
Supplemental Material

A Proofs

A.1 On the connection of ONMF with NNPCA

Lemma 2. Let E⋆,min
W≥0H≥0,W⊤

W=Ik
‖M−WH⊤]‖2F be the optimal ONMF approximation

error for a given m× n real nonnegative matrix M and target dimension k, as defined in (1). Then,

E⋆ = ‖M‖2F − max
W≥0m×k

W
⊤
W=Ik

‖M⊤W‖2F , (6)

If W⋆ is a solution of the maximization in (6), then the pair W⋆,H⋆,M⊤W⋆ is a feasible solution
to the ONMF problem in (1), achieving the minimum error E⋆, i.e., ‖M−W⋆W

⊤
⋆ M‖2F = E⋆.

Proof. Recall that by assumption, W is a m × k nonnegative matrix with orthonormal columns.
The subsequent analysis holds even in the case where W is allowed to contain all-zero columns, as
such columns do not contribute to the objective function and can be ignored effectively reducing the
dimension k of the factorization.

Given a real nonnegative m × k matrix W, the real n × k matrix H that minimizes the Frobenius
error ‖M − WH⊤‖2F over all real n × k matrices (ignoring temporarily the fact what we seek a
nonnegative H), is given by H⊤ = W†M, where W† denotes the pseudo-inverse of W. Here,
however, the columns of W are orthonormal and hence W† = W⊤. Moreover, since M is non-
negative, H⊤ = W⋆

†M = W⊤
⋆ M automatically satisfies the additional nonnegativity constraint.

Therefore, the ONMF problem (defined in (1)) reduces to a minimization in a single variable:

E⋆ = min
W≥0m×k

W
⊤
W=Ik

‖M−WW⊤M‖2F . (7)

Expanding the objective in (7),

‖M−WW⊤M‖2F = ‖M‖2F − 2 · TR
(
W⊤MM⊤W

)
+ TR

(
M⊤WW⊤M

)

= ‖M‖2F − TR
(
W⊤MM⊤W

)

= ‖M‖2F − ‖M⊤W‖2F , (8)

where the first step follows from the cyclic property of the trace and the fact that W⊤W = Ik. This
concludes the proof.

A.2 Proof of Lemma 1

Lemma 1. For any real m×n matrix M with rank r, desired number of components k, and accuracy
parameter ǫ ∈ (0, 1), Algorithm 1 outputs W ∈ Wk such that

‖M⊤
W‖2F ≥ (1− ǫ) · ‖M⊤

W⋆‖2F ,

where W⋆ is the optimal solution defined in (3), in time TSVD +O
((

2
ǫ

)r·k · k ·m
)
.

Proof. Let M = UΣV
⊤

denote the truncated eigenvalue decomposition of M; Σ is a diagonal

r × r matrix with Σii being equal to the ith largest singular value of M. For any w ∈ R
m,

∥∥M⊤
w
∥∥2
2
=
∥∥VΣU

⊤
w
∥∥2
2
=
∥∥ΣU

⊤
w
∥∥2
2
≥
〈
ΣU

⊤
w, c

〉2
, ∀ c ∈ R

r : ‖c‖2 = 1, (9)

where the first equality follows from the fact that the columns of V are orthonormal and span the

entire row space of M, and the inequality is due to Cauchy-Schwartz. In fact, equality is achieved

for c colinear to ΣUw, appropriately scaled to unit-length, and hence,

∥∥M⊤
w
∥∥2
2
= max

c∈Sr−1

〈
ΣU

⊤
w, c

〉2
. (10)
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In turn,

∥∥M⊤
W
∥∥2

F
=

k∑

j=1

∥∥M⊤
wj

∥∥2
2
=

k∑

j=1

max
cj∈Sr−1

〈
ΣU

⊤
wj , cj

〉2
. (11)

Recall that W⋆ by definition maximizes the left hand side of (11) over all W ∈ Wk. Let

c̃⋆1, . . . , c̃⋆k ∈ S
r−1 be the set of k vectors achieving equality in (11) for W = W⋆, and let

C̃⋆ ∈ R
r×k be the matrix formed by stacking the k vectors. Algorithm 1 iterates over a set

