
The Poisson Gamma Belief Network

Mingyuan Zhou
McCombs School of Business

The University of Texas at Austin
Austin, TX 78712, USA

Yulai Cong
National Laboratory of RSP

Xidian University
Xi’an, Shaanxi, China

Bo Chen
National Laboratory of RSP

Xidian University
Xi’an, Shaanxi, China

Abstract

To infer a multilayer representation of high-dimensional count vectors, we pro-
pose the Poisson gamma belief network (PGBN) that factorizes each of its layers
into the product of a connection weight matrix and the nonnegative real hidden
units of the next layer. The PGBN’s hidden layers are jointly trained with an
upward-downward Gibbs sampler, each iteration of which upward samples Dirich-
let distributed connection weight vectors starting from the first layer (bottom data
layer), and then downward samples gamma distributed hidden units starting from
the top hidden layer. The gamma-negative binomial process combined with a
layer-wise training strategy allows the PGBN to infer the width of each layer given
a fixed budget on the width of the first layer. The PGBN with a single hidden layer
reduces to Poisson factor analysis. Example results on text analysis illustrate in-
teresting relationships between the width of the first layer and the inferred network
structure, and demonstrate that the PGBN, whose hidden units are imposed with
correlated gamma priors, can add more layers to increase its performance gains
over Poisson factor analysis, given the same limit on the width of the first layer.

1 Introduction

There has been significant recent interest in deep learning. Despite its tremendous success in su-
pervised learning, inferring a multilayer data representation in an unsupervised manner remains a
challenging problem [1, 2, 3]. The sigmoid belief network (SBN), which connects the binary units
of adjacent layers via the sigmoid functions, infers a deep representation of multivariate binary vec-
tors [4, 5]. The deep belief network (DBN) [6] is a SBN whose top hidden layer is replaced by the
restricted Boltzmann machine (RBM) [7] that is undirected. The deep Boltzmann machine (DBM)
is an undirected deep network that connects the binary units of adjacent layers using the RBMs [8].
All these deep networks are designed to model binary observations. Although one may modify the
bottom layer to model Gaussian and multinomial observations, the hidden units of these networks
are still typically restricted to be binary [8, 9, 10]. One may further consider the exponential family
harmoniums [11, 12] to construct more general networks with non-binary hidden units, but often at
the expense of noticeably increased complexity in training and data fitting.

Moving beyond conventional deep networks using binary hidden units, we construct a deep directed
network with gamma distributed nonnegative real hidden units to unsupervisedly infer a multilayer
representation of multivariate count vectors, with a simple but powerful mechanism to capture the
correlations among the visible/hidden features across all layers and handle highly overdispersed
counts. The proposed model is called the Poisson gamma belief network (PGBN), which factorizes
the observed count vectors under the Poisson likelihood into the product of a factor loading matrix
and the gamma distributed hidden units (factor scores) of layer one; and further factorizes the shape
parameters of the gamma hidden units of each layer into the product of a connection weight matrix
and the gamma hidden units of the next layer. Distinct from previous deep networks that often utilize
binary units for tractable inference and require tuning both the width (number of hidden units) of
each layer and the network depth (number of layers), the PGBN employs nonnegative real hidden

1

units and automatically infers the widths of subsequent layers given a fixed budget on the width of
its first layer. Note that the budget could be infinite and hence the whole network can grow without
bound as more data are being observed. When the budget is finite and hence the ultimate capacity
of the network is limited, we find that the PGBN equipped with a narrower first layer could increase
its depth to match or even outperform a shallower network with a substantially wider first layer.

The gamma distribution density function has the highly desired strong non-linearity for deep learn-
ing, but the existence of neither a conjugate prior nor a closed-form maximum likelihood estimate
for its shape parameter makes a deep network with gamma hidden units appear unattractive. Despite
seemingly difficult, we discover that, by generalizing the data augmentation and marginalization
techniques for discrete data [13], one may propagate latent counts one layer at a time from the bot-
tom data layer to the top hidden layer, with which one may derive an efficient upward-downward
Gibbs sampler that, one layer at a time in each iteration, upward samples Dirichlet distributed con-
nection weight vectors and then downward samples gamma distributed hidden units.

In addition to constructing a new deep network that well fits multivariate count data and developing
an efficient upward-downward Gibbs sampler, other contributions of the paper include: 1) combin-
ing the gamma-negative binomial process [13, 14] with a layer-wise training strategy to automati-
cally infer the network structure; 2) revealing the relationship between the upper bound imposed on
the width of the first layer and the inferred widths of subsequent layers; 3) revealing the relationship
between the network depth and the model’s ability to model overdispersed counts; 4) and generating
a multivariate high-dimensional random count vector, whose distribution is governed by the PGBN,
by propagating the gamma hidden units of the top hidden layer back to the bottom data layer.

