
Supplementary material for the paper:
Learning Multi-level Sparse Representations

Ferran Diego Fred A. Hamprecht
Heidelberg Collaboratory for Image Processing (HCI)

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg, Heidelberg 69115, Germany

{ferran.diego,fred.hamprecht}@iwr.uni-heidelberg.de

1 Optimization

We now consider the optimization in Fig. 1 (Fig. 3(d) in the main paper). The problem is not jointly
convex, but becomes convex w.r.t. one variable while keeping fixed the others if we assume that
the norms ΩU , ΩD, and ΩA are also convex. Hence, the main optimization procedure is based on
iteratively optimizing a group of variables while fixing the others. In addition, these norms are not
restricted to control only the sparsity of Ū = [U0, . . . ,UL], D and Ā = [A1, . . . ,AL] but can also
bias towards non–zero patterns of a specific structure, e.g. sets of variables forming rectangles or
specific shapes.

Figure 1: Decomposition of X into multiple levels. From left to right: Illustration of matrix decom-
position and the main equation. Boxes indicates the different matrix factorizations included in the
main equation.

1

Update of U: The optimization of Ū can be solved using a bottom–up block coordinate descent
(from coarser to higher levels). The update of U j at level j is a convex problem while keeping fixed
the other variables. This can be written as follows:

min
Uj

1

2
‖X̂− D̂[Uj]T ‖2F +

n∑
t=1

λjUΩU (ujt:), (1)

where

X̂ =

 ηD,jX
ηU,j [U

j−1]T

ηU,j+1A
j+1[Uj+1]T

 , D̂ =

ηD,jD
j∏
i=1

Ai

ηU,jA
j

ηU,j+1Iqj

 ,
and Iqj denotes the identity matrix of size qj . In addition, if we assume that all the coefficient
matrices are regularized with the same Ωu but with different λjU that increases monotonically, i.e.
λ0
U ≤ λ1

U ≤ . . . ≤ λLU , or ΩU that relates all the coefficients, we can optimize jointly the multi-level
sparse representation Ū and take advantage of well-developed solvers. This joint optimization is
written as shown in Fig. 2.

Figure 2: Joint optimization of the multi-level sparse representation Ū. From left to right: Illustra-
tion of matrix decomposition such that green boxes indicates fixed variables and blue the variable to
estimate, and the main equation.

2

Update of A: The update of adjacency matrix Ā requires more attention since it relates successive
levels. The updated Ā is computed iteratively following a bottom–up scheme, from the lowest level
j = 1 to the highest level j = L. The minimization task for Aj , j = 1, . . . , L, is shown in Fig. 3.

Figure 3: Joint optimization of the adjacency matrix Aj at level j fixing the lowest levels. From
left to right: Illustration of matrix decomposition such that green boxes indicates fixed variables and
blue the variable to estimate, and the main equation.

A natural way to update Aj would be to compute the closed form solution available by applying
some properties of the Kronecker product ⊗ and matrix vectorization v(·) as follows:

min
Aj

1

2

∥∥∥∥
[

v
(
X̃A
)

v
(
ηU,j [U

j−1]T
)]− [ŨA ⊗ D̃A

Uj ⊗ ηU,jIqj−1

]
v(Aj)

∥∥∥∥2

F

+

qj∑
k=1

λjAΩA(aj:k) s.t. ∀k,ΩD(D̃Aaj:k) ≤ 1.

(2)

However, the solution of (2) would require to solve large–scale optimization problem due to the
Kronecker product. Instead, we consider the optimization on the rows ajk: of Aj via Block Coordi-
nate Descent (BCD) [2, Section 2.7]. Assuming that the others {aji:}i6=k are kept fixed, some basic
algebra and Lemma 1.1 leads to

min
aj
k:

1

2

∥∥∥∥
 [EA]T d̄A

:k

‖d̃A
:k‖

2
2

ηU,jU
j−1

‖d̃A
:k‖

2
2

− [ŨA

ηU,jU
j

‖d̃A
:k‖

2
2

]
[ajk:]

T

∥∥∥∥2

F

+
λjA
‖d̃Ak:‖22

ΩA(ajk:)

s.t. ∀i,ΩD(D̃Aaj:i) ≤ 1,

(3)

where
EA = X̃A −

∑
q 6=k

d̃A:qa
j
k:[Ũ

A]T .

Fast algorithms are available for efficiently solving this problem with a subsequent Euclidean pro-
jection of D̃Aaj:k onto the unit ball of ΩD. Note that the norm ΩA in Eq. (3) is applied to the row
vectors instead of column vectors of A. For regularizations such as l1-norm, this is equivalent; for
many others, it can be reformulated using the variational equality [4, Lemma 3.1] to a weighted
quadratic problem. In addition, this formulation allows to impose an inclusion hierarchy between
levels by constraining the number of non–zeros elements of ajk: to be lower than one.