N⊗k
ǫ/2

(
S
r−1
)

of points (r × k matrices) C. Recall that N⊗k
ǫ/2

(
S
r−1
)

is the kth cartesian power

of an ǫ/2-net of the r-dimensional ℓ2-unit sphere. By construction, the set contains a matrix C♯ such
that

‖C♯ − C̃⋆j‖∞,2 ≤ ǫ/2. (12)

Then, for all j ∈ {1, . . . , k},

∥∥M⊤
W⋆j

∥∥
2
=
∣∣〈ΣU

⊤
W⋆j , c̃⋆j

〉∣∣

=
∣∣〈ΣU

⊤
W⋆j , c♯j

〉
+
〈
ΣU

⊤
W⋆j , (c̃⋆j − c♯j)

〉∣∣

≤
∣∣〈ΣU

⊤
W⋆j , c♯j

〉∣∣+
∣∣〈ΣU

⊤
W⋆j , (c̃⋆j − c♯j)

〉∣∣

≤
∣∣〈ΣU

⊤
W⋆j , c♯j

〉∣∣+
∥∥ΣU

⊤
W⋆j

∥∥
2
· ‖c̃⋆j − c♯j‖2

≤
∣∣〈ΣU

⊤
W⋆j , c♯j

〉∣∣+ (ǫ/2) ·
∥∥M⊤

W⋆j

∥∥
2
. (13)

The first step follows by the definition of C̃⋆, the second by the linearity of the inner product, the
third by the triangle inequality, the fourth by Cauchy-Schwarz inequality and the last by the fact that
‖c̃⋆j − c♯j‖ ≤ ǫ/2, ∀i ∈ {1, . . . , k} (by (12)). Rearranging the terms in (13),

∣∣〈ΣU
⊤
W⋆j , c♯j

〉∣∣ ≥
(
1− ǫ

2

)
·
∥∥M⊤

W⋆j

∥∥
2
≥ 0,

which in turn implies (by taking the square on both sides) that

〈
ΣU

⊤
W⋆j , c♯j

〉2 ≥
∥∥M⊤

W⋆j

∥∥2
2
≥ (1− ǫ) ·

∥∥M⊤
W⋆j

∥∥2
2

(14)

Summing the terms in (14) over all j ∈ {1, . . . , k},

k∑

j=1

〈
ΣU

⊤
W⋆j , c♯j

〉2 ≥ (1− ǫ) ·
∥∥M⊤

W⋆

∥∥2
F
. (15)

Let W♯ ∈ Wk be the candidate solution produced by the algorithm at C♯, i.e.,

W♯, argmax
W∈Wk

k∑

j=1

〈
wj , UΣc♯j

〉2
(16)

Then,

∥∥M⊤
W♯

∥∥ (α)
=

k∑

j=1

max
cj∈Sr−1

〈
ΣU

⊤
W♯j , cj

〉2

(β)

≥
k∑

j=1

〈
ΣU

⊤
W♯j , c♯j

〉2

(γ)

≥
k∑

j=1

〈
W⋆j , UΣc♯j

〉2

(δ)

≥ (1− ǫ) ·
∥∥MW⋆

∥∥2
F
, (17)
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where (α) follows from the observation in (11), (β) from the suboptimality of C♯, (γ) from the fact
that W♯ maximizes the sum by its definition in (16), while (δ) follows from (15). According to (17),
at least one of the candidate solutions produced by Algorithm 1, namely W♯, achieves an objective
value within a multiplicative factor (1− ǫ) from the optimal, implying the guarantees of the lemma.

Finally, the running time of Algorithm 1 follows immediately from the cost per iteration and the
cardinality of the ǫ/2-net on the unit-sphere. Note that matrix multiplications can exploit the available
singular value decomposition which is performed once.

A.3 Proof of Theorem 1

We first prove some auxiliary lemmata. The proof of the Theorem is given in the end of this section.

Lemma 3. For any real m× n matrices M and M, let

W⋆, argmax
W∈Wk

∥∥M⊤W
∥∥2

F
and W⋆, argmax

W∈Wk

∥∥M⊤
W
∥∥2

F
, (18)

respectively. Then, for any W ∈ Wk such that
∥∥M⊤

W
∥∥2

F
≥ γ ·

∥∥M⊤
W⋆

∥∥2
F

for some 0 < γ < 1,

∥∥M⊤W
∥∥2

F
≥ γ ·

∥∥M⊤W⋆

∥∥2
F
− 2 · k · ‖M−M‖22.