1.1 Useful count distributions and their relationships

Let the Chinese restaurant table (CRT) distribution l ∼ CRT(n, r) represent the distribution of
a random count generated as l =

∑n
i=1 bi, bi ∼ Bernoulli [r/(r + i− 1)] . Its probability mass

function (PMF) can be expressed as P (l |n, r) = Γ(r)rl

Γ(n+r) |s(n, l)|, where l ∈ Z, Z := {0, 1, . . . , n},
and |s(n, l)| are unsigned Stirling numbers of the first kind. Let u ∼ Log(p) denote the logarithmic
distribution with PMF P (u | p) = 1

− ln(1−p)
pu

u , where u ∈ {1, 2, . . .}. Let n ∼ NB(r, p) denote

the negative binomial (NB) distribution with PMF P (n | r, p) = Γ(n+r)
n!Γ(r) p

n(1 − p)r, where n ∈ Z.
The NB distribution n ∼ NB(r, p) can be generated as a gamma mixed Poisson distribution as n ∼
Pois(λ), λ ∼ Gam [r, p/(1− p)] , where p/(1−p) is the gamma scale parameter. As shown in [13],
the joint distribution of n and l given r and p in l ∼ CRT(n, r), n ∼ NB(r, p),where l ∈ {0, . . . , n}
and n ∈ Z, is the same as that in n =

∑l
t=1 ut, ut ∼ Log(p), l ∼ Pois[−r ln(1 − p)], which is

called the Poisson-logarithmic bivariate distribution, with PMF P (n, l | r, p) = |s(n,l)|rl
n! pn(1− p)r.

2 The Poisson Gamma Belief Network

Assuming the observations are multivariate count vectors x(1)
j ∈ ZK0 , the generative model of the

Poisson gamma belief network (PGBN) with T hidden layers, from top to bottom, is expressed as

θ
(T)
j ∼ Gam

(
r, 1
/
c
(T+1)
j

)
,

· · ·
θ

(t)
j ∼ Gam

(
Φ(t+1)θ

(t+1)
j , 1

/
c
(t+1)
j

)
,

· · ·
x

(1)
j ∼ Pois

(
Φ(1)θ

(1)
j

)
, θ

(1)
j ∼ Gam

(
Φ(2)θ

(2)
j , p

(2)
j

/(
1− p(2)

j

))
. (1)

The PGBN factorizes the count observation x(1)
j into the product of the factor loading Φ(1) ∈

RK0×K1
+ and hidden units θ(1)

j ∈ RK1
+ of layer one under the Poisson likelihood, where R+ = {x :

x ≥ 0}, and for t = 1, 2, . . . , T−1, factorizes the shape parameters of the gamma distributed hidden
units θ(t)

j ∈ RKt
+ of layer t into the product of the connection weight matrix Φ(t+1) ∈ RKt×Kt+1

+

and the hidden units θ(t+1)
j ∈ RKt+1

+ of layer t+ 1; the top layer’s hidden units θ(T)
j share the same

2

vector r = (r1, . . . , rKT
)′ as their gamma shape parameters; and the p(2)

j are probability parameters

and {1/c(t)}3,T+1 are gamma scale parameters, with c(2)
j :=

(
1− p(2)

j

)/
p

(2)
j .

For scale identifiabilty and ease of inference, each column of Φ(t) ∈ RKt−1×Kt

+ is restricted to have
a unit L1 norm. To complete the hierarchical model, for t ∈ {1, . . . , T − 1}, we let

φ
(t)
k ∼ Dir

(
η(t), . . . , η(t)

)
, rk ∼ Gam

(
γ0/KT , 1/c0

)
(2)

and impose c0 ∼ Gam(e0, 1/f0) and γ0 ∼ Gam(a0, 1/b0); and for t ∈ {3, . . . , T + 1}, we let

p
(2)
j ∼ Beta(a0, b0), c

(t)
j ∼ Gam(e0, 1/f0). (3)

We expect the correlations between the rows (features) of (x
(1)
1 , . . . ,x

(1)
J) to be captured by the

columns of Φ(1), and the correlations between the rows (latent features) of (θ
(t)
1 , . . . ,θ

(t)
J) to be

captured by the columns of Φ(t+1). Even if all Φ(t) for t ≥ 2 are identity matrices, indicating no
correlations between latent features, our analysis will show that a deep structure with T ≥ 2 could
still benefit data fitting by better modeling the variability of the latent features θ(1)

j .

Sigmoid and deep belief networks. Under the hierarchical model in (1), given the connection
weight matrices, the joint distribution of the count observations and gamma hidden units of the
PGBN can be expressed, similar to those of the sigmoid and deep belief networks [3], as

P
(
x

(1)
j , {θ(t)

j }t
∣∣∣ {Φ(t)}t

)
= P

(
x

(1)
j

∣∣∣Φ(1),θ
(1)
j

)[∏T−1
t=1 P

(
θ

(t)
j

∣∣∣Φ(t+1),θ
(t+1)
j

)]
P
(
θ

(T)
j

)
.

