
Supplementary material for “Collaboratively Learning Preferences
from Ordinal Data”

A Proof of Theorem 1

We first introduce some additional notations used in the proof. Recall that L(Θ) is the log likelihood
function. Let ∇L(Θ) ∈ Rd1×d2 denote its gradient such that ∇ijL(Θ) = ∂L(Θ)

∂Θij
. Let ∇2L(Θ) ∈

Rd1d2×d1d2 denote its Hessian matrix such that ∇2
ij,i′j′L(Θ) = ∂2L(Θ)

∂Θij∂Θi′j′
. By the definition of

L(Θ) in (4), we have

∇L(Θ∗) = − 1

k d1

d1∑

i=1

k∑

`=1

ei(evi,` − pi,`)T , (23)

where pi,` denotes the conditional choice probability at `-th position. Precisely, pi,` =∑
j∈Si,` pj|(i,`)ej where pj|(i,`) is the probability that item j is chosen at `-th position from the top by

the user i conditioned on the top `−1 choices such that pj|(i,`) ≡ P {vi,` = j|vi,1, . . . , vi,`−1, Si} =

eΘ∗ij/(
∑
j′∈Si,` e

Θij′ ) and Si,` ≡ Si\{vi,1, . . . , vi,`−1}, where Si is the set of alternatives presented
to the i-th user and vi,` is the item ranked at the `-th position by the user i. Notice that for i 6= i′,
∂2L(Θ)

∂Θij∂Θi′j′
= 0 and the Hessian is

∂2L(Θ)

∂Θij∂Θij′
=

1

k d1

k∑

`=1

I
(
j ∈ Si,`

)∂pj|(i,`)
∂Θij′

=
1

k d1

k∑

`=1

I
(
j, j′ ∈ Si,`

) (
pj|(i,`)I(j = j′)− pj|(i,`)pj′|(i,`)

)
. (24)

This Hessian matrix is a block-diagonal matrix∇2L(Θ) = diag(H(1)(Θ), . . . ,H(d1)(Θ)) with

H(i)(Θ) =
1

k d1

k∑

`=1

(
diag(pi,`)− pi,`pTi,`

)
. (25)

Let ∆ = Θ∗ − Θ̂ where Θ̂ is the optimal solution of the convex program in (3). We first introduce
three key technical lemmas. The first lemma follows from Lemma 1 of [22], and shows that ∆ is
approximately low-rank.
Lemma A.1. If λ ≥ 2|||∇L(Θ∗)|||2, then we have

|||∆|||nuc ≤ 4
√

2r|||∆|||F + 4

min{d1,d2}∑

j=ρ+1

σj(Θ
∗) , (26)

for all ρ ∈ [min{d1, d2}].

The following lemma provides a bound on the gradient using the concentration of measure for sum
of independent random matrices [25].
Lemma A.2. For any positive constant c ≥ 1 and k ≤ (1/e) d2(4 log d2 + log d1), with probability
at least 1− 2d−c − d−3

2 ,

|||∇L(Θ∗)|||2 ≤
√

4(1 + c) log d

k d2
1

max
{√

d1/d2, e
2α
√

4(1 + c) log(d)(8 log d2 + 2 log d1) log k
}
.

(27)

Since we are typically interested in the regime where the number of samples is much smaller than
the dimension d1 × d2 of the problem, the Hessian is typically not positive definite. However, when
we restrict our attention to the vectorized ∆ with relatively small nuclear norm, then we can prove
restricted strong convexity, which gives the following bound.
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Lemma A.3 (Restricted Strong Convexity for collaborative ranking). Fix any Θ ∈ Ωα and
assume 24 ≤ k ≤ min{d2

1, (d
2
1 + d2

2)/(2d1)} log d. Under the random sampling model of the
alternatives {ji`}i∈[d1],`∈[k] and the random outcome of the comparisons described in section 1,
with probability larger than 1− 2d−218

,

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−4α

24 d1d2
|||∆|||2F , (28)

for all ∆ in A where

A =
{

∆ ∈ Rd1×d2
∣∣ |||∆|||∞ ≤ 2α ,

∑

j∈[d2]

∆ij = 0 for all i ∈ [d1] and |||∆|||2F ≥ µ|||∆|||nuc

}
. (29)

with

µ ≡ 210 e2α αd2

√
d1 log d

k min{d1, d2}
. (30)

Building on these lemmas, the proof of Theorem 1 is divided into the following two cases. In both
cases, we will show that

|||∆|||2F ≤ 72 e4αc0λ0 d1d2 |||∆|||nuc , (31)

with high probability. Applying Lemma A.1 proves the desired theorem. We are left to show Eq.
(31) holds.