Proof. By the optimality of W⋆ for M,
∥∥M⊤

W⋆

∥∥2
F
≥
∥∥M⊤

W⋆

∥∥2
F
.

In turn, for any W ∈ Wk satisfying the assumptions of the lemma,
∥∥M⊤

W
∥∥2

F
≥ γ ·

∥∥M⊤
W⋆

∥∥2
F
. (19)

Let A,MM⊤, Ã,MM
⊤

, and E,A− Ã. By the linearity of the trace,
∥∥M⊤

W
∥∥2

F
= TR

(
W

⊤
AW

)
− TR

(
W

⊤
EW

)

≤ TR

(
W

⊤
AW

)
+
∣∣TR

(
W

⊤
EW

)∣∣. (20)

By Lemma 10,
∣∣TR

(
W

⊤
EW

)∣∣ ≤ ‖W‖2F · ‖E‖2 ≤ k · ‖E‖2 , R, (21)

where the last inequality follows from the fact that ‖W‖2F ≤ k for any W ∈ Wk. Continuing
from (20),

∥∥M⊤
W
∥∥2

F
≤ TR

(
W

⊤
AW

)
+R. (22)

Similarly,
∥∥M⊤

W⋆

∥∥2
F
= TR

(
W⊤

⋆ AW⋆

)
− TR

(
W⊤

⋆ EW⋆

)

≥ TR
(
W⊤

⋆ AW⋆

)
−
∣∣TR
(
W⊤

⋆ EW⋆

)∣∣
≥ TR

(
W⊤

⋆ AW⋆

)
−R. (23)

Combining the above, we have

TR

(
W

⊤
AW

)
≥
∥∥M⊤

W
∥∥2

F
−R

≥ γ ·
∥∥M⊤

W⋆

∥∥2
F
−R

≥ γ ·
(
TR
(
W⊤

⋆ AW⋆

)
−R

)
−R

= γ · TR
(
W⊤

⋆ AW⋆

)
− (1 + γ) ·R

≥ γ · TR
(
W⊤

⋆ AW⋆

)
− 2 ·R,

where the first inequality follows from (22) the second from (19), the third from (23), and the last
from the fact that R ≥ 0 and 0 < γ ≤ 1. This concludes the proof.
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Remark 1. If in Lemma 3 M is such that MM⊤ −MM
⊤

is PSD, then

∥∥M⊤W
∥∥2

F
≥ γ ·

∥∥M⊤W⋆

∥∥2
F
−

k∑

i=1

λi

(
MM⊤ −MM

⊤)
.

Proof. This follows from the fact that if E,A− Ã is PSD, then

TR

(
X̃⊤EX̃

)
=

m∑

j

x⊤
j Exj ≥ 0,

and the bound in (20) can be improved to

∥∥M⊤
W
∥∥2

F
= TR

(
X̃⊤AX̃

)
− TR

(
X̃⊤EX̃

)

≤ TR

(
X̃⊤AX̃

)
.

Further, by Lemma 10 (Corollary 3) the bound in (21) becomes

TR

(
W

⊤
EW

)
≤ ‖W‖2F · ‖E‖2 ≤

k∑

i=1

λi(E).

The rest of the proof follows.

Theorem 1. For any real m × n (not necessarily nonnegative) matrix M and desired number of

components k, let W⋆, argmax
W∈Wk

∥∥M⊤W
∥∥2

F
. Let M be the best rank-r approximation of M.

Algorithm 1 with input M and accuracy parameters ǫ and r, outputs W ∈ Wk such that

∥∥M⊤W
∥∥2

F
≥ (1− ǫ) ·

∥∥M⊤W⋆

∥∥2
F
− k · ‖M−M‖22

in time TSVD +O
((

1
ǫ

)r·k · k ·m
)

.

Proof. Let W be the output of Algorithm 1 with input the best rank-r approximation of of M, M.