3

Lemma 1.1. Let V ∈ Rm×n and B ∈ Rn×q be two matrices, and let y ∈ Rm and w ∈ Rq be two
vectors of respective sizes. Also assume that yT y > 0. Then the following holds:

argmin
w

1

2

∥∥V − ywTBT∥∥2

F
+ λΩ(w) = argmin

w

1

2

∥∥∥∥V T y‖y‖22
−Bw

∥∥∥∥2

2

+
λ

‖y‖22
Ω(w).

Proof: See the appendix.

Update of D: The update of the dictionary D is again a convex problem when fixing the other
variables. This can be written as shown in Fig. 4. This formulation allows to learn the lowest
dictionary elements D using the information contained in all the sparse representations and the
latent heterarchical structure between consecutive levels. Instead of updating D by computing the
closed form solutions available for each row vector, the update of D follows the technique suggested
by Mairal et al. [5]. This is again a BCD scheme on the columns of D and a Euclidean projection
onto the unit ball of ΩD. Hence, it avoids the computation of q0 non–diagonal matrix inversions. In
practice, the stopping criterion relies on the relative decrease (typically 10−3) in the cost function
shown in Fig. 1 (Fig. 3(d) in the main paper).

Figure 4: Joint optimization of the dictionary matrix D. From left to right: Illustration of matrix
decomposition such that green boxes indicates fixed variables and blue the variable to estimate, and
the main equation.

4

Algorithm 1 Learning Heterarchical Structure
1: Input: Data matrix X, number of levels L, dictionary sizes qj , regularization parameters, the

norms ΩU , ΩA and ΩD, and η.
2: Initialization: Initialization of D and Ū (possibly random), and Aj ← I ∈ Rqj−1×qj .
3: while (not converged) do
4: Update U: Compute Ū that minimizes shown in Fig. 2.
5: Update A by BCD:
6: for j = 1, . . . , L do
7: for k = 1, . . . , qj do
8: Compute ajk: that minimizes Eq. (3).
9: end for

10: end for
11: Update D: Compute D that minimizes shown in Fig. 4.
12: end while
13: Output: Decomposition D, Ū and Ā.

2 Implementation Details

2.1 Parameters

The trade-off parameters are chosen depending on the structure of the problem, and also their
confidence. The main parameters are the weights of the data fidelity and temporal consistency.
Depending on their values, the algorithm relies only on the data fidelity as KSVDS by setting
ηU = 0, or on the temporal consistency as MNNMF by setting ηD = 0. Both terms are needed
because the temporal consistent indicates when neurons fire and the raw data indicates the intensity
of the firing. In our experiments, we set up ηD bigger than ηU because neurons are not firing exactly
at the same time.

Regarding the sparsity parameters, λU should increase monotonically while layers increase since
the number of active signals will be higher at lower levels, and λA should be a lower value (0.0001)
to prevent A from shrinking to zero at the first iterations.

2.2 Computational Complexity

The problem in Fig. 1 is not jointly convex as the simplest case of dictionary learning or non-negative
matrix factorization. Due to this non-convex formulation, the simplest cases are only able to prove
the convergence to a stable point (or local minima) as indicated in [6] and the convergence rate
depends highly on the initialization of the matrices as pointed in [1]. Empirically, the algorithm
converges in 80 iterations on average. Despite estimating all parameters, the computational time is
similar to KSVDS and MNNMF that only rely on estimating the upper layer. All experiments were
conducted on the same conditions and run it in MATLAB.

The complexity of only the first layer depends on the update of D and U. The former based on [10] is
O(m · qo ·max(m0.5, n) +m2 + max(n,m) · q2

0) and the latter depends on the solver. For instance,
orthogonal matching pursuit isO(n·q0 ·(m+L2)), where L is the number of non-zero elements. For
multiple layers this will increase the complexity approx. by a multiplicative factor of l2 assuming
that all ql are equal to q0.

2.3 Initialization

Bilevel SHMF can also be initialized randomly achieving similar performance to the other methods,
but slightly worse (approx. 3%) than when the algorithm is initialized with the results obtained by
ADINA [3]. For a fair comparison, the algorithms were compared using the same conditions.

5

3 Results

3.1 Artificial Sequences

Fig. 6 shows the ground truth at the neuron level for the synthetic data with 5 cells on average
per assembly and a RA equal to 3. In addition, our bilevel SHMF is able to identify and monitor
neuronal activity at single cell and assembly level as shown in Fig. 7. It can also infer the assignment
matrix behind the neuronal activity, and is able to distinguish highly correlated cells. It extracts
smooth and regularly shaped cells. In addition, our approach is able to learn the adjacency matrix
relating neurons and neuronal assemblies.

Fig. 5 shows the performance for different noise levels and the average number of cells per assembly.
This figure complements the overall performance among the algorithms shown in Fig. 5 in the main
manuscript.

Identification of assemblies
The adjacency matrices are binarized as follows to give the best performance:

• KSVDS: entries bigger than 5% of the maximum value in A are set to 1,
• MNNMF: entries bigger than 0.001 are set to 1, and
• bilevel SHMF: entries bigger than 0 are set to 1 since λA is set to 0.001.

