
A Proofs for Section 2

Proof of Proposition 2.5. Let ι def
= π1 × · · · × πk. Since ι is injective by assumption, we have

exp(A(β; z)) =
∑
y∈Y

exp(β>ψ(z, y)) (16)

=
∑
p∈ι(Y)

exp(β>ψ(z, ι−1(p))) (17)

=
∑
p∈ι(Y)

exp

− k∑
j=1

βjI[πj(f(z)) 6= pj ]

 (18)

≤
∑

p∈
∏
j Yj

exp

− k∑
j=1

βjI[πj(f(z)) 6= pj ]

 (19)

=

k∏
j=1

∑
pj∈Yj

exp (−βjI[πj(f(z)) 6= pj ]) (20)

=

k∏
j=1

(1 + (|Yj |−1) exp(−βj)) , (21)

as was to be shown.

B Proofs for Section 3

B.1 Effect on loss

Proof of Proposition 3.1. Note that we have

L∗ = Ep∗ [− log pθ∗(y | x)] (22)
= Ep∗ [− logEz∼pθ∗ [S(z, y)]] (23)
(a)

≥ Ep∗ [− logEz∼pθ∗ [exp(β
>ψ(z, y))]] (24)

= Ep∗ [− logEz∼pθ∗ [pβ(y | z) exp(A(β))]] (25)
= Ep∗ [− log pθ∗,β(y | x)−A(β)] (26)
= L(θ∗, β)−A(β) (27)
(b)

≥ L(θ∗β , β)−A(β). (28)

Here (a) follows because S(z, y) ≤ exp(β>ψ(z, y)), since the latter is non-negative and is 1 when
S(z, y) = 1; (b) follows because θ∗β is the minimizer of L(·, β). Continuing:

L(θ∗β , β)−A(β) = Ep∗ [− logEz∼pθ∗
β
[exp(β>ψ(z, y))]] (29)

(c)

≥ Ep∗ [− logEz∼pθ∗
β
[exp(−βmin(1− S(z, y)))]] (30)

= Ep∗ [− log(pθ∗β (y | x) + (1− pθ∗β (y | x)) exp(−βmin))] (31)

= Ep∗ [− log(1− (1− pθ∗β (y | x))(1− exp(−βmin)))] (32)

(d)

≥ Ep∗ [(1− pθ∗β (y | x))(1− exp(−βmin))]. (33)

Again, (c) follows because β>ψ(z, y) ≤ −βmin(1 − S(z, y)), and (d) follows because − log(1 −
x) ≥ x for x ≤ 1. Putting these together, we have L∗ ≥ (1 − exp(−βmin))Ep∗ [1 − pθ∗β (y | x)],
which yields the desired result.
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Proof of Lemma 3.2. We will show a stronger result: any model and relaxation can be slightly mod-
ified to cause Ep∗ [pθ∗β (y | x)] to be zero, in a way that is demonstrated below (though the modified
model will no longer be an exponential family).

Given any S1:k, construct a new point z0 such that S1:k(z0, y) = 1 for all y, and add a new con-
straint S0(z, y) = [z 6= z0]. Then S(z0, y) = 0 for all y, so we never want to place mass on z0
under the unrelaxed supervision. In addition, extend the model family to allow the single additional
distribution p′(z | x) = I[z = z0].

Now, suppose β1:k = ∞ and β0 = βmin. Then, for any θ, we have L(θ, β) = A(β) + L(θ,∞),
since pθ places no mass on z0; therefore, L(θ, β) ≥ A(β)+L∗ for all θ. On the other hand, we have
L(p′, β) = A(β) + βmin. If βmin < L∗, we will thus use p′ and shift all of the mass to z0, thereby
placing zero mass on the correct answer.

Note that the proof required constructing a “bad” z0 that satisfied almost all the constraints for many
values of y at once. It seems straightforward to avoid this in practice, and so it would be interesting
to find assumptions under which we obtain a better relative loss bound than Proposition 3.1.

B.2 Amount of data needed to learn

For the next few derivations we will make extensive use of the relation log pθ,β(y | x) =

A(θ, β;x, y)−A(θ;x), where A(θ, β;x, y) def
= log

(∑
z exp

(
θ>φ(x, z) + β>ψ(z, y)

))
. Note that

the preceding definition is consistent with (13) since we assume throughout Section 3 that T ≡ 1.
We will also use the following properties of log-partition functions:

∇θA(θ, β;x, y) = Ez∼pθ,β(·|x,y)[φ(x, z)] (34)

=
Ez∼pθ(·|x)[φ(x, z) exp(β>ψ(z, y))]

Ez∼pθ(·|x)[exp(β>ψ(z, y))]
, (35)

∇2
θA(θ, β;x, y) = −(∇θA)(∇θA)> + Ez∼pθ,β(·|x,y)[φ(x, z)⊗ φ(x, z)] (36)

= −(∇θA)(∇θA)> +
Ez∼pθ(·|x)[(φ(x, z)⊗ φ(x, z)) exp(β>ψ(z, y))]

Ez∼pθ(·|x)[exp(β>ψ(z, y))]
. (37)

Here we use ∇θA as short-hand for ∇θA(θ, β;x, y). These ∇θA terms will always cancel out
in the sequel, so they can be safely ignored. (The cancellation occurs because we always end up
subtracting two log-normalization constants, whose gradients must be equal by first-order optimality
conditions.) Analogous properties to those above hold for A(θ;x):

∇θA(θ;x) = Ez∼pθ(·|x)[φ(x, z)], (38)

∇2
θA(θ;x) = −(∇θA)(∇θA)> + Ez∼pθ(·|x)[φ(x, z)⊗ φ(x, z)]. (39)

In this case,∇θA is short-hand for∇θA(θ;x).