By the guarantees of Algorithm 1, (Lemma 1), the output W ∈ Wk of Algorithm 1 is such that

‖M⊤
W‖2F ≥ (1− ǫ) · ‖M⊤

W⋆‖2F ,

where W⋆, argmax
W∈Wk

‖M⊤
W‖2F . In turn, by Lemma 3 (and in particular taking into account

the remark 1 whose conditions are satisfied since MM−MM
⊤

is PSD), we have

∥∥M⊤W
∥∥2

F
≥ (1− ǫ) ·

∥∥M⊤W⋆

∥∥2
F
−

k∑

i=1

λi

(
MM⊤ −MM

⊤)

= (1− ǫ) ·
∥∥M⊤W⋆

∥∥2
F
−

r+k∑

i=r+1

σ2
i

(
M
)
. (24)

The desired result readily follows.

A.4 Proof of Theorem 2

Lemma 4. For any m× n real nonnegative matrix M, target dimension k, and accuracy parame-
ters r ∈ [n] and ǫ > 0, Algorithm 2 outputs an ONMF pair W,H, such that

‖M−WH
⊤‖2F ≤ E⋆ + ǫ ·

k∑

i=1

σ2
i (M) +

r+k∑

i=r+1

σ2
i

(
M
)
,

in time TSVD +O
((

2
ǫ

)r·k · k ·m
)

.
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Proof. Recall that given a real nonnegative m × k matrix W ∈ Wk, H⊤ = W⊤
⋆ M minimizes the

Frobenius error ‖M−WH⊤‖2F over the set of real nonnegative n×k matrices (Proof of Lemma 2).
In turn, for any W ∈ Wk, and H selected as above,

‖M−WH⊤‖2F = ‖M‖2F − ‖M⊤W‖2F . (25)

Let W be the output of Algorithm 1, for input matrix Mr the best rank-r approximation of of M.

That is, in the sequel of this proof, M = Mr. By the guarantees of Algorithm 1, (Lemma 1), the

output W ∈ Wk of Algorithm 1 is such that

‖M⊤
r W‖2F ≥ (1− ǫ) · ‖M⊤

r W⋆‖2F ,
where W⋆, argmax

W∈Wk
‖M⊤

r W‖2F . In turn, by Lemma 3 (and in particular taking into account

the remark 1 whose conditions are satisfied since MM−MrM
⊤
r is PSD), we have

∥∥M⊤W
∥∥2

F
≥ (1− ǫ) ·

∥∥M⊤W⋆

∥∥2
F
−

k∑

i=1

λi

(
MM⊤ −MrM

⊤
r

)

= (1− ǫ) ·
∥∥M⊤W⋆

∥∥2
F
−

r+k∑

i=r+1

σ2
i

(
M
)
. (26)

Given the output W of Algorithm 1, Algorithm 2 outputs the pair W,H
⊤
,W

⊤
M. By (25), for

this choice of H, taking into account (26),

‖M−WH
⊤‖2F = ‖M‖2F − ‖M⊤W‖2F

≤ ‖M‖2F − (1− ǫ) ·
∥∥M⊤W⋆

∥∥2
F
+

r+k∑

i=r+1

σ2
i

(
M
)

= ‖M‖2F −
∥∥M⊤W⋆

∥∥2
F
+ ǫ ·

∥∥M⊤W⋆

∥∥2
F
+

r+k∑

i=r+1

σ2
i

(
M
)

= ‖M−W⋆H
⊤
⋆ ‖2F + ǫ ·

∥∥M⊤W⋆

∥∥2
F
+

r+k∑

i=r+1

σ2
i

(
M
)

= ‖M−W⋆H
⊤
⋆ ‖2F + ǫ ·

k∑

i=1

σ2
i (M) +

r+k∑

i=r+1

σ2
i

(
M
)
,

where the last inequality follows by Lemma 10. This competes the proof.

Theorem 2. For any m× n real nonnegative matrix M, target dimension k, and desired accuracy
0 < ǫ < 1, Algorithm 2 with parameters ǫ and r = ⌈k/ǫ⌉ outputs an ONMF pair W,H, such that

‖M−WH⊤‖2F ≤ E⋆ + ε · ‖M‖2F ,

in time TSVD +
(
1
ǫ

)(k2/ǫ) · (k ·m).