Case 1: Suppose |||∆|||2F ≥ µ |||∆|||nuc. With ∆ = Θ∗ − Θ̂, the Taylor expansion yields

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉+
1

2
Vec(∆)∇2L(Θ)VecT (∆), (32)

where Θ = aΘ̂ + (1− a)Θ∗ for some a ∈ [0, 1]. It follows from Lemma A.3 that with probability
at least 1− 2d−218

,

L(Θ̂)− L(Θ∗) ≥ −〈〈∇L(Θ∗),∆〉〉+
e−4α

48 d1 d2
|||∆|||2F

≥ −|||∇L(Θ∗)|||2|||∆|||nuc +
e−4α

48 d1 d2
|||∆|||2F .

From the definition of Θ̂ as an optimal solution of the minimization, we have

L(Θ̂)− L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣
∣∣∣
∣∣∣Θ̂
∣∣∣
∣∣∣
∣∣∣
nuc

)
≤ λ|||∆|||nuc .

By the assumption, we choose λ ≥ 480λ0. In view of Lemma A.2, this implies that λ ≥
2|||∇L(Θ∗)|||2 with probability at least 1 − 2d−3. It follows that with probability at least
1− 2d−3 − 2d−218

,

e−4α

48d1d2
|||∆|||2F ≤

(
λ+ |||∇L(Θ∗)|||2

)
|||∆|||nuc ≤

3λ

2
|||∆|||nuc .

By our assumption on λ ≤ c0λ0, this proves the desired bound in Eq. (31)

Case 2: Suppose |||∆|||2F ≤ µ |||∆|||nuc. By the definition of µ and the fact that c0 ≥ 480, it follows
that µ ≤ 72 e4αc0λ0 d1d2, and we get the same bound as in Eq. (31).

A.1 Proof of Lemma A.1

Denote the singular value decomposition of Θ∗ by Θ∗ = UΣV T , where U ∈ Rd1×d1 and
V ∈ Rd2×d2 are orthogonal matrices. For a given r ∈ [min{d1, d2}], Let Ur = [u1, . . . , ur]
and Vr = [v1, . . . , vr], where ui ∈ Rd1×1 and vi ∈ Rd2×1 are the left and right singular vectors
corresponding to the i-th largest singular value, respectively. Define T to be the subspace spanned
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by all matrices in Rd1×d2 of the form UrA
T or BV Tr for any A ∈ Rd2×r or B ∈ Rd1×r, re-

spectively. The orthogonal projection of any matrix M ∈ Rd1×d2 onto the space T is given by
PT (M) = UrU

T
r M +MVrV

T
r −UrUTr MVrV

T
r . The projection of M onto the complement space

T⊥ is PT⊥(M) = (I −UrUTr )M(I − VrV Tr ). The subspace T and the respective projections onto
T and T⊥ play crucial a role in the analysis of nuclear norm minimization, since they define the
sub-gradient of the nuclear norm at Θ∗. We refer to [21] for more detailed treatment of this topic.

Let ∆′ = PT (∆) and ∆′′ = PT⊥(∆). Notice that PT (Θ∗) = UrΣrV
T
r , where Σr ∈ Rr×r is the

diagonal matrix formed by the top r singular values. Since PT (Θ∗) and ∆′′ have row and column
spaces that are orthogonal, it follows from Lemma 2.3 in [20] that

|||PT (Θ∗)−∆′′|||nuc = |||PT (Θ∗)|||nuc + |||∆′′|||nuc .