With φv: representing the vth row Φ, for the gamma hidden units θ(t)
vj we have

P
(
θ

(t)
vj

∣∣∣φ(t+1)
v: ,θ

(t+1)
j , c

(t+1)
j+1

)
=

(
c
(t+1)
j+1

)φ
(t+1)
v: θ

(t+1)
j

Γ
(
φ

(t+1)
v: θ

(t+1)
j

) (
θ

(t)
vj

)φ(t+1)
v: θ

(t+1)
j −1

e−c
(t+1)
j+1 θ

(t)
vj , (4)

which are highly nonlinear functions that are strongly desired in deep learning. By contrast, with the
sigmoid function σ(x) = 1/(1 + e−x) and bias terms b(t+1)

v , a sigmoid/deep belief network would
connect the binary hidden units θ(t)

vj ∈ {0, 1} of layer t (for deep belief networks, t < T − 1) to the
product of the connection weights and binary hidden units of the next layer with

P
(
θ

(t)
vj = 1

∣∣φ(t+1)
v: ,θ

(t+1)
j , b(t+1)

v

)
= σ

(
b(t+1)
v + φ(t+1)

v: θ
(t+1)
j

)
. (5)

Comparing (4) with (5) clearly shows the differences between the gamma nonnegative hidden units
and the sigmoid link based binary hidden units. Note that the rectified linear units have emerged as
powerful alternatives of sigmoid units to introduce nonlinearity [15]. It would be interesting to use
the gamma units to introduce nonlinearity in the positive region of the rectified linear units.

Deep Poisson factor analysis. With T = 1, the PGBN specified by (1)-(3) reduces to Poisson factor
analysis (PFA) using the (truncated) gamma-negative binomial process [13], which is also related
to latent Dirichlet allocation [16] if the Dirichlet priors are imposed on both φ(1)

k and θ(1)
j . With

T ≥ 2, the PGBN is related to the gamma Markov chain hinted by Corollary 2 of [13] and realized
in [17], the deep exponential family of [18], and the deep PFA of [19]. Different from the PGBN,
in [18], it is the gamma scale but not shape parameters that are chained and factorized; in [19], it is
the correlations between binary topic usage indicators but not the full connection weights that are
captured; and neither [18] nor [19] provide a principled way to learn the network structure. Below
we break the PGBN of T layers into T related submodels that are solved with the same subroutine.

2.1 The propagation of latent counts and model properties

Lemma 1 (Augment-and-conquer the PGBN). With p(1)
j := 1− e−1 and

p
(t+1)
j := − ln(1− p(t)

j)
/[

c
(t+1)
j − ln(1− p(t)

j)
]

(6)

for t = 1, . . . , T , one may connect the observed (if t = 1) or some latent (if t ≥ 2) counts x(t)
j ∈

ZKt−1 to the product Φ(t)θ
(t)
j at layer t under the Poisson likelihood as

x
(t)
j ∼ Pois

[
−Φ(t)θ

(t)
j ln

(
1− p(t)

j

)]
. (7)

3

Proof. By definition (7) is true for layer t = 1. Suppose that (7) is true for layer t ≥ 2, then we can
augment each count x(t)

vj into the summation of Kt latent counts that are smaller or equal as

x
(t)
vj =

∑Kt

k=1 x
(t)
vjk, x

(t)
vjk ∼ Pois

[
−φ(t)

vkθ
(t)
kj ln

(
1− p(t)

j

)]
, (8)

where v ∈ {1, . . . ,Kt−1}. With m
(t)(t+1)
kj := x

(t)
·jk :=

∑Kt−1

v=1 x
(t)
vjk representing the num-

ber of times that factor k ∈ {1, . . . ,Kt} of layer t appears in observation j and m(t)(t+1)
j :=(

x
(t)
·j1, . . . , x

(t)
·jKt

)′
, since

∑Kt−1

v=1 φ
(t)
vk = 1, we can marginalize out Φ(t) as in [20], leading to

m
(t)(t+1)
j ∼ Pois

[
−θ(t)

j ln
(

1− p(t)
j

)]
.

Further marginalizing out the gamma distributed θ(t)
j from the above Poisson likelihood leads to

m
(t)(t+1)
j ∼ NB

(
Φ(t+1)θ

(t+1)
j , p

(t+1)
j

)
. (9)

The kth element ofm(t)(t+1)
j can be augmented under its compound Poisson representation as

m
(t)(t+1)
kj =

∑x
(t+1)
kj

`=1 u`, u` ∼ Log(p
(t+1)
j), x

(t+1)
kj ∼ Pois

[
−φ(t+1)

k: θ
(t+1)
j ln

(
1− p(t+1)

j

)]
.

Thus if (7) is true for layer t, then it is also true for layer t+ 1.