Proof. By Lemma 4, Algorithm 2 with parameters r and ǫ, outputs an ONMF pair W,H, such that

‖M−WH
⊤‖2F ≤ E⋆ + ǫ ·

k∑

i=1

σ2
i (M) +

r+k∑

i=r+1

σ2
i

(
M
)
. (27)

Noting that for k < r the k (squared) singular values σ2
i (M), i = r + 1, . . . , r + k are the smallest

among the r (squared) singular values σ2
i (M), i = k + 1, . . . , r + k, the last term in the right-hand

side can be upper bounded as follows:

r+k∑

i=r+1

σ2
i (M) ≤ k

r
·

r+k∑

i=k+1

σ2
i (M). (28)
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For r = ⌈k/ǫ⌉, and combining the (28) and (27), we have

‖M−WH
⊤‖2F ≤ E⋆ + ǫ ·

k∑

i=1

σ2
i (M) + ǫ ·

r+k∑

i=k+1

σ2
i

(
M
)

= E⋆ + ǫ ·
r+k∑

i=1

σ2
i (M)

≤ E⋆ + ǫ · ‖M‖2F ,
which is the desired guarantee. The time complexity readily follows from the steps of Algorithm 2
and that of Algorithm 1, which concludes the proof.

A.5 Correctness of Algorithm 3

Lemma 5. For any m× k matrix A, Algorithm 3 outputs the m× k nonnegative matrix

Ŵ = argmax
W∈Wk

k∑

j=1

〈
wj , aj

〉2
,

in time O(2k · k ·m).

Proof. Let Ij ⊆ [m], j = 1 . . . , k denote the supports of the k columns of optimal solution Ŵ.
The orthogonality requirements (in conjunction with nonnegativity) imply that the supports Ij ,
j = 1, . . . , k are disjoint. Further, it is straightforward to verify that due to the nonnegativity
constrains in Wk, the support of the jth column, Ij , must contain only indices corresponding to
nonnegative or nonpositive entries of aj , but not a combination of both. Algorithm 3 considers all

2k sign combinations for the support sets, e.g., I1 containing positive entries, I2 negative, etc., by

equivalently solving the maximization on all 2k matrices Â = A ·diag(s), b ∈ {±1}k and returning
the solution that performs best on the original input A. Therefore, without loss of generality, in the
sequel we assume that all support sets correspond to nonnegative entries of A.

If an oracle reveals the supports Ij , j = 1, . . . , k, the exact value of X̂ can be readily determined,
according to the Cauchy-Schwarz inequality: the jth column, x̂j , is supported only on Ij , and its
nonzero sub-vector is set to (x̂j)Ij

= [aj ]Ij
/‖[aj ]Ij

‖, which maximizes the inner product with the

corresponding sub-vector of aj . In turn, the objective function attains value equal to

k∑

j=1

(x̂⊤
j aj)

2 =
k∑

j=1

∑

i∈Ij

A2
ij , (29)

where the first equality stems from the fact that [aj ]Ij
≥ 0. It suffices to show that Alg. 3 correctly

determines the collection of support sets Ij , j = 1, . . . , k.

Alg. 3 constructs the collection of support sets Ij , j = 1, . . . , k, according to the following rule:

i ∈ Ij ⇔ Aij > max{0, Aiw}, ∀w ∈ [k]\{j}, (30)

i.e., index i ∈ [m] is assigned to the support of the jth column if and only if Aij is positive and
the largest entry in the ith row of A. Note that any procedure to construct supports that satisfy the
requirements described in the beginning of this proof would assign each index i ∈ [m] to at most
one of the sets Ij , j ∈ {1, . . . , k}, while it would need to ensure that i ∈ Ij if and only if Aij > 0.
The rule in (30) additionally requires that index i ∈ [m] is assigned to Ij if and only if Aij is the
largest (positive) entry in the ith row of A.

Assume, for the sake of contradiction, that there exists a set of optimal supports Ij , j = 1, . . . , k
which does not adhere to the rule in (30), i.e., there exist u ∈ [k] and q ∈ [m], such q ∈ Iu, while

0 < Aqu < Aqv for some v ∈ [k], v 6= u. Consider a collection of supports Ĩj , j = 1, . . . , k, with

Ĩj = Ij , ∀j ∈ [k]\{u, v}, Ĩu = Iu\{q} and Ĩv = Iv ∪ {q}. (31)
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Note that the collection of supports in (31) satisfies the desired constraints. Further, the objective
value achieved for the new supports (according to (29)) is equal to

k∑

j=1

∑

i∈Ĩj

A2
ij =

k∑

j=1

∑

i∈Ij

A2
ij −A2

qu +A2
qv >

k∑

j=1

∑

i∈Ij

A2
ij ,

contradicting the optimality of the collection Ij , j = 1, . . . , k. We conclude that the collection of
optimal support sets must satisfy (30).

