Supplementary material for “Collaboratively Learning Preferences
from Ordinal Data”

A Proof of Theorem 1

We first introduce some additional notations used in the proof. Recall that £(0) is the log likelihood
function. Let VL(O) € R% %% denote its gradient such that V;;£(0) = 22©) Let V2£(0) €

£(©) = ~LLO) By the definition of

Rérd2xdidz depgte its Hessian matrix such that V2
96,00,/

ij.i' 5"
L(©) in (4), we have

dl k
* 1 T
VO) = g Yt~ @
=1 ¢=1
where p; , denotes the conditional choice probability at ¢-th position. Precisely, p;¢, =
> s Pil(i,0€5 where pj(;.¢) is the probability that item j is chosen at £-th position from the top by
the user 4 conditioned on the top £— 1 choices such that pj; o) = P{vi¢ = jlvi1,.. ., vi0-1,8i} =
e (Zj’esm e®i") and Sie = Si\{vi1,...,vi0-1}, where S; is the set of alternatives presented
to the i-th user and v; 4 is the item ranked at the ¢-th position by the user . Notice that for ¢ # i/,

PLO) _ 0 and the Hessian is

a@ija@,i/j/
92L(0) 1 & 9pji(i,0)
- 7 — - I[ y p )
06,,00,, rdy 210 € 5i) FE
(=1 -
1 k
A 1(4,5" € Sie) (Pj16,010 = J') = PjiG.0Pi1G.0)) - (24)
=1

This Hessian matrix is a block-diagonal matrix V2£(0) = diag(H")(0), ..., H(%)(9)) with

k
) 1 .
HY(0) = P (diag(pi,e) — pi,epise) - (25)

(=1

Let A = ©* — © where O is the optimal solution of the convex program in (3). We first introduce
three key technical lemmas. The first lemma follows from Lemma 1 of [22], and shows that A is
approximately low-rank.

Lemma A.1. If A > 2||VL(©%)]

o then we have

min{dy,d2}
IAle < 4V2r[AIg+4 Y 0(07), (26)
Jj=p+1

forall p € [min{dy,d2}].

The following lemma provides a bound on the gradient using the concentration of measure for sum
of independent random matrices [25].

Lemma A.2. For any positive constant ¢ > 1 and k < (1/e) do(41og da + log dy ), with probability
atleast 1 —2d=¢ — dy*,

4(1 1
IvL©)], < % max {\/d1 Jds, ¢2\/4(1 + ¢)log(d)(8log ds + 21og dy ) log k} :
1
@7)

Since we are typically interested in the regime where the number of samples is much smaller than
the dimension d; X ds of the problem, the Hessian is typically not positive definite. However, when
we restrict our attention to the vectorized A with relatively small nuclear norm, then we can prove
restricted strong convexity, which gives the following bound.
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Lemma A.3 (Restricted Strong Convexity for collaborative ranking). Fix any © € €, and

assume 24 < k < min{d?, (d? + d3)/(2d1)}logd. Under the random sampling model of the

alternatives { jig}ie[dl]’ge[k] and the random outcome of the comparisons described in section 1,
218

with probability larger than 1 — 2d™*

674(1

T 2 >
Vec(A)" VZL(O) Vec(A) > 51d,d, Il

Al (28)
for all A in A where

A={a R Al <20, Y Ay =0foralli € [b] and A2 > A} - @)
J€ldz]

dy logd
= 2102 —_—
I e adu/ Fmin{dy, da} 30)

Building on these lemmas, the proof of Theorem 1 is divided into the following two cases. In both
cases, we will show that

with

IAIlE < 72e*eorodida A €2y

with high probability. Applying Lemma A.1 proves the desired theorem. We are left to show Eq.
(31) holds.

nuc ’

Case 1: Suppose H|A|||§ > ul|All..... With A = ©* — ©, the Taylor expansion yields

L(O) = L(O0%) — (VL(O*), A) + %Vec(A)VQE(@)VecT(A), (32)

where © = a® + (1 — a)©* for some a € [0, 1]. It follows from Lemma A.3 that with probability
atleast 1 — 2d—2",

—da

A~ . . e
£®) - £(67) = ~(VL©),8) + eIl
—4da
% e
> IV LO ol e + g A

From the definition of © as an optimal solution of the minimization, we have

nuc °

£©) - £©%) < (110l — [[B], ) = Anal

By the assumption, we choose A > 480)y. In view of Lemma A.2, this implies that A >
2|IVL(©*)[|, with probability at least 1 — 2d~3. It follows that with probability at least

1—2d-3 —2d-2",
e—4o¢

—||A 2 < * < 92

By our assumption on A < ¢gAg, this proves the desired bound in Eq. (31)

nuc °

Case 2: Suppose |HAH|§ < 1 ||A]|l e By the definition of 4 and the fact that cq > 480, it follows
that 4 < 72 e**co\g d1do, and we get the same bound as in Eq. (31).

A.1 Proof of Lemma A.1

Denote the singular value decomposition of ©* by ©* = UXVT, where U € R%*% and
V € R%*4 are orthogonal matrices. For a given r € [min{d;,d>}], Let U, = [uy,...,u,]
and V,. = [v1,...,v,], where u; € R4*! and v; € R%*! are the left and right singular vectors
corresponding to the ¢-th largest singular value, respectively. Define 7" to be the subspace spanned
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by all matrices in R%*49 of the form U, AT or BV, for any A € R%*" or B € R%*", re-
spectively. The orthogonal projection of any matrix M € R %9z onto the space T is given by
Pr(M) =UUM+MV,.VI—U. UMV, V,T. The projection of M onto the complement space
T+is Pro(M) = (I -U, Uf) M(I - V VT) The subspace T" and the respective projections onto
T and T+ play crucial a role in the analysis of nuclear norm minimization, since they define the
sub-gradient of the nuclear norm at ©*. We refer to [21] for more detailed treatment of this topic.

Let A’ = Pr(A) and A” = Py (A). Notice that Pr(0*) = U, %, VT, where 3, € R"™¥" is the
diagonal matrix formed by the top r singular values. Since Pr(©*) and A” have row and column
spaces that are orthogonal, it follows from Lemma 2.3 in [20] that

IPr(67) = A [lue = IPr (O Ml + N1A llc -

Hence, in view of the triangle inequality,

18] =1Pr©) +Pre) - & = 2l
2 [[Pr(©%) = Al ye — P72 (©7) = Al e
= P2 (Ol ue + A e = P72 (©7) = Al e
> H'PT(@*)Mnuc + |||A//|||nuc - |||,PTJ'( )H'nuc - |||A/|Hnuc
= 19" llue + 1A e = 20P7- (O Ml ue = MA M e (33)

Because O is an optimal solution, we have
(16

where (a) holds due to the convexity of £; (b) follows from the Cauchy-Schwarz inequality; the last
inequality holds due to the assumption that A > 2||V£(©*)]||,. Combining (33) and (34) yields

nuc nuc’

1) < £(6%) ~ £8) € (A, VL©O7) £ Al JIVLE©, < 1Al

(34)

2 (H|A//H|nuc - 2|||,PTL (9*)H|nuc - |||A/|Hnuc) < |||A|||nuc < |||Al|Hnuc + H|A//H|nuc‘

Thus [|A" e < 3IA [l + 41Prs (6], By triangle inequality,

A

nuc’

< A A e + 4Pz (O e -

nuc nuc

Notice that A’ = U, UYA + (I — U.UT)AV,.V.L. Both U, UTA and (I — U, UT)AV,V,T have
rank at most . Thus A’ has rank at most 27. Hence, [|A'|[,.. < V27||A|lp < v27||A[|p. Then
the theorem follows because ||Pr. (0)| .. = Z?};ﬁﬂl’dﬂ 0;(0%).

nuc

A.2 Proof of Lemma A.2

Define X; = —e; Z]Z:l(evivé — pie)T such that VL(O*) = kd Zdl X, which is a sum of d;
independent random matrices. Although [| X;||, can be as large as O(k), this occurs with very low
probability. We make this precise in the following lemma and focus on the case where || X;]||, =

O(Vk) forall i € [dy].