Corollary 2 (Propagate the latent counts upward). Using Lemma 4.1 of [20] on (8) and Theorem 1
of [13] on (9), we can propagate the latent counts x(t)

vj of layer t upward to layer t+ 1 as{(
x

(t)
vj1, . . . , x

(t)
vjKt

) ∣∣∣x(t)
vj ,φ

(t)
v: ,θ

(t)
j

}
∼ Mult

(
x

(t)
vj ,

φ
(t)
v1 θ

(t)
1j∑Kt

k=1 φ
(t)
vk θ

(t)
kj

, . . . ,
φ
(t)
vKt

θ
(t)
Ktj∑Kt

k=1 φ
(t)
vk θ

(t)
kj

)
, (10)(

x
(t+1)
kj

∣∣∣ m(t)(t+1)
kj ,φ

(t+1)
k: ,θ

(t+1)
j

)
∼ CRT

(
m

(t)(t+1)
kj ,φ

(t+1)
k: θ

(t+1)
j

)
. (11)

As x(t)
·j = m

(t)(t+1)
·j and x(t+1)

kj is in the same order as ln
(
m

(t)(t+1)
kj

)
, the total count of layer t+ 1,

expressed as
∑
j x

(t+1)
·j , would often be much smaller than that of layer t, expressed as

∑
j x

(t)
·j .

Thus the PGBN may use
∑
j x

(T)
·j as a simple criterion to decide whether to add more layers.

2.2 Modeling overdispersed counts

In comparison to a single-layer shallow model with T = 1 that assumes the hidden units of layer
one to be independent in the prior, the multilayer deep model with T ≥ 2 captures the correlations
between them. Note that for the extreme case that Φ(t) = IKt

for t ≥ 2 are all identity matrices,
which indicates that there are no correlations between the features of θ(t−1)

j left to be captured, the

deep structure could still provide benefits as it helps model latent countsm(1)(2)
j that may be highly

overdispersed. For example, supposing Φ(t) = IK2
for all t ≥ 2, then from (1) and (9) we have

m
(1)(2)
kj ∼ NB(θ

(2)
kj , p

(2)
j), . . . , θ

(t)
kj ∼ Gam(θ

(t+1)
kj , 1/c

(t+1)
j), . . . , θ

(T)
kj ∼ Gam(rk, 1/c

(T+1)
j).

For simplicity, let us further assume c(t)j = 1 for all t ≥ 3. Using the laws of total expectation and

total variance, we have E
[
θ

(2)
kj | rk

]
= rk and Var

[
θ

(2)
kj | rk

]
= (T − 1)rk, and hence

E
[
m

(1)(2)
kj | rk

]
= rkp

(2)
j /(1− p(2)

j), Var
[
m

(1)(2)
kj | rk

]
= rkp

(2)
j

(
1− p(2)

j

)−2
[
1 + (T − 1)p

(2)
j

]
.

In comparison to PFA with m(1)(2)
kj | rk ∼ NB(rk, p

(2)
j), with a variance-to-mean ratio of 1/(1 −

p
(2)
j), the PGBN with T hidden layers, which mixes the shape of m(1)(2)

kj ∼ NB(θ
(2)
kj , p

(2)
j) with a

chain of gamma random variables, increases the variance-to-mean ratio of the latent count m(1)(2)
kj

given rk by a factor of 1 + (T − 1)p
(2)
j , and hence could better model highly overdispersed counts.

4

2.3 Upward-downward Gibbs sampling

With Lemma 1 and Corollary 2 and the width of the first layer being bounded byK1 max, we develop
an upward-downward Gibbs sampler for the PGBN, each iteration of which proceeds as follows:
Sample x(t)

vjk. We can sample x(t)
vjk for all layers using (10). But for the first hidden layer, we may

treat each observed count x(1)
vj as a sequence of word tokens at the vth term (in a vocabulary of size

V := K0) in the jth document, and assign the x(1)
·j words {vji}i=1,x

(1)
·j

one after another to the

latent factors (topics), with both the topics Φ(1) and topic weights θ(1)
j marginalized out, as

P (zji = k | −) ∝
η(1)+x

(1)−ji

vji·k

V η(1)+x
(1)−ji

··k

(
x

(1)−ji

·jk + φ
(2)
k: θ

(2)
j

)
, k ∈ {1, . . . ,K1 max}, (12)

where zji is the topic index for vji and x(1)
vjk :=

∑
i δ(vji = v, zji = k) counts the number of times

that term v appears in document j; we use the · symbol to represent summing over the correspond-
ing index, e.g., x(t)

·jk :=
∑
v x

(t)
vjk, and use x−ji to denote the count x calculated without considering

word i in document j. The collapsed Gibbs sampling update equation shown above is related to the
one developed in [21] for latent Dirichlet allocation, and the one developed in [22] for PFA using the
beta-negative binomial process. When T = 1, we would replace the terms φ(2)

k: θ
(2)
j with rk for PFA

built on the gamma-negative binomial process [13] (or with απk for the hierarchical Dirichlet pro-
cess latent Dirichlet allocation, see [23] and [22] for details), and add an additional term to account
for the possibility of creating an additional topic [22]. For simplicity, in this paper, we truncate the
nonparametric Bayesian model with K1 max factors and let rk ∼ Gam(γ0/K1 max, 1/c0) if T = 1.
Sample φ(t)

k . Given these latent counts, we sample the factors/topics φ(t)
k as

(φ
(t)
k | −) ∼ Dir

(
η(t) + x

(t)
1·k, . . . , η

(t) + x
(t)
Kt−1·k

)
. (13)

Sample x(t+1)
vj . We sample x(t+1)

j using (11), replacing Φ(T+1)θ
(T+1)
j with r := (r1, . . . , rKT

)′.