The construction of the support sets according to (30) requires determining the largest entry of each
of the m rows of A, which can be done in O(km). Once the supports are determined, each of the k

columns of X̂ is constructed in O(m). Taking into account that the above procedure is repeated 2k

times for each of the sign patters, the desired result follows.

B Auxiliary Technical Results

Lemma 6. For any real m× n matrix M, and any r, k ≤ min{m,n},

r+k∑

i=r+1

σi(M) ≤ k√
r + k

· ‖M‖F,

where σi(M) is the ith largest singular value of M.

Proof. By the Cauchy-Schwartz inequality,

r+k∑

i=r+1

σi(M) =

r+k∑

i=r+1

|σi(M)| ≤
(

r+k∑

i=r+1

σ2
i (M)

)1/2

· ‖1k‖2 =
√
k ·
(

r+k∑

i=r+1

σ2
i (M)

)1/2

.

Note that σr+1(M), . . . , σr+k(M) are the k smallest among the r+k largest singular values. Hence,

r+k∑

i=r+1

σ2
i (M) ≤ k

r + k

r+k∑

i=1

σ2
i (M) ≤ k

r + k

min{m,n}∑

i=1

σ2
i (M) =

k

r + k
‖M‖2F .

Combining the two inequalities, the desired result follows.

Corollary 1. For any real m× n matrix M and k ≤ min{m,n}, σk(M) ≤ k−1/2 · ‖M‖F.

Proof. It follows immediately from Lemma 6.

Lemma 7. Let a1, . . . , an and b1, . . . , bn be 2n real numbers and let p and q be two numbers such
that 1/p+ 1/q = 1 and p > 1. We have

∣∣
n∑

i=1

aibi
∣∣ ≤

(
n∑

i=1

|ai|p
)1/p

·
(

n∑

i=1

|bi|q
)1/q

.

Lemma 8. For any A,B ∈ R
n×k,

∣∣〈A,B〉
∣∣,
∣∣TR
(
A⊤B

)∣∣ ≤ ‖A‖F‖B‖F.

Proof. The inequality follows from Lemma 7 for p = q = 2, treating A and B as vectors.

Lemma 9. For any two real matrices A and B of appropriate dimensions,

‖AB‖F ≤ min{‖A‖2‖B‖F, ‖A‖F‖B‖2} .
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Proof. Let bi denote the ith column of B. Then,

‖AB‖2F =
∑

i

‖Abi‖22 ≤
∑

i

‖A‖22‖bi‖22 = ‖A‖22
∑

i

‖bi‖22 = ‖A‖22‖B‖2F .

Similarly, using the previous inequality,

‖AB‖2F = ‖B⊤A⊤‖2F ≤ ‖B⊤‖22‖A⊤‖2F = ‖B‖22‖A‖2F .
Combining the two upper bounds, the desired result follows.

Corollary 2. Let Mr denote the best rank-r approximation of M, obtained by the truncated singular
value decomposition of M. Then, for any d > r, σd ≤ ‖M−Mr‖F/

√
d− r.

Proof. By definition

‖M−Mr‖2F =

n∑

i=r+1

σ2
i ≥

d∑

i=r+1

σ2
i ≥ (d− r) · σ2

d,

from which the desired result follows.

Lemma 10. For any real m× n matrix A, and any k ≤ min{m, n},

max
Y∈R

n×k

Y
⊤
Y=Ik

‖AY‖F =

(
k∑

i=1

σ2
i (A)

)1/2

.

Equality is realized for Y coinciding with the k leading right singular vectors of A.

Proof. Let UΣV⊤ be the singular value decomposition of A; U and V are m × m and n × n
unitary matrices respectively, while Σ is a diagonal matrix with Σjj = σj , the jth largest singular

value of A, j = 1, . . . , d, where d,min{m,n}. Due to the invariance of the Frobenius norm under
unitary multiplication,

‖AY‖2F = ‖UΣV⊤Y‖2F = ‖ΣV⊤Y‖2F . (32)

Continuing from (32),

‖ΣV⊤Y‖2F = TR
(
Y⊤VΣ2V⊤Y

)
=

k∑

i=1

y⊤
i




d∑

j=1

σ2
j · vjv

⊤
j


yi =

d∑

j=1

σ2
j ·

k∑

i=1

(
v⊤
j yi

)2
.