Hence, in view of the triangle inequality,
∣∣∣
∣∣∣
∣∣∣Θ̂
∣∣∣
∣∣∣
∣∣∣
nuc

= |||PT (Θ∗) + PT⊥(Θ∗)−∆′ −∆′′|||nuc

≥ |||PT (Θ∗)−∆′′|||nuc − |||PT⊥(Θ∗)−∆′|||nuc

= |||PT (Θ∗)|||nuc + |||∆′′|||nuc − |||PT⊥(Θ∗)−∆′|||nuc

≥ |||PT (Θ∗)|||nuc + |||∆′′|||nuc − |||PT⊥(Θ∗)|||nuc − |||∆′|||nuc

= |||Θ∗|||nuc + |||∆′′|||nuc − 2|||PT⊥(Θ∗)|||nuc − |||∆′|||nuc. (33)

Because Θ̂ is an optimal solution, we have

λ
(∣∣∣
∣∣∣
∣∣∣Θ̂
∣∣∣
∣∣∣
∣∣∣
nuc
− |||Θ∗|||nuc

)
≤ L(Θ∗)− L(Θ̂)

(a)

≤ 〈〈∆,∇L(Θ∗)〉〉
(b)

≤ |||∆|||nuc|||∇L(Θ∗)|||2 ≤
λ

2
|||∆|||nuc,

(34)

where (a) holds due to the convexity of L; (b) follows from the Cauchy-Schwarz inequality; the last
inequality holds due to the assumption that λ ≥ 2|||∇L(Θ∗)|||2. Combining (33) and (34) yields

2 (|||∆′′|||nuc − 2|||PT⊥(Θ∗)|||nuc − |||∆′|||nuc) ≤ |||∆|||nuc ≤ |||∆′|||nuc + |||∆′′|||nuc.

Thus |||∆′′|||nuc ≤ 3|||∆′|||nuc + 4|||PT⊥(Θ∗)|||nuc. By triangle inequality,

|||∆|||nuc ≤ 4|||∆′|||nuc + 4|||PT⊥(Θ∗)|||nuc .

Notice that ∆′ = UrU
T
r ∆ + (I − UrUTr )∆VrV

T
r . Both UrUTr ∆ and (I − UrUTr )∆VrV

T
r have

rank at most r. Thus ∆′ has rank at most 2r. Hence, |||∆′|||nuc ≤
√

2r|||∆′|||F ≤
√

2r|||∆|||F. Then
the theorem follows because |||PT⊥(Θ∗)|||nuc =

∑min{d1,d2}
j=r+1 σj(Θ

∗).

A.2 Proof of Lemma A.2

Define Xi = −ei
∑k
`=1(evi,` − pi,`)T such that ∇L(Θ∗) = 1

k d1

∑d1
i=1Xi, which is a sum of d1

independent random matrices. Although |||Xi|||2 can be as large as O(k), this occurs with very low
probability. We make this precise in the following lemma and focus on the case where |||Xi|||2 =

O(
√
k) for all i ∈ [d1].

Lemma A.4. For a fixed i ∈ [d1] and j ∈ [d2], if k ≤ (1/e) d2 (4 log d2 + log d1), then the number
of times the item j is observed by the user i is at most 8(log d2) + 2(log d1) with probability larger
than 1− 1/(d4

2d1).

Proof is given in the end of this Section. Applying union bound over the d1 items and d2 users, we
have the multiplicity in sampling for any item for all users is bounded by 8(log d2) + 2(log d1) with
probability at least 1 − d−3

2 . We denote this event by A and let I (A) be the indicator function that
all the multiplicities in sampling are bounded. We first upper bound |||(∑iXi) I (A)|||

2
using the
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Matrix Bernstein inequality [25].

|||XiI (A)|||2 =
∥∥∥I (A)

k∑

`=1

(
evi,` − pi,`

)∥∥∥

(a)

≤
∥∥∥I (A)

k∑

`=1

evi,l

∥∥∥+
∥∥∥I (A)

k∑

`=1

pi,`

∥∥∥

(b)

≤ (8(log d2) + 2(log d1))
√

min{k, d2}
(

1 +

(
k∑

`=1

e2α

`

))

(c)

≤
√
k(8(log d2) + 2(log d1))

(
1 + 2e2α log k

)

≤ 3
√
k(8(log d2) + 2(log d1))e2α log k , (35)

where (a) is by triangle inequality, (b) is because under the given eventA each term in
∑
` evi,` and

∑
l pi,` are upper bounded by log d2 and

(∑k
`=1

e2α

`

)
log d2 respectively and because there can be

at most min{√d2, k} non-zero entries in the two vectors
∑
` evi,` and

∑
` pi,` and, (c) is due to the

fact that k-th harmonic number
∑k
`=1

1
` is upper bounded by log k. We also have,

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

i

E
[
XiX

T
i I (A)