Lemma A.4. Forafixedi € [di] and j € [ds), if k < (1/e) dy (41og da + log dy), then the number
of times the item j is observed by the user i is at most 8(log ds) + 2(log dy) with probability larger
than 1 — 1/(didy).

Proof is given in the end of this Section. Applying union bound over the d; items and ds users, we
have the multiplicity in sampling for any item for all users is bounded by 8(log d2) + 2(log d; ) with
probability at least 1 — d5 3. We denote this event by A and let I (A) be the indicator function that

all the multiplicities in sampling are bounded. We first upper bound |[|(>", X;) I (A)||, using the
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Matrix Bernstein inequality [25].

M=

I (A, = [F Y (o, - pid)|

&~
_

(a)
<

M=

‘}1 (A)

€u;

+ ||t T
(=1

~

=1

(b)

(¢)
< VE(8(log do) + 2(log d1)) (1 + 2¢>* log k)
< 3VE(8(log da) + 2(log dy))e* logk |

k 2«
< (81og ) + 2005 )i 5 (14 (; ;) )

1

(35)

where (a) is by triangle inequality, (b) is because under the given event A each termin ), e,, , and

>, Pi,¢ are upper bounded by log d» and (lezl e%) log ds respectively and because there can be

at most min{+/dz, k} non-zero entries in the two vectors ), e,, , and ), p; ¢ and, (c) is due to the
fact that k-th harmonic number Zif:l % is upper bounded by log k. We also have,

dy k
’ZE XXTTA < IDSEXXT < |[D eelE| D (e, —pie)” (e _pi,,,)
% 2 % 2 i=1 L £:4'=1 9
dy [k "
=D eielE (v, — Pise) (euifz—pu)]
i=1 Le=1 9
d1 Mk
_ IS5 e zpp]
i=1 =1 2
dy [k
< Zeie?E ef”evil}
i=1 =1 9
= k|||Id1 Xdy |||2 = kv (36)
and
dl dl
S E[XTXIA]|| <||D_E[XTXi]
i=1 2 i=1 2
a [ &
S ZE Z (61)7;,[ 7pi,€)(evi72/ 7pi,€/)T
=1 [0=1 )
d1 Mk
= ZE Z(evi,[i _pil)(evz,e _pi,Z)T‘| (37)
i=1 Le=1 9
dl r k
=I>_E Zevi,zefi_yz—pi,epfg]
i=1 Le=1 9
d1 Mk
< ZIE Zeviyie:{”]
i=1 Le=1 ' 2
dy
k kd
= Zd—zldzxdz —d—;. (38)
i=1 2
By matrix Bernstein inequality [25],
—k? d% t2/2

P(IVLOII (A, > t) < (d + da) exp (

13
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which gives the tail probability of 2d~° for the choice of

a 4(1+¢)logd  4(1+ c)e**log(d) (8(logds) + 2(logdy))log k
Y\ kdy min{ds, di}’ K172 d,

= W max{\/dl/dg , €2\/4(1 + ¢)log(d) (8(logds) + 2(log dy)) log k} .
1

Now with a high probability of 1 — % — d% the desired bound is true.
2

A.3 Proof of Lemma A.2

In a classical balls-in-bins setting, we consider k as the number of balls and ds as the number of bins.
We can consider the number of balls in a particular bin as the number of times the user ¢ observes

item j. Let the event that this number is at least 4 be denoted by the event Ag. Then, P {Ag} <

5
ML < <%) . Using the fact that (1/2)* < a for any x > (2log(1/a))/(loglog(1/a)), we let

d3
x = d2d/(ke) to get
ke )T i
d2d =avs
for & > (ke/dy)(2log(1/a))/(loglog(1/a)). Choosing a = (1/d3d;)%/*¢, we have P{Ag} <
1/(dyd3), for a choice of § = 2 log(dady) > 2log(dsd)/(log((d2/ke) log(dsdy))).

A.4 Proof of Lemma A.3

Recall that the Hessian matrix is a block-diagonal matrix with the i-th block H () (©) given by (25).
We use the following remark from [12] to bound the Hessian.

Remark A.5. [12, Claim 1] Given 0 € R", let p be the column probability vector with p; =
e /(€% + .-+ e%) for each i € [p] and for any positive integer p. If |0;| < a, for all i € [p], then

1 1
e (diag(p) — ppT ) = =diag(l) — =117 .
(ding(p) ~pp") = - diog(1) ~

By letting 15, , = > jes, , €; and applying the above claim, we have

k
1
2@ —E ——  diag(lg,,)— ——— 14, 1%
‘ kdy 2=\ — e+1 tog(Ls.) — o rr o L Lo

k
:2kdlz i — g+1) D (ej—ep)eg—e)”

J,J'€Sie

1< T
s O (e —ep)lei—en)T

H

=
L y=14,j7€Si.
Hence,
dy
Vee(A)V2L(O)Vec" (A) =) (ATe)) " HD(©)(ATe))
=1

2

SR ) Db ol EXOE

i=14=175,7'€S: ¢
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By changing the order of the summation, we get that

k k k
Do e At —enlls = D0 (A ez, —eig ) D 1(0ili ) < min{oi(jie), oi(iie)})-
0=175,4'€5.4 =1 =1
Define
Xigo o = 1oi(j; ) <min{o;(jie), 0i(jie)}) (39
and let
(J/,
H(A) = 5713 7. Z Z (A €5ji0 = €ijy o) Z Xi e 00"
2k dy i=1£,0=1 =1

Then we have Vec” (A)V2£(0)Vec(A) > H(A). To prove the theorem, it suffices to bound H(A)
from the below. First, we prove a lower bound on the expectation E[H (A)]. Notice that for £ # ¢/,
the conditional expectation of ; ¢ ¢ ¢’s, given the set of alternatives presented to user ¢ is

k
exp(0ij, 1)
E|: X; r o jlav]k:|:1+ -
egl i,0,0" 4 i, i, W%W eXp(Qi»ji,e//) + exp(@iyji,[,) + exp(@iyji)[)

k—2 k

>4+ — > —.
21+ 1+ 2e22 = 3e2e
Then,
6—204 )
E[H(A)] = 25 d, Z E{«A,ei,ji,g €irjs.or ) Z Xioo o | Jists--- a]i,k]}
i,0,0' =1
do 2
Z 6 kQ Z Z E |: A 627J7 14 67'7]1 N >> j|
i=1 0,0/ elk)
4o 2 da
_ 2
- fmay T (25 3 s
i=1 (Al € j=1 j 7'=1
67404(]C )
= — A 4

where the last equality holds because 34,1 Aij = 0 for A € Qa4 and for all i € [d,].