Sample θ(t)
j . Using (7) and the gamma-Poisson conjugacy, we sample θj as

(θ
(t)
j | −) ∼ Gamma

(
Φ(t+1)θ

(t+1)
j +m

(t)(t+1)
j ,

[
c
(t+1)
j − ln

(
1− p(t)

j

)]−1)
. (14)

Sample r. Both γ0 and c0 are sampled using related equations in [13]. We sample r as

(rv | −) ∼ Gam
(
γ0/KT + x

(T+1)
v· ,

[
c0 −

∑
j ln

(
1− p(T+1)

j

)]−1)
. (15)

Sample c(t)j . With θ(t)
·j :=

∑Kt

k=1 θ
(t)
kj for t ≤ T and θ(T+1)

·j := r·, we sample p(2)
j and {c(t)j }t≥3 as

(p
(2)
j | −) ∼ Beta

(
a0+m

(1)(2)
·j , b0+θ

(2)
·j

)
, (c

(t)
j | −) ∼ Gamma

(
e0+θ

(t)
·j ,
[
f0+θ

(t−1)
·j

]−1)
, (16)

and calculate c(2)
j and {p(t)

j }t≥3 with (6).

2.4 Learning the network structure with layer-wise training

As jointly training all layers together is often difficult, existing deep networks are typically trained
using a greedy layer-wise unsupervised training algorithm, such as the one proposed in [6] to train
the deep belief networks. The effectiveness of this training strategy is further analyzed in [24]. By
contrast, the PGBN has a simple Gibbs sampler to jointly train all its hidden layers, as described in
Section 2.3, and hence does not require greedy layer-wise training. Yet the same as commonly used
deep learning algorithms, it still needs to specify the number of layers and the width of each layer.

In this paper, we adopt the idea of layer-wise training for the PGBN, not because of the lack of
an effective joint-training algorithm, but for the purpose of learning the width of each hidden layer
in a greedy layer-wise manner, given a fixed budget on the width of the first layer. The proposed
layer-wise training strategy is summarized in Algorithm 1. With a PGBN of T − 1 layers that has
already been trained, the key idea is to use a truncated gamma-negative binomial process [13] to
model the latent count matrix for the newly added top layer as m(T)(T+1)

kj ∼ NB(rk, p
(T+1)
j), rk ∼

5

Algorithm 1 The PGBN upward-downward Gibbs sampler that uses a layer-wise training strategy to train a set
of networks, each of which adds an additional hidden layer on top of the previously inferred network, retrains
all its layers jointly, and prunes inactive factors from the last layer. Inputs: observed counts {xvj}v,j , upper
bound of the width of the first layer K1max, upper bound of the number of layers Tmax, and hyper-parameters.
Outputs: A total of Tmax jointly trained PGBNs with depths T = 1, T = 2, . . ., and T = Tmax.
1: for T = 1, 2, . . . , Tmax do Jointly train all the T layers of the network
2: Set KT−1, the inferred width of layer T − 1, as KT max, the upper bound of layer T ’s width.
3: for iter = 1 : BT + CT do Upward-downward Gibbs sampling
4: Sample {zji}j,i using collapsed inference; Calculate {x(1)vjk}v,k,j ; Sample {x(2)vj }v,j ;
5: for t = 2, 3, . . . , T do
6: Sample {x(t)vjk}v,j,k ; Sample {φ(t)

k }k ; Sample {x(t+1)
vj }v,j ;

7: end for
8: Sample p(2)j and Calculate c(2)j ; Sample {c(t)j }j,t and Calculate {p(t)j }j,t for t = 3, . . . , T + 1
9: for t = T, T − 1, . . . , 2 do

10: Sample r if t = T ; Sample {θ(t)j }j ;
11: end for
12: if iter = BT then
13: Prune layer T ’s inactive factors {φ(T)

k }k:x(T)
··k =0

, let KT =
∑

k δ(x
(T)
··k > 0), and update r;

14: end if
15: end for
16: Output the posterior means (according to the last MCMC sample) of all remaining factors {φ(t)

k }k,t as
the inferred network of T layers, and {rk}KT

k=1 as the gamma shape parameters of layer T ’s hidden units.
17: end for

Gam(γ0/KT max, 1/c0), and rely on that stochastic process’s shrinkage mechanism to prune inactive
factors (connection weight vectors) of layer T , and hence the inferred KT would be smaller than
KT max if KT max is sufficiently large. The newly added layer and the layers below it would be
jointly trained, but with the structure below the newly added layer kept unchanged. Note that when
T = 1, the PGBN would infer the number of active factors if K1 max is set large enough, otherwise,
it would still assign the factors with different weights rk, but may not be able to prune any of them.