]
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

i

E
[
XiX

T
i

]
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

d1∑

i=1

eie
T
i E




k∑

`,`′=1

(
evi,` − pi,`

)T (
evi,`′ − pi,`′

)


∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

eie
T
i E

[
k∑

`=1

(
evi,` − pi,`

)T (
evi,` − pi,`

)
]∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

eie
T
i E

[
k∑

`=1

eTvi,`evi,` − pTi,`pi,`
]∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

eie
T
i E

[
k∑

`=1

eTvi,`evi,`

]∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

= k|||Id1×d1 |||2 = k, (36)
and ∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

E
[
XT
i XiI (A)

]
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

E
[
XT
i Xi

]
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

d1∑

i=1

E




k∑

`,`′=1

(evi,` − pi,`)(evi,`′ − pi,`′)T


∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

E

[
k∑

`=1

(evi,` − pi,`)(evi,` − pi,`)T
]∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

(37)

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

E

[
k∑

`=1

evi,`e
T
vi,`
− pi,`pTi,`

]∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

E

[
k∑

`=1

evi,`e
T
vi,`

]∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d1∑

i=1

k

d2
Id2×d2

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

=
kd1

d2
. (38)

By matrix Bernstein inequality [25],

P
(
|||∇L(Θ∗)I (A)|||2 > t

)
≤ (d1 + d2) exp

( −k2 d2
1 t

2/2

(d1k/min{d2, d1}) + (3e2αk3/2d1(8(log d2) + 2(log d1)) log k t/3)

)
,
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which gives the tail probability of 2d−c for the choice of

t = max

{√
4(1 + c) log d

k d1 min{d2, d1}
,

4(1 + c)e2α log(d) (8(log d2) + 2(log d1)) log k

k1/2 d1

}

=

√
4(1 + c) log d

k1/2 d1
max

{√
d1/d2 , e

2α
√

4(1 + c) log(d) (8(log d2) + 2(log d1)) log k
}
.

Now with a high probability of 1− 2
dc − 1

d32
the desired bound is true.

A.3 Proof of Lemma A.2

In a classical balls-in-bins setting, we consider k as the number of balls and d2 as the number of bins.
We can consider the number of balls in a particular bin as the number of times the user i observes
item j. Let the event that this number is at least δ be denoted by the event Ajδ . Then, P

{
Ajδ

}
≤

(
k
δ

)
1
dδ2
≤
(
ke
d2δ

)δ
. Using the fact that (1/x)x ≤ a for any x ≥ (2 log(1/a))/(log log(1/a)), we let

x = d2δ/(ke) to get
(
ke

d2δ

)δ
≤ a ked2 ,

for δ ≥ (ke/d2)(2 log(1/a))/(log log(1/a)). Choosing a = (1/d4
2d1)d2/ke, we have P

{
Ajδ

}
≤

1/(d1d
4
2), for a choice of δ = 2 log(d4

2d1) ≥ 2 log(d4
2d1)/(log((d2/ke) log(d4

2d1))).

A.4 Proof of Lemma A.3

Recall that the Hessian matrix is a block-diagonal matrix with the i-th block H(i)(Θ) given by (25).
We use the following remark from [12] to bound the Hessian.

Remark A.5. [12, Claim 1] Given θ ∈ Rr, let p be the column probability vector with pi =
eθi/(eθ1 + · · ·+ eθρ) for each i ∈ [ρ] and for any positive integer ρ. If |θi| ≤ α, for all i ∈ [ρ], then

e2α
(

diag(p)− ppT
)
� 1

ρ
diag(1)− 1

ρ2
11T .

By letting 1Si,` =
∑
j∈Si,` ej and applying the above claim, we have

e2αH(i)(Θ) � 1

k d1

k∑

`=1

(
1

k − `+ 1
diag(1Si,`)−

1

(k − `+ 1)2
1Si,`1

T
Si,`

)

=
1

2 k d1

k∑

`=1

1

(k − `+ 1)2

∑

j,j′∈Si,`
(ej − ej′)(ej − ej′)T

� 1

2 k3 d1

k∑

`=1

∑

j,j′∈Si,`
(ej − ej′)(ej − ej′)T .