We are left to prove that H(A) cannot deviate from its mean too much. Suppose there exists a

A € A such that Eq. (28) is violated, i.e. H(A) < (e7%%/(24 dldg))\||A|||%. We will show this
happens with a small probability. From Eq. (40), we get that for k > 24,

(Tk —8) e™*
> o9y

(20/3) e~
> QU9 e

E[H(A)] - H(A)
(41)

We use a peeling argument as in [22, Lemma 3], [26] to upper bound the probability that Eq. (41) is
true. We first construct the following family of subsets to cover A such that A C (J,2; Sp. Recall

p = 2%e2*ady\/(dy log d)/(kmin{dy, d2}), define in (30). Notice that since for any A € A,

|||A|||% > pl| Alll jue = HlIA]lg, it follows that [|Al|p > p. Then, we can cover A with the family
of sets

Sy = {A € Ré1xda

IA[l < 20, B < [|Allp < B, Y Ay =0foralli € [dy], and A, < 52@#} :
J€[da]
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where 8 = /10/9 and for £ € {1,2,3,...}. This implies that when there exists a A € A such that
(41) holds, then there exists an ¢ € Z, such that A € Sy and

(20/3) e 2(0-1) , 2
E[H(A)} - H(A) > Wﬂ ! H
—4da

> B2 (42)

Applying the union bound over ¢ € Z, we get from (41) and (42) that

67404 674(1
p{oaca. @) <S8l < ZP{ sup (BIH(A) - H)) > £ (607
ZP{A&EM E[H(A) - H(A)) > o (ﬁW}, (43)

where we define a new set B(D) such that Sy C B(3*p):

B(D)={A e R™ " || Al < 20, ||Ally < D, Y~ Ay =0foralli € [du], ul Allyye < Dz} :
J€[dz]
(44)
The following key lemma provides the upper bound on this probability.
Lemma A.6. For (16 min{dy,ds}logd)/(3d;) < k < d? logd,

6—404 €—4akD4
P{ s E[H(A)] — H(A) ) > D? < - — = 4
{Azz%( H@) W) ) 2 g, } < ev{-Gmga)l @9

Letn = exp (—W). Applying the tail bound to (43), we get
2

—da —4@ 0, \4
€ 2 k(ﬂ M)
P{HA €A, H(A) < 24 dydy |A||F} { 21904d, d3 }

IN

219044(116[%

2 e
@ & e 4 4kl(B — 1.002)p*
2 (- }
n_

IN

1_

where (a) holds because 8* > zlog > z(8 — 1.002) for the choice of 5 = 1/10/9. By the
definition of y,

23 4o 72 208 _

- exp{— 2%%¢ del.(logd) 5] 1.002)} <
k(mln{dl,dg})Z

where the last inequality follows from the assumption that ¥ < max{d;,d > 2/di}logd =

(d3d;logd)/(min{dy,d2})?, and B — 1.002 > 27°. Since for d > 2, exp{—2'%logd} < 1/2
and thus 7 < 1/2, the lemma follows by assembling the last two displayed inequalities.

xp{— 218 Jog d} ,

A.5 Proof of Lemma A.6

Recall that
—2a
ksdl Z Z (A eijie —eij ol Z Xie 00" >
i=1£,0'=1 =1
with X, 000 = 1(03(Gs0) < min{oi(iie), iliie)}). Let Z = supacsp) EIH(A)] —

H(A) be the worst-case random deviation of H(A) form its mean. We prove an upper bound
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on Z by showing that Z — E[Z] < e %*D?/(64d1dy) with high probability, and E[Z] <
9e=4*D? /(40d;ds). This proves the desired claim in Lemma A.6.

To prove the concentration of Z, we utilize the random utility model (RUM) theoretic interpre-
tation of the MNL model. The random variable Z depends on the random choice of alternatives
{Ji,e}ic(di], eek) and the random k-wise ranking outcomes {0 };¢(4,]- The random utility theory, pi-
oneered by [2, 3, 4], tells us that the k-wise ranking from the MNL model has the same distribution
as first drawing independent (unobserved) utilities u; ¢’s of the item j; , for user 4 according to the
standard Gumbel Cumulative Distribution Function (CDF) F(c — ©; ;, ,) with F(c) = e~¢ *, and
then ranking the % items for user ¢ according to their respective utilities. Given this definition of the

MNL model, we have x; ; »» o =1 (ui’fu > max{u; g, ui,gl}). Thus Z is a function of indepen-
dent choices of the items and their (unobserved) utilities, i.e. Z = f({(Ji,e, Us,e) bic[a,],ecr))- Let
Tig = (Ji,e, use) and write H(A) as H(A, {2 ¢}ic[a,),ecfe))- This allows us to bound the differ-

ence and apply McDiarmid’s tail bound. Note that for any ¢ € [d1], ¢ € [k], 1.1, .., %4,k and
mg,e’
’f(xl,la'“vxi,lwn7wd1,k) - f(ml,lw"7$Ii,£7"'7xd1,k) |
= | sup (E[H(A)]—H(A, 11,3 Tigy---,Tdy k) — SUP (IE [HA)]-H(A 211, .- ,m;’e, . ,xdl,k)) ’
A€B(D) A€B(D)
< sup |H(A, 211, @i, Tay k) — H(A @11, @ 3y 1)
AeB(D)
(a) e—2a

k
2 2
sup {2 S A€ —€is ) D Xivwer T D, (A€ — i) Xi,e',e",e}

= 9134,
2]4} dl AEB(D) @'E[k,] =1 Z’,Z”E[k]

(b) 8a2e—2(x

k
= le{2 YD X + > Xi,é’,é”,@}

vefk\{£} =1 NN ET
16a2e=22
kdy ’
where (a) follows because for a fixed ¢ and ¢, the random variable z; , = (j; ¢, u; ¢) can appear
in three terms, i.e. 3"y (A, €5, , = €ij, o ) Xigrer + Y (D €ij, = €ij. ) X ner +
Zegw' (A eig, , — €irjy o >>2Xi,@/,g//7¢, and (b) follows because |A;;| < 2« for all 4, j since A €
B(D). The last inequality follows because in the worst case, >y ¢ 3\ {1} S X < k(k—
1)/2 and 3=, preppyorzen Xiser e < k(k — 1), This holds with equality if o;(j;) = k and
0i(ji,e) = 1, respectively. By bounded differences inequality, we have
k2 d2 42
27 ade—4ad k)’

It follows that for the choice of t = e~**D?/(64d;dy),

P{ZE[Z]Zt}SeXP<

4o )2

e **D e~ D4
P{Z-E[Z] > < e TRD Y
{ 22 Gian, } = eXp( 219a4d1d§)

We are left to prove the upper bound on E[Z] using symmetrization and contraction. Define random
variables
Yieo (D) = (Aig,, — AV )? X000 s (46)

where the randomness is in the choice of alternatives j; ¢, j; ¢/, and j; ¢, and the outcome of the
comparisons of those three alternatives.
The main challenge in applying the symmetrization t0 3, ,» ycppy Yi,e,0r,0(A) is that we need

to partition the summation over the set [k] X [k] x [k] into subsets of independent random
variables, such that we can apply the standard symmetrization argument. to this end, we
prove in the following lemma a a generalization of the well-known problem of scheduling a

17



round robin tournament to a tournament of matches involving three teams each. No teams are
present in more than one triple in a single round, and we want to minimize the number of
rounds to cover all combination of triples are matched. For example, when there are k = 6
teams, there is a simple construction of such a tournament: 77 = {(1,2,3),(4,5,6)}, To =
{1,2,4),(3,5,6)}, Ts = {(1,2,5),(3,4,6)}, Ty = {(1,2,6),(3,4,5)}, T5s = {(1,3,4),(2,5,6)},
Ts = {(1,3,5),(2,4,6)}, Tr = {(1,3,6),(2,4,5)}, Ts = {(1,4,5),(2,3,6)}, Ty =
{(1,4,6),(2,3,5)}, T1o = {(1,5,6),(2,3,4)}. This is a perfect scheduling of a tournament with
three teams in each match. For a general k, the following lemma provides a construction with O(k?)
rounds.

Lemma A.7. There exists a partition (Ty, ..., Tn) of [k] x [k] x [k] for some N < 24k? such that
T.’s are disjoint subsets of [k] x [k] x [k], Ua ey To = [k] % [k] x [K], |T,| < |k/3] and for any
a € [N] the set of random variables in T, satisfy

{YM,Z’,Z”}ie[dl],(z,é’,é”)eTa are mutually independent .

Now, we are ready to partition the summation.

