layer model for feature binding and sensory
segmentation. Neural Computation, 13(2):357–387, 2001.

[39] Xu, K., Ba, J., Kiros, R., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. Show, attend and tell:
Neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044, 2015.

[40] Yli-Krekola, A., Särelä, J., and Valpola, H. Selective attention improves learning. In Artificial Neural
Networks–ICANN 2009, pp. 285–294. Springer, 2009.

9