3 Experimental Results
We apply the PGBNs for topic modeling of text corpora, each document of which is represented
as a term-frequency count vector. Note that the PGBN with a single hidden layer is identical to
the (truncated) gamma-negative binomial process PFA of [13], which is a nonparametric Bayesian
algorithm that performs similarly to the hierarchical Dirichlet process latent Dirichlet allocation
[23] for text analysis, and is considered as a strong baseline that outperforms a large number of
topic modeling algorithms. Thus we will focus on making comparison to the PGBN with a single
layer, with its layer width set to be large to approximate the performance of the gamma-negative
binomial process PFA. We evaluate the PGBNs’ performance by examining both how well they
unsupervisedly extract low-dimensional features for document classification, and how well they
predict heldout word tokens. Matlab code will be available in http://mingyuanzhou.github.io/.

We use Algorithm 1 to learn, in a layer-wise manner, from the training data the weight matrices
Φ(1), . . . ,Φ(Tmax) and the top-layer hidden units’ gamma shape parameters r: to add layer T to
a previously trained network with T − 1 layers, we use BT iterations to jointly train Φ(T) and r
together with {Φ(t)}1,T−1, prune the inactive factors of layer T , and continue the joint training with
another CT iterations. We set the hyper-parameters as a0 = b0 = 0.01 and e0 = f0 = 1. Given
the trained network, we apply the upward-downward Gibbs sampler to collect 500 MCMC samples
after 500 burnins to estimate the posterior mean of the feature usage proportion vector θ(1)

j /θ
(1)
·j at

the first hidden layer, for every document in both the training and testing sets.

Feature learning for binary classification. We consider the 20 newsgroups dataset
(http://qwone.com/∼jason/20Newsgroups/) that consists of 18,774 documents from 20 different
news groups, with a vocabulary of size K0 = 61,188. It is partitioned into a training set of 11,269
documents and a testing set of 7,505 ones. We first consider two binary classification tasks that dis-
tinguish between the comp.sys.ibm.pc.hardware and comp.sys.mac.hardware, and between the
sci.electronics and sci.med news groups. For each binary classification task, we remove a standard
list of stop words and only consider the terms that appear at least five times, and report the classifi-
cation accuracies based on 12 independent random trials. With the upper bound of the first layer’s

6

http://mingyuanzhou.github.io/
http://qwone.com/~jason/20Newsgroups/

Number of layers T
1 2 3 4 5 6 7 8

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
82

82.5

83

83.5

84

84.5

85

85.5

86

86.5

87

(a) ibm.pc.hardware vs mac.hardware

Number of layers T
1 2 3 4 5 6 7 8

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

91

91.5

92

92.5

93

93.5

94

94.5

95

(b) sci.electronics vs sci.med

Number of layers T
2 4 6 8

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

77

78

79

80

81

82

83

84

85

86
(c) ibm.pc.hardware vs mac.hardware

Number of layers T
2 4 6 8

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

91.5

92

92.5

93

93.5

94

94.5

95
(d) sci.electronics vs sci.med

K1max = 25
K1max = 50
K1max = 100
K1max = 200
K1max = 400
K1max = 600
K1max = 800

Figure 1: Classification accuracy (%) as a function of the network depth T for two 20newsgroups binary
classification tasks, with η(t) = 0.01 for all layers. (a)-(b): the boxplots of the accuracies of 12 independent
runs with K1max = 800. (c)-(d): the average accuracies of these 12 runs for various K1max and T . Note that
K1max = 800 is large enough to cover all active first-layer topics (inferred to be around 500 for both binary
classification tasks), whereas all the first-layer topics would be used if K1max = 25, 50, 100, or 200.

Number of layers T
1 2 3 4 5 6 7

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

71

72

73

74

75

76

77

78

79
(a)

K1max = 50
K1max = 100
K1max = 200
K1max = 400
K1max = 600
K1max = 800

K
1max

100 200 300 400 500 600 700 800

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

71

72

73

74

75

76

77

78

79
(b)

T = 1

T = 2

T = 3

T = 4

T = 5

Figure 2: Classification accuracy (%) of the PGBNs for 20newsgroups multi-class classification (a) as a
function of the depth T with various K1max and (b) as a function of K1max with various depths, with η(t) =
0.05 for all layers. The widths of hidden layers are automatically inferred, with K1max = 50, 100, 200, 400,
600, or 800. Note that K1max = 800 is large enough to cover all active first-layer topics, whereas all the
first-layer topics would be used if K1max = 50, 100, or 200.

width set as K1 max ∈ {25, 50, 100, 200, 400, 600, 800}, and Bt = Ct = 1000 and η(t) = 0.01 for
all t, we use Algorithm 1 to train a network with T ∈ {1, 2, . . . , 8} layers. Denote θ̄j as the esti-
matedK1 dimensional feature vector for document j, whereK1 ≤ K1 max is the inferred number of
active factors of the first layer that is bounded by the pre-specified truncation level K1 max. We use
the L2 regularized logistic regression provided by the LIBLINEAR package [25] to train a linear
classifier on θ̄j in the training set and use it to classify θ̄j in the test set, where the regularization
parameter is five-folder cross-validated on the training set from (2−10, 2−9, . . . , 215).