672&

]E Z = 7]}3 sup E[E»EJIJII(A)} — K,Z,Z’,Z”(A)
7 2k, [AEB“’) z‘ez[:cmu';e[k]{ }}

Z Z {E[Yi 0,000 (A)] = Y5 0,00 00 (A)}]

€[d1] a€[N] (£,£' £")ET,

e—2a

- 71}3[

2k3dy AEB(D)

< sE Z E[ sup Z Z {E[Yi,e,eae"(A)}*sz,z,z',e"(A)}}
2k d a€[N] AeB(D) icld ' o
i 1] (6,0 ") ET,
e—2a
< FEN Z E{ sup Z Z gi,é,f’,f”)/;,f,é’,é”(A)}
Laeny 2€BD) ieray] (e e,
—2a

e
= B4 Z ]E{ sup Z Z fz’,e,z',z“(Ai,ji,@—Ai,ji,g,)ZXi,e,e/,e“} (47)

ac[N]  AEBD) icia) (o, 0m)eT,

where the first inequality follows from the fact that sum of the supremum if no less than the supre-
mum of the sum, and the second inequality follows from standard symmetrization argument applied
to independent random variables {Y; ¢ ¢ (A)}ica,,e,07,0)er, With ii.d. Rademacher random

variables 5,-74713/7@//’& Since (Aidw - Ai,ji,e/)QXi,é,Z’,Z” < 4O‘|Ai7ji,e - Aiaji,z/ |Xi,g7[/,[//, we have
by the Ledoux-Talagrand contraction inequality that

E[ sup Z Z fi,é,l’,é”(Ai,jm*Ai,ji,e/)QXi,Z,Z’,Z”}
AEBD) je(d,) (0,0,07)€T,

< 8aE[ sup > D G X (A eileg,, — eji,u)T»} (48)
AEBD) ielay] (e.00,47)eT,
Applying Holder’s inequality, we get that

‘ Z Z Sivr o X o (A, eilej, , — ejil/)T»‘

i€[dy] (L0 0)ET,

< MAell| D2 Y. G xieeer (eiles, — e, )7 - 49)

i€[d1] (L, 0")ET, 9

We are left to prove that the expected value of the right-hand side of the above inequality is
bounded by C|[|All,,..\/kd1 log d/ min{d;,d>} for some numerical constant C. For i € [d;] and
(0, 0,0") € To, let W, g0 00 = Eior 0 Xie,0r 0 (el-(ejM — ejM,)T) be independent zero-mean
random matrices, such that

IWe el = |

&0 X, (€i(€5,, — eji,e,)T)H‘Q <V2,
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almost surely, and
EWi o on Wi o o) = El(eiles, —ej,,)7 (€50 — €5, )] ) Xi e 0]
2E [Xi races

< 2ee]
and
EW o oWiee o) = El((ej., — €5, )i €iles,, — €5, )" )Xo o]
< El(ej,, — ¢, )6 eilej,, — e, )7
= d2 Ty, xd, — d%IL]IT .
This gives

Q
Il

’ max g || > D> EWaeeo Wil Sl X0 D EW e g Wiee ]

i€[dy] (6,0 ,0)ET, 2 i€ldq] (6,07 ,0")€eT,
2\ [T\ _ 2T _ _ 2dik
dg min{dl, dg} -3 min{dh dg} ’

since we have designed T, ’s such that |T;,| < k/3. Applying matrix Bernstein inequality [25] yields
the tail bound

—t2/2
P E E Wive ol >ty < (di+da)exp (7) .
gl E] 2
i€lda] (6,0 £7)ET, o +V2t/3

2

IN

rnax{2|Ta|7

2

Choosing ¢ = max { /32kd; log d/(3min{d;, d>}), (16v/2/3)logd }, we obtain with probability
at least 1 — 2d3,

32kd; logd  16v/2logd
E E Wi o000 < max - ; :
e 3min{d,ds} 3
i€[dr] (£, 0")ET,

2

It follows from the fact H‘Zie[dl] > ener, Wi
V2d1k /3 that

ENDY D Wi

i€[d1] (L0 £")ET,

< Zi,(u',e”) IWieeenlly, <

32kd, logd 16v/2logd 2v/2d: k
max - s +
3min{dy, da} 3 3d3

32kd; logd
- 3 min{dl, dg} ’

IN

2

where the last inequality follows from the assumption that (16 min{d;,ds}logd)/(3dy) < k <
d?log d. Substituting this in the RHS of Eq. (49), and then together with Eqs. (48) and (47), this
gives the following desired bound:

16ae—2 32kdy logd

ElZ] < sup - e
7] ag\/] acB(p) K*di 3m1n{d1,d2}”| I
e\ /9 dylogd
© Y T gy, [ dlosd _yy
) aeg[z:v] 16V3k2 d; dy 2\ Famin{dy. g} ) 114 e
=p
9c~4e D2

< TN 7

~  40dyd2
where the last inequality holds because N < 4k? and p||A[|,,,. < D?.
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A.6 Proof of Lemma A.7

Recall that Y; g ¢ o (A) = (A4 5, , — Dij, 0 )2X7;7g7(/7g//, as defined in (46). From the random utility
model (RUM) interpretation of the MNL model presented in Section 1, it is not difficult to show

that Y; ¢ ¢ ¢ and Y; ; 7 7, are mutually independent if the two triples (¢, £, ") and (¢, ¢, £"") do not
overlap, i.e., no index is present in both triples.

Now, borrowing the terminologies from round robin tournaments, we construct a schedule for a
tournament with £ teams where each match involve three teams. Let T, ; denote a set of triples
playing at the same round, indexed by two integers a € {3,...,2k —3}and b € {5,...,2k — 1}.
Hence, there are total N = (2k — 5)? rounds.

Each round (a, b) consists of disjoint triples and is defined as

Topy = {600 €k x [k xk][L<l <0+ =a, andl + 0" =D} .

We need to prove that (a) there is no missing triple; and (b) no team plays twice in a single round.
First, for any ordered triple (¢, ¢, ¢"), there exists a € {3,...,2k — 3} and b € {5,...,2k — 1}
such that £ + ¢/ = a and ¢’ + ¢” = b. This proves that all ordered triples are covered by the above
construction. Next, given a pair (a,b), no two triples in Ty ; can share the same team. Suppose
there exists two distinct ordered triples (¢, ¢',¢") and (¢,¢',¢") both in T, 3, and one of the triples
are shared. Then, from the two equations £ + ¢’ = £+ ¢ = aand ¢’ + ¢ = ' + £" = b, it follows
that all three indices must be the same, which is a contradiction. This proves the desired claim for
ordered triples.

One caveat is that we wanted to cover the whole [k] x [k] x [k], and not just the ordered triples. In the
above construction, for example, a triple (3,2, 1) does not appear. This can be resolved by simply
taking all T, ;’s from the above construction, and make 6 copies of each round, and permuting all
the triples in each copy according to the same permutation over {1,2,3}. This increases the total
rounds to N = 6(2k —5)? < 24k?. Note that |7, ;| < |k/3] since no item can be in more than one
triple.

B Proof of estimating approximate low-rank matrices in Corollary 3.2
We follow closely the proof of a similar corollary in [22]. First fix a threshold 7 > 0, and set
r = max{j|o;(©*) > 7}. With this choice of r, we have

min{dq,d2} min{dq,d2} min{dq,d2}

Y @)= 3 oj(TG*) <7 ¥ ((M(?"))q < i,

j=r+1 j=r+1 j=r+1
Also, since r7¢ < Z;:1 0;(0%)1 < pg, it follows that /r < /Pat 92, Using these bounds, Eq.

(8) is now

~ 2 —~
le-o||. = 288vacetdidarg (vgr=2|[0 - 6| +770,).
=A

With the choice of 7 = A, it follows after some algebra that

lle-e||. = 2vmacr.