Adina CellSorting MNNMF + Adina Single Level SHMF Bilevel SHMF

(a) Sensitiviy (%)

Adina CellSorting MNNMF + Adina Single Level SHMF Bilevel SHMF

(b) Precision (%)

Figure 5: Sensitivity and precision of transient detection for individual neuron. Methods that es-
timate both assemblies and neuron transients perform at least as well as their simpler counterparts
that focus on the latter.

3.2 Real Sequences

As shown in Fig. 8, our approach is able to accurately reconstruct the raw data at both levels of
representations, and to identify the underlying neurons and assemblies.

6

Figure 6: Example of ground truth at neuron level for the synthetic data. From left to right: outline of
all neurons used to generate the artificial sequence superimposed on a maximum intensity projection
across the noisy image sequence, the induced temporal activation patterns of each individual neuron
before and after introducing random Gaussian noise.

Figure 7: Bottom left: Shown are the temporal activation patterns of individual neurons (lower
layer), and assemblies of neurons (upper layer). Neurons and assemblies are related by a bipartite
graph the estimation of which is a central goal of this work. The signature of five neuronal assemblies
in the spatial domain is shown at the top. The bottom right shows the outline of all found neurons
superimposed on a maximum intensity projection across the image sequence. All results shown in
this figure issue from computations on a synthetic sequence, with known ground truth.

7

Raw data Cell Sorting [7] Adina [3]
Neurons

(D[U0]T)
Assemblies

(DA1[U1]T)

Figure 8: Raw data and reconstructed images at times indicated in Fig. 2(b) of the main paper.

References
[1] R. Albright, J. Cox, D. Duling, A. N. Langville, and C. D. Meyer. Algorithms, initializations, and conver-

gence for the nonnegative matrix factorization. NCSU Technical Report Math., 2006.
[2] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[3] F. Diego, S. Reichinnek, M. Both, and F. A. Hamprecht. Automated identification of neuronal activity

from calcium imaging by sparse dictionary learning. In International Symposium on Biomedical Imaging,
in press, 2013.

[4] R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

[5] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In Proceedings
of the 26th Annual International Conference on Machine Learning, 2009.

[6] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding.
Journal of Machine Learning Research, 2010.

[7] E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer. Automated analysis of cellular signals from large-
scale calcium imaging data. Neuron, 2009.

8

4 Appendix

Lemma 4.1. Let V ∈ Rm×n and B ∈ Rn×q be two matrices, and let y ∈ Rm and w ∈ Rq be two
vectors of respective sizes. Also assume that yTy > 0. Then the following holds:

argmin
w

1

2

∥∥V − ywTBT
∥∥2

F
+ λΩ(w) = argmin

w

1

2

∥∥∥∥VTy

‖y‖22
−Bw

∥∥∥∥2

F

+
λ

‖y‖22
Ω(w).

Proof. The equality follows from elementary properties of the trace function:

argmin
w

1

2

∥∥V − ywTBT
∥∥2

F
+ λΩ(w) =

= argmin
w

1

2
Tr
(
(V − ywTBT)T (V − ywTBT)

)
+ λΩ(w)

= argmin
w

1

2

[
Tr(VTV)− 2Tr(VTywTBT) + Tr(BwyTywTBT)

]
+ λΩ(w)

= argmin
w

1

2

[
Tr(VTV)− 2Tr(VTywTBT) + Tr(Bw‖y‖22wTBT)

]
+ λΩ(w)

= argmin
w

1

2

[
1

‖y‖22
Tr(VTV)− 2Tr(

VTy

‖y‖22
wTBT) + Tr(BwwTBT)

]
+

λ

‖y‖22
Ω(w)

= argmin
w

1

2

[
1

‖y‖22
Tr(VTV)− 2Tr(

VTy

‖y‖22
wTBT) + Tr(BwwTBT) + Tr(

VTy

‖y‖22
yTV

‖y‖22
)

−Tr(V
Ty

‖y‖22
yTV

‖y‖22
)

]
+

λ

‖y‖22
Ω(w)

= argmin
w

1

2

[
Tr(

VTy

‖y‖22
yTV

‖y‖22
)− 2Tr(

VTy

‖y‖22
wTBT) + Tr(BwwTBT)

]
+

λ

‖y‖22
Ω(w)

+
1

‖y‖22
Tr(VTV)− Tr(V

Ty

‖y‖22
yTV

‖y‖22
)

= argmin
w

1

2

[
Tr(

VTy

‖y‖22
yTV

‖y‖22
)− 2Tr(

VTy

‖y‖22
wTBT) + Tr(BwwTBT)

]
+

λ

‖y‖22
Ω(w)

= argmin
w

1

2

∥∥∥∥yTV‖y‖22 −wTBT

∥∥∥∥2

F

+
λ

‖y‖22
Ω(w) = argmin

w

1

2

∥∥∥∥VTy

‖y‖22
−Bw

∥∥∥∥2

F

+
λ

‖y‖22
Ω(w).

9