Let zj,
∑k

i=1

(
v⊤
j yi

)2
, j = 1, . . . , d. Note that each individual zj satisfies

0 ≤ zj,

k∑

i=1

(
v⊤
j yi

)2 ≤ ‖vj‖2 = 1,

where the last inequality follows from the fact that the columns of Y are orthonormal. Further,

d∑

j=1

zj =
d∑

j=1

k∑

i=1

(
v⊤
j yi

)2
=

k∑

i=1

d∑

j=1

(
v⊤
j yi

)2
=

k∑

i=1

‖yi‖2 = k.

Combining the above, we conclude that

‖AY‖2F =

d∑

j=1

σ2
j · zj ≤ σ2

1 + . . .+ σ2
k. (33)

Finally, it is straightforward to verify that if yi = vi, i = 1, . . . , k, then (33) holds with equality.
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Corollary 3. For any real m ×m PSD matrix A, and k ×m matrix X with k ≤ m orthonormal
columns,

TR
(
X⊤AX

)
=

k∑

i=1

λi(A)

where λi(A) is the ith largest eigenvalue of A. Equality is achieved for X coinciding with the k
leading eigenvectors of A.

Proof. Let A = VV⊤ be a factorization of the PSD matrix A. Then, TR
(
X⊤AX

)
=

TR
(
X⊤VV⊤X

)
= ‖V⊤X‖2F . The desired result follows by Lemma 10 and the fact that

λi(A) = σ2
i (V), i = 1, . . . ,m.

C Net of the ℓ2-unit sphere

In this section, we provide a simple probabilistic construction of an ǫ-net of the ℓ2-unit sphere Sd−1
2 ,

i.e., the set of points x such that ‖x‖2 = 1.

Lemma 11 ([34], Lemma 5.2). For any ǫ > 0, there exists an ǫ-net Nǫ of the unit Euclidean sphere

S
d−1
2 equipped with the Euclidean metric, such that

mǫ, |Nǫ| ≤ (1 + 2/ǫ)
d
.

Proof. Let Nǫ be a maximal ǫ-separated subset of Sd−1
2 . In other words, d(x, y) ≥ ǫ for all x, y ∈

Nǫ, x 6= y, and no set containing Nǫ has this property.

Such a set can be constructed iteratively: select an arbitrary point on the sphere and at each sub-
sequent step select a point that is at distance at least ǫ from all previously selected points. By the
compactness of the sphere, the iterative construction process will terminate after a finite number of
steps, and the resulting set will satisfy the above properties.

The maximality property, implies that Nǫ is an ǫ-net of Sd−1
2 . If this was not the case, then there

would exist an x ∈ S
d−1
2 such that d(x, y) > ǫ, ∀y ∈ Nǫ. The Nǫ ∪ {x} would an ǫ-separated set,

that contains Nǫ, contradicting the maximality of the latter.

By the separation property, we infer that the balls of radius ǫ/2 centered at the points of Nǫ are
disjoint. This follows from the triangle inequality. Further, all such balls lie in the ball (1 + ǫ/2)Bd

2,
where B

d
2 denotes the unit Euclidean ball centered at the origin. Comparing the volumes, we have

Vol
(
ǫ
2B

d
2

)
· |Nǫ| ≤ Vol

(
(1 + ǫ

2 )B
d
2

)
.

Taking into account that Vol
(
r · Bd

2

)
= rd · Vol

(
B
d
2

)
,

|Nǫ| ≤
(
1 + ǫ

2

)d
/
(
ǫ
2

)d
=
(
1 + 2

ǫ

)d
,

which is the desired result.

Lemma 11 regards the unit Euclidean sphere. However, the sequence of arguments used in the
proof essentially hold for the case of the unit ball Bd

2, i.e., there exists an ǫ-net of Bd
2, with at most

(1 + 2/ǫ)
d

points.