C Proof of the information-theoretic lower bound in Theorem 2

The proof uses information-theoretic methods which reduces the estimation problem to a multiway
hypothesis testing problem. to prove a lower bound on the expected error, it suffices to prove

2
= 5} > (50)

1
F 4 - 27

sup P{‘H@ - O

0*€Qq
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To prove the above claim, we follow the standard recipe of constructing a packing in £2,. Con-
sider a family {©™) ... @M} of d; x dy dimensional matrices contained in €2, satisfying
[[©¢) — )| > & forall £,¢,, € [M(5)]. We will use M to refer to M (8) for simplify the
notation. Suppose we draw an index L € [M(§)] uniformly at random, and we are given direct
observations o; as per MNL model with ©* = ©(X) on a randomly chosen set of k items S; for each
user i € [dy]. It follows from triangular inequality that

22‘52} > p{L#1L}, (51)

o {6 >

0*cQy

where L is the resulting best estimate of the multiway hypothesis testing on L. The generalized
Fano’s inequality gives

N I(L; L) 4 log 2

P{L#L\S(l),...,S(dl)} HL:L) +log2

log M

(N S aepn Dre(©E)][002)) + log 2
log M
where  Dkp,(©“)||©(2))  denotes the Kullback-Leibler ~divergence between the
distributions ~ of  the partial rankings P {oy,...,04,[0) S(1),...,S(d1)} and
P{o1,...,04, |0 5(1),...,8 (d1)}. The second inequality follows from a standard technique,
which we repeat here for completeness. Let ¥ = {o1,...,04,} denote the observed outcome
of comparisons. Since L-©(-%-L form a Markov chain, the data processing inequality
gives [ (L L) < I(%;L). For simplicity, we drop the conditioning on the set of alternatives

Y

1-— (52)

> 1 , (53)

{S(1),...,S5(d1)}, and and let p(-) denotes joint, marginal, and conditional distribution of
respectlve random variables. It follows that
1. pt%)
I(2:L) = ) p(Sl0)q;log s
ot M 5 (0p(s)
p(X[f)
= — p(X[0) log +——=<—=7~
Z 2 M8 e
p(Z]0)
< z > p(leyog L)
p(X|¢)
/E’G[M 5
1
= 3¢ 2 Da@®]e®), (54)
£,0'€[M]

where the first inequality follows from Jensen’s inequality. To compute the KL-divergence, recall
that from the RUM interpretation of the MNL model (see Section 1), one can generate sample

rankings ¥ by drawing random variables with exponential distributions with mean e®ii’s. Precisely,

let X = [Xff)]ie[dﬂ’je s, denote the set of random variables, where Xg) is drawn from the

O]
exponential distribution with mean e‘gij . The MNL ranking follows by ordering the alternatives
in each S; according to this { X l(f ) }jes, by ranking the smaller ones on the top. This forms a Markov
chain L—X (/)_%}, and the standard data processing inequality gives

Dk (0 |e)) < Dyp(Xx(4)]| x*2)) (55)
(£1) _ oe2)
= 3 ST @ e -1} e
i€[d1] JES;:
e (0 _ olta)y2
oz 2 205 —e)?, (57)
i€ld1] JES;

where the last inequality follows from the fact that e® — z — 1 < (e2*/(4a?))z? for any x €
[—2c, 2a]. Taking expectation over the randomly chosen set of alternatives,

ES(l),...,s(dl)[DKL(@(KI)H@(@))] <

< i (58)

H‘@(él) Q)
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Combined with (53), we get that

P {E # L} = Esq,..san[P {f # LIS(1),..., S(dl)}] (59)
- (1\2/[)—1 o nepn (€2°k/ (40dz)) [[[©1) — @(ZZ)H‘; +log 2
= , (60)
log M

The remainder of the proof relies on the following probabilistic packing.

Lemma C.1. Ler dy > dy > 607 be positive integers. Then for each r € {1,...,d;}, and for
any positive § > 0 there exists a family of dy x dy dimensional matrices {@(1), o, OO with
cardinality M (0) = [(1/4) exp(rdz/576) | such that each matrix is rank r and the following bounds
hold:

lle@]. < o, forauce 61)
H]@“” o) ]F > 5, forall 1,05 € [M] (62)
0¥ ¢ Qa, foralltc[M], (63)

with & = (80/da)/21ogd for d = (dy + d3)/2.

Suppose § < ads/(8v/21logd) such that the matrices in the packing set are entry-wise bounded by
«, then the above lemma implies that |H®(£1) —0) |||§ < 462, which gives

eZak62
~ €20 4 log2 1
P{LAL} > 1-5 —— & > 5,

where the last inequality holds for §2 < (a?ds/(e**k))((rd/1152) — 2log2). If we assume 7d >
3195 for simplicity, this bound on ¢ can be simplified to § < ae™“y/r do d/(2304 k). Together with

(50) and (51), this proves that for all 6 < min{ads/(8v/2logd), ae™*+\/ rdad/(2304 k)},

F}Zg

Choosing § appropriately to maximize the right-hand side finishes the proof of the desired claim.

inf sup EHH@—@*
O 0*eQ,

C.1 Proof of Lemma C.1

Following the construction in [22], we use probabilistic method to prove the existence of the desired
family. We will show that the following procedure succeeds in producing the desired family with
probability at least half, which proves its existence. Let d = (dy + d3)/2, and suppose dz > d;
without loss of generality. For the choice of M’ = e"%2/576 and for each ¢ € [M’], generate a
rank-r matrix ©() € R4 %% a5 follows:

]

1
O T (1 — —11” 4
0 V) (Wdz n ) (64)

where U € R“*" is a random orthogonal basis such that UTU = I,,, and V(¥ € R%*" js a
random matrix with each entry Vig-z) € {—1,+41} chosen independently and uniformly at random.

By construction, notice that |[|[0¥]||, = (6/v/rda)|||(VO)T(I - (1/d2)117)]||, < 6, since
H|V(Z) |HF = /rdy and (I — (1/d2)117T) is a projection which can only decrease the norm.

Now, consider [|©) —0E)||% = (52/(rdo))||(T — (1/d2)11T)(VE) — VN2 =
f(V&) V() which is a function over 2rdy i.i.d. random Rademacher variables V' (‘1) and V (¢2)
which define ©(“1) and ©(*2) respectively. Since f is Lipschitz in the following sense, we can apply
McDiarmid’s concentration inequality. For all (V1) V(©2)) and (V) V(£2)) that differ in only
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one variable, say V) = ) + 2e;;, for some standard basis matrix e;;, we have

|f V(41)7V(42)) _ f(‘7(&)"7(42))| —

5 Loamy e e[| _ 9 LTy ) _ ) ’
I- 11 Doyl - @ 11 Dy 4 gey
|| RV VI gy | G S VR A e

(65)
5 1 & 1
=z (I—d—zll]IT)ew rd2<<(1—d21111T)(V<41>—v<42>),2%->>’ (66)
44° J 1
S vd T rd (I—jzﬂﬂT)(V(Zl) - V(&) H 12451l (67)
124°
< rdy (68)

where we used the fact that (I — 2 117)(V(®) — V() is entry-wise bounded by four. The
expectation E[f(V(¢1) V (¢2))] is

521@ (I- iMT)(V“ﬂ—VW) = 252 ]1]1T v &) 2 (69)
TdQ dg F T’dg F
262
B
rdy [V F|  rd2 [” vl ”%ﬁ)
262 (dy — 1)
= —F . 71
a5 (71)
Applying McDiarmid’s inequality with bounded difference 1262 /(rds), we get that
t2rd
(@) 1)y < 982(1 — — < — 2
P{f(V V) < 252(1 — 1/dy) t} < exp{ 14454}’ (72)

Since there are less than (M’)? pairs of (¢1,f2), setting t = (1 — 2/d2)d? and applying the union
bound gives
r d2 ( 2

2 7
P mi ‘ >0 > 1- { 1_7) 21 M’}>7
{Zl,lzeu[l]\/l’} F } - eXp 144 +2log = g 3)

do
where we used M’ = exp{rd2/576} and do > 607.