As shown in Fig. 1, modifying the PGBN from a single-layer shallow network to a multi-
layer deep one clearly improves the qualities of the unsupervisedly extracted feature vectors.
In a random trial, with K1 max = 800, we infer a network structure of (K1, . . . ,K8) =
(512, 154, 75, 54, 47, 37, 34, 29) for the first binary classification task, and (K1, . . . ,K8) =
(491, 143, 74, 49, 36, 32, 28, 26) for the second one. Figs. 1(c)-(d) also show that increasing the
network depth in general improves the performance, but the first-layer width clearly plays an impor-
tant role in controlling the ultimate network capacity. This insight is further illustrated below.

Feature learning for multi-class classification. We test the PGBNs for multi-class classification
on 20newsgroups. After removing a standard list of stopwords and the terms that appear less than
five times, we obtain a vocabulary with K0 = 33, 420. We set Ct = 500 and η(t) = 0.05 for all
t. If K1 max ≤ 400, we set Bt = 1000 for all t, otherwise we set B1 = 1000 and Bt = 500 for
t ≥ 2. We use all 11,269 training documents to infer a set of networks with Tmax ∈ {1, . . . , 5} and
K1 max ∈ {50, 100, 200, 400, 600, 800}, and mimic the same testing procedure used for binary clas-
sification to extract low-dimensional feature vectors, with which each testing document is classified
to one of the 20 news groups using the L2 regularized logistic regression. Fig. 2 shows a clear trend
of improvement in classification accuracy by increasing the network depth with a limited first-layer
width, or by increasing the upper bound of the width of the first layer with the depth fixed. For ex-
ample, a single-layer PGBN withK1 max = 100 could add one or more layers to slightly outperform
a single-layer PGBN with K1 max = 200, and a single-layer PGBN with K1 max = 200 could add
layers to clearly outperform a single-layer PGBN with K1 max as large as 800. We also note that
each iteration of jointly training multiple layers costs moderately more than that of training a single
layer, e.g., with K1 max = 400, a training iteration on a single core of an Intel Xeon 2.7 GHz CPU
on average takes about 5.6, 6.7, 7.1 seconds for the PGBN with 1, 3, and 5 layers, respectively.

Examining the inferred network structure also reveals interesting details. For exam-
ple, in a random trial with Algorithm 1, the inferred network widths (K1, . . . ,K5) are

7

K
1max

25 100 200 400 600 800

P
er

pl
ex

ity

500

550

600

650

700

750
(a)

T = 1
T = 2
T = 3
T = 4
T = 5

K
1max

25 100 200 400 600 800

P
er

pl
ex

ity

-2

0

2

4

6

8

10

12

14
(b)

T = 1
T = 2
T = 3
T = 4
T = 5

Figure 3: (a) per-heldout-word perplexity (the lower the better) for the NIPS12 corpus (using the 2000 most
frequent terms) as a function of the upper bound of the first layer width K1max and network depth T , with
30% of the word tokens in each document used for training and η(t) = 0.05 for all t. (b) for visualization, each
curve in (a) is reproduced by subtracting its values from the average perplexity of the single-layer network.

(50, 50, 50, 50, 50), (200, 161, 130, 94, 63), (528, 129, 109, 98, 91), and (608, 100, 99, 96, 89), for
K1 max = 50, 200, 600, and 800, respectively. This indicates that for a network with an insufficient
budget on its first-layer width, as the network depth increases, its inferred layer widths decay more
slowly than a network with a sufficient or surplus budget on its first-layer width; and a network with
a surplus budget on its first-layer width may only need relatively small widths for its higher hidden
layers. In the Appendix, we provide comparisons of accuracies between the PGBN and other related
algorithms, including these of [9] and [26], on similar multi-class document classification tasks.

Perplexities for holdout words. In addition to examining the performance of the PGBN for unsu-
pervised feature learning, we also consider a more direct approach that we randomly choose 30% of
the word tokens in each document as training, and use the remaining ones to calculate per-heldout-
word perplexity. We consider the NIPS12 (http://www.cs.nyu.edu/∼roweis/data.html) corpus, lim-
iting the vocabulary to the 2000 most frequent terms. We set η(t) = 0.05 and Ct = 500 for all t, set
B1 = 1000 and Bt = 500 for t ≥ 2, and consider five random trials. Among the Bt + Ct Gibbs
sampling iterations used to train layer t, we collect one sample per five iterations during the last 500

iterations, for each of which we draw the topics {φ(1)
k }k and topics weights θ(1)

j , to compute the
per-heldout-word perplexity using Equation (34) of [13]. As shown in Fig. 3, we observe a clear
trend of improvement by increasing both K1 max and T .