Hence,

Vec(∆)∇2L(Θ)VecT (∆) =

d1∑

i=1

(∆T ei)
TH(i)(Θ)(∆T ei)

≥ e−2α

2 k3 d1

d1∑

i=1

k∑

`=1

∑

j,j′∈Si,`

∣∣∣∣∣∣eTi ∆(ej − ej′)
∣∣∣∣∣∣2

2
.
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By changing the order of the summation, we get that

k∑

`=1

∑

j,j′∈Si,`

∣∣∣∣∣∣eTi ∆(ej − ej′)
∣∣∣∣∣∣2

2
=

k∑

`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑

`′′=1

I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
.

Define

χi,`,`′,`′′ ≡ I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
, (39)

and let

H(∆) ≡ e−2α

2 k3 d1

d1∑

i=1

k∑

`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑

`′′=1

χi,`,`′,`′′ .

Then we have VecT (∆)∇2L(Θ)Vec(∆) ≥ H(∆). To prove the theorem, it suffices to boundH(∆)
from the below. First, we prove a lower bound on the expectation E[H(∆)]. Notice that for ` 6= `′,
the conditional expectation of χi,`,`′,`′′ ’s, given the set of alternatives presented to user i is

E
[ k∑

`′′=1

χi,`,`′,`′′
∣∣ ji,1, . . . , ji,k

]
= 1 +

∑

`′′ 6=`,`′

exp(θi,ji,`′′ )

exp(θi,ji,`′′ ) + exp(θi,ji,`′ ) + exp(θi,ji,`)

≥ 1 +
k − 2

1 + 2e2α
≥ k

3e2α
.

Then,

E[H(∆)] =
e−2α

2 k3 d1

∑

i,`,`′

E
[
〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2E
[ k∑

`′′=1

χi,`,`′,`′′
∣∣ ji,1, . . . , ji,k

]]

≥ e−4α

6 k2 d1

d1∑

i=1

∑

`,`′∈[k]

E
[
〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2
]

=
e−4α

6 k2 d1

d1∑

i=1

∑

` 6=`′∈[k]


 2

d2

d2∑

j=1

∆2
ij −

2

d2
2

d2∑

j,j′=1

∆ij∆ij′




=
e−4α(k − 1)

3 k d1 d2
|||∆|||2F , (40)

where the last equality holds because
∑
j∈[d2] ∆ij = 0 for ∆ ∈ Ω2α and for all i ∈ [d1].

We are left to prove that H(∆) cannot deviate from its mean too much. Suppose there exists a
∆ ∈ A such that Eq. (28) is violated, i.e. H(∆) < (e−4α/(24 d1d2))|||∆|||2F. We will show this
happens with a small probability. From Eq. (40), we get that for k ≥ 24,

E[H(∆)]−H(∆) ≥ (7k − 8)

24k

e−4α

d1 d2
|||∆|||2F

≥ (20/3) e−4α

24 d1d2
|||∆|||2F . (41)

We use a peeling argument as in [22, Lemma 3], [26] to upper bound the probability that Eq. (41) is
true. We first construct the following family of subsets to cover A such that A ⊆ ⋃∞`=1 S`. Recall
µ = 210e2ααd2

√
(d1 log d)/(kmin{d1, d2}), define in (30). Notice that since for any ∆ ∈ A,

|||∆|||2F ≥ µ|||∆|||nuc ≥ µ|||∆|||F, it follows that |||∆|||F ≥ µ. Then, we can cover A with the family
of sets

S` =
{

∆ ∈ Rd1×d2
∣∣∣ |||∆|||∞ ≤ 2α , β`−1µ ≤ |||∆|||F ≤ β`µ ,

∑

j∈[d2]

∆ij = 0 for all i ∈ [d1], and |||∆|||nuc ≤ β2`µ
}
,
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where β =
√

10/9 and for ` ∈ {1, 2, 3, . . .}. This implies that when there exists a ∆ ∈ A such that
(41) holds, then there exists an ` ∈ Z+ such that ∆ ∈ S` and

E[H(∆)]−H(∆) ≥ (20/3) e−4α

24 d1d2
β2(`−1)µ2

≥ e−4α

4 d1d2
β2`µ2 . (42)

Applying the union bound over ` ∈ Z+, we get from (41) and (42) that

P
{
∃∆ ∈ A , H(∆) <

e−4α

24 d1d2
|||∆|||2F

}
≤

∞∑

`=1

P
{

sup
∆∈S`

(
E[H(∆)]−H(∆)