‘@(Zl) — 9t)

We are left to prove that ©(“)’s are in Q(85)dy)/2Togd; s defined in (7). Since we removed the mean

such that ©1 = 0 by construction, we only need to show that the maximum entry is bounded
by (8/d2)\/2log ds. We first prove an upper bound in (75) for a fixed ¢ € [M’], and use this to
show that there exists a large enough subset of matrices satisfying this bound. From (129), consider
(UVT); = (u;,v,), where u; € R” is the first  entries of a random vector drawn uniformly
from the dy-dimensional sphere, and v; € R” is drawn uniformly at random from {—1, +1}" with
||lvj|| = v/r. Using Levy’s theorem for concentration on the sphere [27], we have

dy t?
P{l(usvi) >t} < 2exp{ - 2.
Notice that by the definition (129), max; ; |@ \ < (26/+/rd2) max; ; |{ui,v;)|. Setting t =
v/ (32r/ds3) log ds and taking the union bound over all d; ds indices, we get

26+/321
12¥) 2

(74)

1
> 1—2d1dgexp{—4logd2} > =,

for a fixed £ € [M’]. Consider the event that there exists a subset S C [M’] of cardinality M =
(1/4) M’ with the same bound on maximum entry, then from (75) we get

(75)

P {35 C [M'] such that ‘H@W’Hw < %7”5;% for all £ € S} > mi:w (JXD ( ) (76)

which is larger than half for our choice of M < M'/2.
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D Proof of Theorem 3

We use similar notations and techniques as the proof of Theorem 1 in Appendix A. From the def-
inition of £(©) in Eq. (17), we have for the true parameter ©*, the gradient evaluated at the true
parameter is

VLO) = —=3 (ewel —pi), 7
=1

n -

where p; denotes the conditional probability of the MNL choice for the :-th sample. Precisely,

p; = ZjleSi ZjQET,- Dy ja| S T ejle}; where p;, j,|s,.7, is the probability that the pair of items

(j1,J2) is chosen at the i-th sample such that pj, j,1s,.7, = P{(us,vi) = (j1,52)|5, Ti} =
* o1, . . . .

i /(X jies, jper, € '172), where (u;, v;) is the pair of items selected by the i-th user among

the set of pairs of alternatives S; x T;. The Hessian can be computed as

’Le)

1« OPjy ja|Si, T
— — I (j1,j2) €S, xT; LIS CAARE (78)
aejl,jz a@ji»jé n ; ( )

991,
~n ZH((]17]2)7 (J1:72) € Si % Ti) (le,h\si,T,;]I((Jth) = (41,42)) _pjl,jz\S,,Tipji,ng,;,Ti) )
i=1
(79)
We use V2L£(0) € R¥1d2xd1d2 o denote this Hessian. Let A = ©* — © where © is an optimal
solution to the convex optimization in (15). We introduce the following key technical lemmas.
Lemma A.1 Eq. (26)

The following lemma provides a bound on the gradient using the concentration of measure for sum
of independent random matrices [25].

Lemma D.1. For any positive constant ¢ > 1 and n > (4(1+ c)e®*dydg log d)/ max{dy, d2}, with
probability at least 1 — 2d~¢,

2a
Ive©dll, < 4(1 + c)e?* max{d;,ds} logd . (80)
dl dgn

Since we are typically interested in the regime where the number of samples is much smaller than
the dimension d; x ds of the problem, the Hessian is typically not positive definite. However, when
we restrict our attention to the vectorized A with relatively small nuclear norm, then we can prove
restricted strong convexity, which gives the following bound.

Lemma D.2 (Restricted Strong Convexity for bundled choice modeling). Fix any © €

and assume (min{dy,ds}/ min{ky, ko})logd < n < min{d® log d, k1ks max{d?,d3}logd}. Un-

der the random sampling model of the alternatives {jiq }ic[n],ac[k,] from the first set of items [d],

{Jiv}icm),pefk,] from the second set of items [da] and the random outcome of the comparisons de-
225

scribed in section 1, with probability larger than 1 — 2d== ",

Vec(A)T V2L(0) Vec(A) > ¢

> s Al 81)

forall A in A’ where

2
A ={AeR™E (Al <2, > Ay =0 and JAIG = wlIAl. - (2
j1€ldi],j2€[dz2]

with

logd
/ = 210 .
H Oéal1d2\/n min{dy,ds} min{ky, ko} (83)
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Building on these lemmas, the proof of Theorem 3 is divided into the following two cases. In both
cases, we will show that

Al < 12e* e dida [|A] (84)

with high probability. Applying Lemma A.1 proves the desired theorem. We are left to show Eq.
(84) holds.

nuc ’

Case 1: Suppose H|A|||% > 1A With A = ©* — O, the Taylor expansion yields

L(O) = L(O%) — (VL(O*),A) + vm()v%x@n@&xAL (85)

where © = a0 + (1 — a)©* for some a € [0, 1]. It follows from Lemma D.2 that with probability
atleast 1 — 2d—2",
e—20

L£©) = £(©) = ~IVLEO A e + Sd

—— A% -

From the definition of © as an optimal solution of the minimization, we have

£®) = £©) < A1l = ||| ) < ANl

nuc °

By the assumption, we choose A > 8A;. In view of Lemma D.1, this implies that A > 2||V.L(©*)]|,
with probability at least 1 — 2d~3. Tt follows that with probability at least 1 — 2d—3 — 2d=2",
—2a

< * oA .
S NANE < O+ IVEE) 1 e < AN

By our assumption on A < ¢; A1, this proves the desired bound in Eq. (84)

Case 2: Suppose |HAH|§ < WAl uer By the definition of y and the fact that ¢; >

128/+/min{ky, ko}, it follows that p/ < 12e>¥¢;\; dyds, and we get the same bound as in Eq.
(84).

D.1 Proof of Lemma D.1

Define X; = —(ey, el —p;) such that VL(©*) = (1/n) >°"_; X, which is a sum of n independent
random matrices. Note that since p; is entry-wise bounded by €2%/(k1ks),

62(1
Xi <1 )
Ixll, < 1+
and
SEXXT] = Y (Elewcl] - pl) (86)
i=1 i=1
< ZE[euiea] (87)
2an
< i (89
1

where the last inequality follows from the fact that for any given S;, u; will be chosen with proba-
bility at most €2®/ky, if it is in the set S; which happens with probability k1 /d;. Therefore,

n 2c
S EX]])| < —/=. (89)
X 9 1
Similarly,
n 2c
S EXTX|| < —/=. (90)
. 9 2

25



Applying matrix Bernstein inequality [25], we get
—n?t?/2 }
(e22nmax{dy,ds}/(d1d2)) + (14 (e2*/\/kiky))nt/3) )’

which gives the desired tail probability of 2d~° for the choice of

4(1 2 1 41 +c)(1+ )logd
- max{\/< e max(ds, do}log d i }

P{IVL©l >t} < (dr +da) exp 91

didan 3n

B 4(1 4 c)e?® max{dy,ds} logd
n dldQTL ’

where the last equality follows from the assumption that n > (4(1+c)e?*d;ds log d)/ max{d;, da}.

D.2 Proof of Lemma D.2

Thee quadratic form of the Hessian defined in (79) can be lower bounded by

Vec(A)T V2£(0) Vee(A) > 2k2k2 Z S Y -2y’ @)

1=1 j1,j1€S; j2,j5€T;

=H'(A)

which follows from Remark A.5. To lower bound H’(A), we first compute the mean:

S L IID DD DI CYP RV BT
i=1  j1,51€8i j2.J5€T;

= N ae (94)
o dy da Fo

where we used the fact that ]E[Zjlesi’hen Aj, 5] = (kike/(did2)) Zjie[dl],jée[dg] Ay =0
for A € Qf,, in (17).