Qualitative analysis and document simulation. In addition to these quantitative experiments, we
have also examined the topics learned at each layer. We use

(∏t−1
`=1 Φ(`)

)
φ

(t)
k to project topic k of

layer t as a V -dimensional word probability vector. Generally speaking, the topics at lower layers
are more specific, whereas those at higher layers are more general. E.g., examining the results used
to produce Fig. 3, with K1 max = 200 and T = 5, the PGBN infers a network with (K1, . . . ,K5) =
(200, 164, 106, 60, 42). The ranks (by popularity) and top five words of three example topics for
layer T = 5 are “6 network units input learning training,” “15 data model learning set image,” and
“34 network learning model input neural;” while these of five example topics of layer T = 1 are “19
likelihood em mixture parameters data,” “37 bayesian posterior prior log evidence,” “62 variables
belief networks conditional inference,” “126 boltzmann binary machine energy hinton,” and “127
speech speaker acoustic vowel phonetic.” We have also tried drawing θ(T) ∼ Gam

(
r, 1/c

(T+1)
j

)
and downward passing it through the T -layer network to generate synthetic documents, which are
found to be quite interpretable and reflect various general aspects of the corpus used to train the net-
work. We provide in the Appendix a number of synthetic documents generated from a PGBN trained
on the 20newsgroups corpus, whose inferred structure is (K1, . . . ,K5) = (608, 100, 99, 96, 89).

4 Conclusions
The Poisson gamma belief network is proposed to extract a multilayer deep representation for high-
dimensional count vectors, with an efficient upward-downward Gibbs sampler to jointly train all
its layers and a layer-wise training strategy to automatically infer the network structure. Example
results clearly demonstrate the advantages of deep topic models. For big data problems, in practice
one may rarely has a sufficient budget to allow the first-layer width to grow without bound, thus
it is natural to consider a belief network that can use a deep representation to not only enhance its
representation power, but also better allocate its computational resource. Our algorithm achieves a
good compromise between the widths of hidden layers and the depth of the network.

Acknowledgements. M. Zhou thanks TACC for computational support. B. Chen thanks the support
of the Thousand Young Talent Program of China, NSC-China (61372132), and NCET-13-0945.

8

http://www.cs.nyu.edu/~roweis/data.html

References

[1] Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In Léon Bottou, Olivier
Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press, 2007.

[2] M Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In CVPR, 2007.

[3] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep Learning. Book in preparation for MIT
Press, 2015.

[4] R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, pages 71–113,
1992.

[5] L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence research, pages 61–76, 1996.

[6] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, pages 1527–1554, 2006.

[7] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural compu-
tation, pages 1771–1800, 2002.

[8] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, 2009.
[9] H. Larochelle and S. Lauly. A neural autoregressive topic model. In NIPS, 2012.

[10] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba. Learning with hierarchical-deep models.
IEEE Trans. Pattern Anal. Mach. Intell., pages 1958–1971, 2013.

[11] M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an appli-
cation to information retrieval. In NIPS, pages 1481–1488, 2004.

[12] E. P. Xing, R. Yan, and A. G. Hauptmann. Mining associated text and images with dual-wing
harmoniums. In UAI, 2005.

[13] M. Zhou and L. Carin. Negative binomial process count and mixture modeling. IEEE Trans.
Pattern Anal. Mach. Intell., 2015.

[14] M. Zhou, O. H. M. Padilla, and J. G. Scott. Priors for random count matrices derived from a
family of negative binomial processes. to appear in J. Amer. Statist. Assoc., 2015.

[15] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
ICML, 2010.

[16] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. J. Mach. Learn. Res., 2003.
[17] A. Acharya, J. Ghosh, and M. Zhou. Nonparametric Bayesian factor analysis for dynamic

count matrices. In AISTATS, 2015.
[18] R. Ranganath, L. Tang, L. Charlin, and D. M. Blei. Deep exponential families. In AISTATS,

2015.
[19] Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep poisson factor analysis

for topic modeling. In ICML, 2015.
[20] M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson

factor analysis. In AISTATS, 2012.
[21] T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 2004.
[22] M. Zhou. Beta-negative binomial process and exchangeable random partitions for mixed-

membership modeling. In NIPS, 2014.
[23] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. J. Amer.

Statist. Assoc., 2006.
[24] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep

networks. In NIPS, 2007.
[25] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for

large linear classification. JMLR, pages 1871–1874, 2008.
[26] N. Srivastava, R. Salakhutdinov, and G. Hinton. Modeling documents with a deep Boltzmann

machine. In UAI, 2013.

9