)
>

e−4α

4 d1d2
(β`µ)2

}

≤
∞∑

`=1

P

{
sup

∆∈B(β`µ)

(
E[H(∆)]−H(∆)

)
>

e−4α

4 d1d2
(β`µ)2

}
, (43)

where we define a new set B(D) such that S` ⊆ B(β`µ):

B(D) =
{

∆ ∈ Rd1×d2
∣∣ ‖∆‖∞ ≤ 2α, |||∆|||F ≤ D,

∑

j∈[d2]

∆ij = 0 for all i ∈ [d1], µ|||∆|||nuc ≤ D2
}
.

(44)

The following key lemma provides the upper bound on this probability.
Lemma A.6. For (16 min{d1, d2} log d)/(3d1) ≤ k ≤ d2

1 log d,

P

{
sup

∆∈B(D)

(
E[H(∆)]−H(∆)

)
≥ e−4α

4d1d2
D2

}
≤ exp

{
− e−4α kD4

219α4d1d2
2

}
. (45)

Let η = exp
(
− e
−4α4k(β−1.002)µ4

219α4d1d22

)
. Applying the tail bound to (43), we get

P
{
∃∆ ∈ A , H(∆) <

e−4α

24 d1d2
|||∆|||2F

}
≤

∞∑

`=1

exp
{
− e−4αk(β`µ)4

219α4d1d2
2

}

(a)

≤
∞∑

`=1

exp
{
− e−4α4k`(β − 1.002)µ4

219α4d1d2
2

}

≤ η

1− η ,

where (a) holds because βx ≥ x log β ≥ x(β − 1.002) for the choice of β =
√

10/9. By the
definition of µ,

η = exp
{
− 223 e4αd2

2d1(log d)2(β − 1.002)

k(min{d1, d2})2

}
≤ exp{− 218 log d} ,

where the last inequality follows from the assumption that k ≤ max{d1, d
2
2/d1} log d =

(d2
2d1 log d)/(min{d1, d2})2, and β − 1.002 ≥ 2−5. Since for d ≥ 2, exp{−218 log d} ≤ 1/2

and thus η ≤ 1/2, the lemma follows by assembling the last two displayed inequalities.

A.5 Proof of Lemma A.6

Recall that

H(∆) =
e−2α

2 k3 d1

d1∑

i=1

k∑

`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑

`′′=1

χi,`,`′,`′′ ,

with χi,`,`′,`′′ = I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
. Let Z = sup∆∈B(D) E[H(∆)] −

H(∆) be the worst-case random deviation of H(∆) form its mean. We prove an upper bound
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on Z by showing that Z − E[Z] ≤ e−4αD2/(64d1d2) with high probability, and E[Z] ≤
9e−4αD2/(40d1d2). This proves the desired claim in Lemma A.6.

To prove the concentration of Z, we utilize the random utility model (RUM) theoretic interpre-
tation of the MNL model. The random variable Z depends on the random choice of alternatives
{ji,`}i∈[d1],`∈[k] and the random k-wise ranking outcomes {σi}i∈[d1]. The random utility theory, pi-
oneered by [2, 3, 4], tells us that the k-wise ranking from the MNL model has the same distribution
as first drawing independent (unobserved) utilities ui,`’s of the item ji,` for user i according to the
standard Gumbel Cumulative Distribution Function (CDF) F (c − Θi,ji,`) with F (c) = e−e

−c
, and

then ranking the k items for user i according to their respective utilities. Given this definition of the
MNL model, we have χi,`,`′,`′′ = I

(
ui,`′′ ≥ max{ui,`, ui,`′}

)
. Thus Z is a function of indepen-

dent choices of the items and their (unobserved) utilities, i.e. Z = f({(ji,`, ui,`)}i∈[d1],`∈[k]). Let
xi,` = (ji,`, ui,`) and write H(∆) as H(∆, {xi,`}i∈[d1],`∈[k]). This allows us to bound the differ-
ence and apply McDiarmid’s tail bound. Note that for any i ∈ [d1], ` ∈ [k], x1,1, . . . , xd1,k, and
x′i,`,
∣∣ f
(
x1,1, . . . , xi,`, . . . , xd1,k

)
− f

(
x1,1, . . . , x

′
i,`, . . . , xd1,k

) ∣∣
=
∣∣ sup

∆∈B(D)