We now prove that H’'(A) does not deviate from its mean too much. Suppose there exists a A € A’
defined in (82) such that Eq. (81) is violated, i.e. H'(A) < (6’20‘/(8k1k2d1d2))H|A|||§. In this
case,
7 6—2()( 9
> ——IAllg -
8dydy

We will show that this happens with a small probability. We use the same peeling argument as in
Appendix A with

E[H'(A)] - H'(A) (95)

S = {A eRD Al <2087 < Al 8% Y Ay =0, and [[Al, < A0}
J1€[d1],j2€[d2]

where 3 = 1/10/9 and for ¢ € {1,2,3,...}, and 1’ is defined in (83). By the peeling argument,
there exists an ¢ € Z such that A € S; and

E[H/(A)] - H'(A) > L gu-agnz » T
- - 9d1d2

20
Sd1d, B (u')? (96)

Applying the union bound over ¢ € Z,

P{aAeAx H'(A) < ||F} < Zp{sup E[H'(A)] - H'(A)) > ;;djww}

8d ds " aes,

< P sup E[H' (A)] - H'(A)) >
> {AEB/W)( A0 = H')) > g



where we define the set B'(D) such that S, C B'(3y/):

nuc

B(D)={AeR"™ " ||Allo <20, [[Allp <D, > Ay =044
j1€[d1],52€[d2]

< D? } .
(98)

The following key lemma provides the upper bound on this probability.
Lemma D.3. For (min{dy,ds}/ min{k, ko})logd < n < d°logd,

]P’{ sup (E[HI(A)] - H’(A) ) > 6_2aD2} - exp{ n min{k%,k‘%}klkz D4 }(99)

AeB' (D) - ledg 210a4d%d§

Let p = exp (— nkikz mi“{’gfga%}déigl'ooz)(“/)4 ) Applying the tail bound to (97), we get
172

2a = kiko min{k? k3} (B°u')*
PJIA e A, H'(A) < S alRY < - LA L0
{ €A, HI(A) < 8d1da 12l - e_zleXp{ 21004d2d3 }

(a) & kiko min{k?, k2}¢(B — 1.002)(p/)*

< exp{—lemm{ 1»102]:1 (252 00 )(N)}
—~ 20a4dsds

<

S 10y

where (a) holds because 8% > xlogf > z(8 — 1.002) for the choice of 5 = 1/10/9. By the
definition of y’,

239 k1 ko max{d3, d3}(log d)?(3 — 1.002)
n

n = eXP{ - } < exp{—2* logd},

where the last inequality follows from the assumption that n < kjke max{d?,d3}logd, and 3 —
1.002 > 275, Since for d > 2, exp{—22°logd} < 1/2 and thus < 1/2, the lemma follows by
assembling the last two displayed inequalities.

D.3 Proof of Lemma D.3

Let Z = suppep (py E[H'(A)] — H'(A) and consider the tail bound using McDiarmid’s inequality.
Note that Z has a bounded difference of (8a2e~2* max{ky, ko})/(k?k3n) when one of the k;kon
independent random variables are changed, which gives

kA kidn2e2
P{Z-ElZ]zt} = e (  64ate—%o max{k2, k%}klkgn) ' (100)
With the choice of t = D?/(4e%* dydy), this gives
—2a 31.3,, 4
P{Z —EZ] 2 4€d1d2 DQ} S exp ( - 210a4d§cll§i:an{k%,k§}) (101)
We first construct a partition of the space similar to Lemma A.7. Let
k= min{k, ko} . (102)

Lemma D.4. There exists a partition (T, ..., Tn) of {[k1] x [k2]} x {[k1] x [k2]} for some N <
2k2k3 /k such that T;’s are disjoint subsets, Ueerny Te = {[ka] x [ko]} x {[k1] % [ko]}, [Te| < K
and for any { € [N] the set of random variables in T; satisfy

(A, i — Aj,-,a/,ji,,b/)2}ie[n],((a,b),(a/,b’))en are mutually independent .

where j; o for i € [n] and a € [k1] denote the a-th chosen item to be included in the set S;.
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Now we prove an upper bound on E[Z] using the symmetrization technique. Recall that j; , is inde-
pendently and uniformly chosen from [d;] for ¢ € [n] and a € [k;]. Similarly, j; 5 is independently

and uniformly chosen from [d;] for i € [n] and b € [k3].

672(1
B2 = s [adebs ;M%ﬂbb;kz] N
= 2k2k2 Z]E Sup Z > E[(An

’
A€B/(D) = (41,J2,31:35)€Te

w Y Y

AEB!(D) =1 (J1,J2,31,35)€ETe

e—2a
< E
- kfk%n Z
Le[N]

- Aji,a/vji,b/)Q] -
~ 851 -

Eiivgondids (Djnga —

2
—Aji )

(Ajl 2J2

2
Njra) |

where the first inequality follows for the fact that the supremum of the sum is smaller than the sum of
supremum, and the second inequality follows from standard symmetrization with i.i.d. Rademacher
random variables &; ;, ;, j/ j;’s. It follows from Ledoux-Talagrand contraction inequality that

w Y Y

Eijrgodtds (Djrgo —

!
AEB/(D) = (J1,J2,31:35)€Te
< Bal) s E D G andtods (Bivgz = D)
L € 1= 1(]1;]27]17]2)677
< 8aE Aup |||A|||nuc E > Gigrgadtis (€ns
L B/(D i=1 (j1,j2,41,35)€Te

n

8aD? E
; > > &igrindtdh (Cinga = €30.53)

7 —
=1 (j1,42,51,35)ETe 9

- eji’j;)

(106)

(107)

(108)

2

(109)

where the second inequality follows for the Holder’s inequality and the last inequality follows from
WA e < D? forall A € B'(D). To bound the expected spectral norm of the random matrix,

we use matrix Bernstein’s inequality. Note that ‘Hfl

e]/ J') ]

;J17J27J1’32

€51 J2)(ejmz = (2/d1)1a, xd, > and E[(ej, 5, — 631712)T(6J1,J2

CH’Q < V/2 almost surely, E[(e;, j, —

ejp.a5)] =

(2/d2)1d2 Xds -

It follows that 0% = 2n|T;|/ min{ds, d2}, where |T;| < min{k1, ko }. It follows that

>

n
PN > G (e —€ity)

i=1 (j1.j2,71 .35 E€Te )

Choosing ¢
bound on the spectral norm of ¢ with probability at least 1 — 2d~7.