Proof of (8). We have

I∞ = ∇2
θ[− log pθ∗,∞(y | x)] (40)

= ∇2
θ [A(θ

∗;x)−A(θ∗,∞;x, y)] (41)

= Eθ∗ [φ(x, z)⊗ φ(x, z)]−
Eθ∗ [(φ(x, z)⊗ φ(x, z))S(z, y)]

Eθ∗ [S(z, y)]
(42)

= Eθ∗ [φ(x, z)⊗ φ(x, z)]− Eθ∗ [φ(x, z)⊗ φ(x, z) | S] (43)
= (P[¬S]Eθ∗ [φ⊗ φ | ¬S] + P[S]Eθ∗ [φ⊗ φ | S])− Eθ∗ [φ⊗ φ | S] (44)
= Pθ∗ [¬S] (Eθ∗ [φ⊗ φ | ¬S]− Eθ∗ [φ⊗ φ | S]) . (45)

The result follows by taking expectations.
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Proof of (9). We have

Iβ = ∇2
θ[− log pθ∗β ,β(y | x)] (46)

= ∇2
θ

[
A(θ∗β ;x)−A(θ∗β , β;x, y)

]
(47)

= Eθ∗β [φ(x, z)⊗ φ(x, z)]−
Eθ∗β [(φ(x, z)⊗ φ(x, z)) exp(β

>ψ)]

Eθ∗β [exp(β
>ψ)]

(48)

=
Eθ∗β [φ⊗ φ]Eθ∗β [exp(β

>ψ)]− Eθ∗β [(φ⊗ φ) exp(β
>ψ)]

Eθ∗β [exp(β
>ψ)]

(49)

= −
Covθ∗β [φ⊗ φ, exp(β

>ψ)]

Eθ∗β [exp(β
>ψ)]

(50)

(a)
= −

Covθ∗β [φ⊗ φ, 1 + β>ψ +O
(
β2
)
]

Eθ∗β [1 +O (β)]
(51)

(b)
= −Covθ∗β

[
φ⊗ φ, β>ψ

]
+O

(
β2
)
, (52)

where in (a) we used exp(β>ψ) = 1 + β>ψ +O
(
β2
)

and in (b) we used Cov[·, 1] = 0. The result
again follows by taking expectations.

Note: Assuming that ‖ψ‖1 is small for most z (as measured by pθ∗β ), the O
(
β2
)

term is small as
long as ‖β‖∞� 1. This assumption on ψ holds when Pθ∗β [S] ≈ 1 (so that ψ = 0 most of the time).

Proof of (10). Recall that we are assuming βj = βmin for all j, and that the ¬Sj are all disjoint. In
this case, −β>ψ is equal to βmin if a constraint is violated and 0 if no constraints are violated. We
then have

Covθ∗β
[
φ⊗ φ, −β>ψ

]
(53)

= βmin Covθ∗β [φ⊗ φ, I[¬S]] (54)

= βminP[¬S]
(
Eθ∗β [φ⊗ φ | ¬S]− Eθ∗β [φ⊗ φ]

)
(55)

= βminP[¬S]
(
Eθ∗β [φ⊗ φ | ¬S]− P[¬S]Eθ∗β [φ⊗ φ | ¬S]− P[S]Eθ∗β [φ⊗ φ | S]

)
(56)

= βminP[S]P[¬S]
(
Eθ∗β [φ⊗ φ | ¬S]− Eθ∗β [φ⊗ φ | S]

)
, (57)

as claimed.

B.3 Optimizing β

Proof of Proposition 3.3. We can re-express Ex,y∼p∗ [− log p(y | x)] as KL (p∗ ‖ p) + H(p∗).
Hence, in particular, L(θ, β) = KL (p∗ ‖ pθ,β) + H(p∗) ≥ H(p∗),2 with equality if and only if
pθ,β = p∗. On the other hand, pθ∗,∞ = pθ∗ = p∗ by assumption, so equality is attainable, and
(θ∗,∞) is a global optimum of L.

Note that the normalization constant A(β) is important here, since if pθ,β did not (sub-)normalize
then the KL divergence would not necessarily be non-negative.

2Here we use the fact that KL (p ‖ q) def
= Ep[log p − log q] is non-negative as long as p normalizes and q

sub-normalizes, which is true for q = pθ,β by Proposition 2.5).
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C Proofs for Section 4

Proof of (14). The acceptance rate is simply the expectation, over all z | x, of the acceptance
probability for that particular z. This can clearly be written as∑

z

pθ,T(z | x) exp
(
β>ψ(z, y)

)
(58)

=
∑
z

T(z, y) exp
(
θ>φ(x, z)−AT(θ;x, y)

)
exp

(
β>ψ(z, y)

)
(59)

= exp (−AT(θ;x, y))
∑
z

T(z, y) exp
(
θ>φ(x, z) + β>ψ(z, y)

)
(60)

= exp (A(θ, β;x, y)−AT(θ;x, y)) . (61)

Since (14) is the multiplicative inverse of (61), the result follows.

Proof of (15). By convexity of A(θ, β;x, y), we have

A(θ, β;x, y) (62)

≥ A(θ̃, β̃;x, y) + (θ − θ̃)>∇θA(θ̃, β̃;x, y) + (β − β̃)>∇βA(θ̃, β̃;x, y) (63)

= A(θ̃, β̃;x, y) + (θ − θ̃)>Epθ̃,β̃(·|x,y)[φ(x, z)] + (β − β̃)>Epθ̃,β̃(·|x,y)[ψ(z, y)] (64)

= A(θ̃, β̃;x, y) + (θ − θ̃)>φ̃+ (β − β̃)>ψ̃, (65)

as was to be shown.
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