(E [H(∆)]−H(∆, x1,1, . . . , xi,`, . . . , xd1,k))− sup
∆∈B(D)

(
E [H(∆)]−H(∆, x1,1, . . . , x

′
i,`, . . . , xd1,k)

) ∣∣

≤ sup
∆∈B(D)

∣∣H(∆, x1,1, . . . , xi,`, . . . , xd1,k)−H(∆, x1,1, . . . , x
′
i,`, . . . , xd1,k)

∣∣

(a)

≤ e−2α

2 k3 d1
sup

∆∈B(D)

{
2
∑

`′∈[k]

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑

`′′=1

χi,`,`′,`′′ +
∑

`′,`′′∈[k]

〈〈∆, ei,ji,`′ − ei,ji,`′′ 〉〉
2
χi,`′,`′′,`

}

(b)

≤ 8α2e−2α

k3 d1

{
2

∑

`′∈[k]\{`}

k∑

`′′=1

χi,`,`′,`′′ +
∑

`′,`′′∈[k],`′ 6=`′′,
χi,`′,`′′,`

}

≤ 16α2e−2α

k d1
,

where (a) follows because for a fixed i and `, the random variable xi,` = (ji,`, ui,`) can appear
in three terms, i.e.

∑
`′,`′′〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2
χi,`,`′,`′′ +

∑
`′,`′′〈〈∆, ei,ji,`′ − ei,ji,`〉〉

2
χi,`′,`,`′′ +∑

`′,`′′〈〈∆, ei,ji,`′ − ei,ji,`′′ 〉〉
2
χi,`′,`′′,`, and (b) follows because |∆ij | ≤ 2α for all i, j since ∆ ∈

B(D). The last inequality follows because in the worst case,
∑
`′∈[k]\{`}

∑k
`′′=1 χi,`,`′,`′′ ≤ k(k −

1)/2 and
∑
`′,`′′∈[k],`′ 6=`′′ χi,`′,`′′,` ≤ k(k − 1). This holds with equality if σi(ji,`) = k and

σi(ji,`) = 1, respectively. By bounded differences inequality, we have

P {Z − E [Z] ≥ t} ≤ exp

(
− k2 d2

1 t
2

27 α4e−4αd1k

)
,

It follows that for the choice of t = e−4αD2/(64d1d2),

P
{
Z − E [Z] ≥ e−4αD2

64d1d2

}
≤ exp

(
− e−4αkD4

219α4d1d2
2

)
.

We are left to prove the upper bound on E[Z] using symmetrization and contraction. Define random
variables

Yi,`,`′,`′′(∆) ≡ (∆i,ji,` −∆i,ji,`′ )
2χi,`,`′,`′′ , (46)

where the randomness is in the choice of alternatives ji,`, ji,`′ , and ji,`′′ , and the outcome of the
comparisons of those three alternatives.

The main challenge in applying the symmetrization to
∑
`,`′,`′′∈[k] Yi,`,`′,`′′(∆) is that we need

to partition the summation over the set [k] × [k] × [k] into subsets of independent random
variables, such that we can apply the standard symmetrization argument. to this end, we
prove in the following lemma a a generalization of the well-known problem of scheduling a
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round robin tournament to a tournament of matches involving three teams each. No teams are
present in more than one triple in a single round, and we want to minimize the number of
rounds to cover all combination of triples are matched. For example, when there are k = 6
teams, there is a simple construction of such a tournament: T1 = {(1, 2, 3), (4, 5, 6)}, T2 =
{1, 2, 4), (3, 5, 6)}, T3 = {(1, 2, 5), (3, 4, 6)}, T4 = {(1, 2, 6), (3, 4, 5)}, T5 = {(1, 3, 4), (2, 5, 6)},
T6 = {(1, 3, 5), (2, 4, 6)}, T7 = {(1, 3, 6), (2, 4, 5)}, T8 = {(1, 4, 5), (2, 3, 6)}, T9 =
{(1, 4, 6), (2, 3, 5)}, T10 = {(1, 5, 6), (2, 3, 4)}. This is a perfect scheduling of a tournament with
three teams in each match. For a general k, the following lemma provides a construction withO(k2)
rounds.
Lemma A.7. There exists a partition (T1, . . . , TN ) of [k]× [k]× [k] for some N ≤ 24k2 such that
Ta’s are disjoint subsets of [k] × [k] × [k],

⋃
a∈[N ] Ta = [k] × [k] × [k], |Ta| ≤ bk/3c and for any

a ∈ [N ] the set of random variables in Ta satisfy

{Yi,`,`′,`′′}i∈[d1],(`,`′,`′′)∈Ta are mutually independent .