~—

’sz 1 Z(wamz)eﬁ &731732 J1:d5 (611 SER

< (di+d2)exp {

—t2/2

min{d1 ,dz}

max{/64n(min{k1, k2 }/ min{d, d>})log d, (16v/2/3) logd}, we obtain a

From the fact that

H (n/v/2) min{ky, ko }, it follows that

n
E D D Gidieits (Cirge — €i1s) (110)
=1 (j1,52,51,35)ETe 9
64 n min{ky, ko}logd 2nmin{ky, ko }
< 16v2/3)log d _ = 111
= max {\/ min{dy,ds} ( \[/ )log } + V2d7 (111)
< 66 n m%n{kl, ka}logd (112)
min{dy, ds}
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3

b

(Aji,a7ji,b - Aji,alvji,b()é )

(104)

(105)



which follows form the assumption that nmin{k;, k2} > min{d;,ds}logd and n < d°logd.
Substituting this bound in (105), and (109), we get that

16e~2*aD? 66 log d
E[Z] < 113
2] = ! \/n min{ky, k2 } min{d;,ds} (113)
672aD2
Tdd. dids (114)

E Proof of the information-theoretic lower bound in Theorem 4

This proof follow closely the proof of Theorem 2 in Appendix C. We apply the generalized Fano’s
inequality in the same way to get Eq. (53)

M1 .
- Dy (0W)]|0(2)) +log 2
IP’{L;AL} > 1 (%) X aepn Drul | ) + log 7 (115)
log M

The main challenge in this case is that we can no longer directly apply the RUM interpretation to
compete Dy, (©¢1)[|©2)). This will result in over estimating the KL-divergence, because this
approach does not take into account that we only take the top winner, out of those k1 k5 alternatives.
Instead, we compute the divergence directly, and provide an appropriate bound. Let the set of %
rows and ks columns chosen in one of the n sampling be S C [d1] and T’ C [d2] respectively. Then,

(£1) (_)(42)
([1) e i 7;/ese i’ 37
) et)y @ ZZ J'ET
Dy (07 [[e) = (dl) dg) o) log o) o)
k1 kz STZESZzeS61] e Zzese”
J j'eT j'eT
(€1) O( 2) (£1) (£2) 0(41)
(b) n 2% > goe = e 1Oy > v €
S |2 . T
k1 ko S,T 2,] 6@” zi/ j/ e il §/
< e Vi —e i e i3’
k‘2/€2(d1 dz
kz ST 4,5 i’ i3’
(e1) (e2)\ 2
ol _ el
ne o2 (e ’ c ) CH
- k2k‘2(d1)( )Z e Z o2 N Z(e !
ko) ST\ i 5 ij e ij
(d) (¢1) (2)\ 2
< E E @ jl — eeii2
- k1 k‘ dl d2
k}2 S, T 1,5
2
(2) E ’E ( el _ glt)
— k k (d1 dz ) 1]
2 kg S, T 1,5
(f) neoa (22
= 9 @
dldg F

Here (a) is by definition of KL-distance and the fact that S, T are chosen uniformly
from all possible such sets and (b) is due to the fact that log(z) < z — 1 with z =

(£2) (€1)
(e Yiesj'er it )/(e diresjler vt ). The constants at (c) is due to the fact that

each element of ©(“1) is upper bounded by « and lower bounded by —c.. We can get (d) by remov-
ing the second term which is always negative, and using the bond of «. (e) is obtained because e®

(¢1) (£2)
@ijl (—)”2
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(117)

(118)

@wz) ()1

(120)

(121)

(122)
(123)



where —a < x < « is Lipschitz continuous with Lipschitz constant e®. At last (f) is obtained by
simple counting of the occurrences of each ij. Thus we have,

M (€2) (f )
(2) Zél ZzE[M] d1d2 @ : @ ’
log M

‘ + log 2

]P’{f;éL} > 1- . (124

The remainder of the proof relies on the following probabilistic packing.

Lemma E.1. Ler dy > dy be sufficiently large positive integers. Then for eachr € {1,...,d1}, and
for any positive § > 0 there exists a family of di X do dimensional matrices {9(1), e @(M(‘s))}
with cardinality M (5) = |(1/4) exp(rds/576)| such that each matrix is rank v and the following
bounds hold:

H’@WH‘F < &, forallt e [M] (125)

1
m@(‘ﬁ)—@%) ‘F > 50, forall by, 6z € [M] (126)
0" e QL. foralll e [M], (127)

with & = (86/d2)v/21og d for d = (d1 + d2)/2.

Suppose ¢ < ads/(8+/21og d) such that the matrices in the packing set are entry-wise bounded by
«, then the above lemma E.1 implies that |||®(ll) —0) |||fD < 462, which gives

”4‘5 +log2 1

PILAL >1——>7, 128
{ 7 } = i _9log2 2 (128)

where the last inequality holds for 62 < (rd;d3/(1152¢5¥n)) and assuming rdy > 1600. Together
with (128) and (126), this proves that for all § < min{ads/(8+/2logd), rd1d3/(1152¢5*n)},

inf sup EHH@—@*
0 0*cQ,

F} > /4.

Choosing ¢ appropriately to maximize the right-hand side finishes the proof of the desired claim.
Also by symmetry, we can apply the same argument to get similar bound with d; and d5 inter-
changed.

E.1 Proof of Lemma E.1

We show that the following procedure succeeds in producing the desired family with probability at

least half, which proves its existence. Let d = (d; + d2)/2, and suppose da > d; without loss

of generality. For the choice of M’ = ¢"92/576 and for each ¢ € [M’], generate a rank-r matrix

0 e R4 x4 a5 follows:

§ 17UV )1

00 — U T(I . 7]1]#) , 129

\/@ ( ) da X d2 dl d2 ( )

where U € R%*7" is a random orthogonal basis such that UTU = I,., and V) € R%2X" s a

random matrix with each entry V( € {—1,+1} chosen independently and uniformly at random.
By construction, notice that |||® H|F (6/+/rd2)||U( (4))T|HF =4.

Now, by triangular inequality, we have

Ty (vt — ye) Ty Il

(__)(@1) _9((2) ‘ > H’U (@1 _V(fz) T’H ]l]lT
m F ng ) F didar/rds H’F
4]
> —H‘V“l —v|| - = (ITU( )T+ TU ()T
Vrdy - m(‘ (B ) 1 | ( ) |)
A

30



We will prove that the first term is bounded by A > +/rdy with probability at least 7/8 for all
M' matrices, and we will show that we can find M matrices such that the second term is bounded
by B < 84/2rd>log(32r)log(32d) with probability at least 7/8. Together, this proves that with
probability at least 3/4, there exists M matrices such that

271og(32r) log(32d) 1
> — >
’F - 5<1 \/ dids ) 26 ’

H‘@(fl) — 9t)

for all 1, {5 € [M] and for sufficiently large d; and ds.

Applying similar McDiarmid’s inequality as Eq. (73) in Appendix C, it follows that A% > rd, with
probability at least 7/8 for M’ = ¢”%2/576 and a sufficiently large ds.

To prove a bound on B, we will show that for a given ¢,

P{\ﬂTU(V(@)Tm < 8v/2rdy log(327) 1og(32d)} > g (130)

Then using the similar technique as in (76), it follows that we can find M = (1/4)M’ ma-
trices all satisfying this bound and also the bound on the max-entry in (131). We are left
to prove (130). We apply a series of concentration inequalities. Let H; be the event that
{|(< © 1) < /2dylog(32r)foralli € [r]}. Then, applying the standard Hoeffding’s in-
equahty, we get that P{H,} > 15/16, where V( is the i-th column of V(¥). We next change
the variables and represent 17U as /diu"U, where u is drawn uniformly at random from the
unit sphere and U is a r dimensional subspace drawn uniformly at random. By symmetry,
Vdu"U have the same distribution as 17U. Let Hy be the event that {|(U;, (V(9)T1)| <
V/167(ds/dy) log(32r) log(32d) for all i € [d1]}, where U, is the i-th row of U. Then, applying
Levy’s theorem for concentration on the sphere [27], we have P {H3|H;} > 15/16. Finally, let
Hj be the event that {|\/dy (u, U(V©)T)1| < 8/2rdy log(32r) log(32d)}. Then, again applying
Levy’s concentration, we get P { H3|H;, Ha} > 15/16. Collecting all three concentration inequal-
(VIOYT1| < 84/2rdylog(32r) log(32d),

which proves Eq. (130).
We are left to prove that ©()’s are in Qgs/4,) 710za; as defined in (17). Similar to Eq. (75),
applying Levy’s concentration gives

{max ‘®(g)| < 2(5\/32 logd2 }

> 1—26xp{—2logd2} > (131)

1
2 b
for a fixed ¢ € [M’]. Then using the similar technique as in (76), it follows that there exists M =
(1/4) M’ matrices all satisfying this bound and also the bound on B in Eq. (130).
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