Constructing an ǫ-net of the unit sphere. There are many constructions for ǫ-nets on the sphere,
both deterministic and randomized. In the following we review a simple randomized construction,
initially studied by Wyner [35] in the asymptotic d → ∞ regime.

By Lemma 11, there exists an ǫ-net Nǫ of Sd−1
2 Consider the balls of radii ǫ centered at the points

of Nǫ. The balls cover all points of Sd−1
2 ; if there existed a point x on S

d−1
2 not included in any ball,

it would imply that this point is at distance at least ǫ from all points of Nǫ contradicting the fact that
Nǫ is a ǫ-net.
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The intersection of each of the previous balls with S
d−1
2 is a spherical cap, and hence, according to

the above, the collection of sperical caps covers Sd−1
2 . (Note that the spherical caps, as well as the

balls, overlap.)

Consider a set Q, containing at least one point from each spherical cap. Then, Q is a 2ǫ-net of Sd−1
2 .

To verify that, note the following. Consider a point x ∈ S
d−1
2 . By construction, Nǫ contains a point

y such that d(x, y) ≤ ǫ. Consider the spherical cap centered at y. By definition, Q contains a point
ỹ in that spherical cap, and hence d(y, ỹ) ≤ ǫ. By triangle inequality, it follows that d(x, ỹ) ≤ 2ǫ.
Since the point x is arbitrary, we conclude that Q is a 2ǫ-net.

We draw points randomly and independently, uniformly distributed on S
d−1
2 . This can be accom-

plished, for instance, by randomly and independently generating vectors in R
d distributed according

to the a the multivariate normal distribution N(0, I) and normalizing their length to 1. A randomly
selected point lies in a specific spherical cap with probability p ≥ 1/mǫ. By a standard probability

arguments (Coupon collector’s problem), O(mǫ ln (mǫ/δ)) points uniformly distributed over Sd−1
2

suffice for at least one random point to lie in each sphere cap with probability at least 1− δ. Substi-
tuting the value of mǫ from Lemma 11, we find that O

(
dǫ−d · ln 1

ǫδ

)
suffice to form a 2ǫ-net, with

probability at least 1− δ. Note that δ can be chosen to scale with the dimension n of the problem.

Lemma 12. A set of O
(
d(ǫ/2)−d · ln 2

ǫ·δ

)
randomly and independently drawn points uniformly dis-

tributed on S
d−1
2 suffices to construct an ǫ-net of Sd−1

2 with probability at least 1− δ.

D Additional Experimental Results

Component 1 Component 2 Component 3 Component 4 Component 5

american coach add ago billion
attack game cup called business
campaign games food com companies
country guy hour family company
government hit large help cost
group left makes high deal
leader night minutes home industry
official play oil look market
political player pepper need million
president point serving part money
zzz al gore run small problem number
zzz bush season sugar program percent
zzz george bush team tablespoon right plan
zzz u s win teaspoon school stock
zzz united states won water show system

Table 3: ONMF with r=5 orthogonal components (102·103–dimensional vectors) on the words-
by-document matrix of the NY Times bag-of-words dataset [33]. The table depicts the words cor-
responding to the 15 largest entries of each component. The 5 retrieved components are extremely
sparse: 90% of their mass is concentrated in 134, 35, 65, 269 and 59 entries, respectively.

Large-scale text analysis: clustering words. We evaluate the performance of ONMFS as a clus-
tering algorithm on the NY Times bag-of-words dataset [33]. The dataset is represented by a
102K × 300K words-by-articles matrix. Given an approximate ONMF of that matrix, the 102K × k
nonnegative, orthogonal factor W induces an assignment of words to r clusters, which in this case
can be interpreted as topics. That is, each column of W suggests a topic, defined by the words
corresponding to its nonzero entries.

We run ONMFS with target dimension k = 5 topics, and accuracy parameter r = 5, while we config-
ure it to stop if no progress is observed after T = 300 consecutive candidate solutions. Table 3 lists
the words corresponding to the 15 largest entries of each orthogonal component (column of W).
Arguably, each component can be interpreted as a distinct topic, illustrating the potential of ONMF
in text analysis. Further, we note that although the components of W are not explicitly restricted to
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be sparse, they tend to be: 90% of the ℓ2 mass of each component is concentrated in approximately
100-200 entries (words) out of the roughly 102K present in the dataset.
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