Now, we are ready to partition the summation.

E
[
Z
]

=
e−2α

2 k3 d1
E
[

sup
∆∈B(D)

∑

i∈[d1]

∑

`,`′,`′′∈[k]

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]

=
e−2α

2 k3 d1
E
[

sup
∆∈B(D)

∑

i∈[d1]

∑

a∈[N ]

∑

(`,`′,`′′)∈Ta

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]

≤ e−2α

2 k3 d1

∑

a∈[N ]

E
[

sup
∆∈B(D)

∑

i∈[d1]

∑

(`,`′,`′′)∈Ta

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]

≤ e−2α

k3 d1

∑

a∈[N ]

E
[

sup
∆∈B(D)

∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
ξi,`,`′,`′′Yi,`,`′,`′′(∆)

]

=
e−2α

k3 d1

∑

a∈[N ]

E
[

sup
∆∈B(D)

∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
ξi,`,`′,`′′(∆i,ji,` −∆i,ji,`′ )

2χi,`,`′,`′′
]
,(47)

where the first inequality follows from the fact that sum of the supremum if no less than the supre-
mum of the sum, and the second inequality follows from standard symmetrization argument applied
to independent random variables {Yi,`,`′,`′′(∆)}i∈[d1],(`,`′,`′′)∈Ta with i.i.d. Rademacher random
variables ξi,`,`′,`′′ ’s. Since (∆i,ji,` − ∆i,ji,`′ )

2χi,`,`′,`′′ ≤ 4α|∆i,ji,` − ∆i,ji,`′ |χi,`,`′,`′′ , we have
by the Ledoux-Talagrand contraction inequality that

E
[

sup
∆∈B(D)

∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
ξi,`,`′,`′′(∆i,ji,` −∆i,ji,`′ )

2χi,`,`′,`′′
]

≤ 8αE
[

sup
∆∈B(D)

∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
ξi,`,`′,`′′ χi,`,`′,`′′ 〈〈∆, ei(eji,` − eji,`′ )T 〉〉

]
(48)

Applying Hölder’s inequality, we get that
∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
ξi,`,`′,`′′ χi,`,`′,`′′ 〈〈∆, ei(eji,` − eji,`′ )T 〉〉

∣∣∣

≤ |||∆|||nuc

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
ξi,`,`′,`′′ χi,`,`′,`′′

(
ei(eji,` − eji,`′ )T

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

. (49)

We are left to prove that the expected value of the right-hand side of the above inequality is
bounded by C|||∆|||nuc

√
kd1 log d/min{d1, d2} for some numerical constant C. For i ∈ [d1] and

(`, `′, `′′) ∈ Ta, let Wi,`,`′,`′′ = ξi,`,`′,`′′ χi,`,`′,`′′
(
ei(eji,` − eji,`′ )T

)
be independent zero-mean

random matrices, such that

|||Wi,`,`′,`′′ |||2 =
∣∣∣
∣∣∣
∣∣∣ξi,`,`′,`′′ χi,`,`′,`′′

(
ei(eji,` − eji,`′ )T

)∣∣∣
∣∣∣
∣∣∣
2
≤
√

2 ,
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almost surely, and

E[Wi,`,`′,`′′W
T
i,`,`′,`′′ ] = E[

(
ei(eji,` − eji,`′ )T (eji,` − eji,`′ )eTi

)
χi,`,`′,`′′ ]

= 2E [χi,`,`′,`′′ ] eie
T
i

� 2eie
T
i ,

and

E[WT
i,`,`′,`′′Wi,`,`′,`′′ ] = E[

(
(eji,` − eji,`′ )eTi ei(eji,` − eji,`′ )T

)
χi,`,`′,`′′ ]

� E[(eji,` − eji,`′ )eTi ei(eji,` − eji,`′ )T ]

=
2

d2
Id2×d2 −

2

d2
2

11T .

This gives

σ2 = max





∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
E[Wi,`,`′,`′′W

T
i,`,`′,`′′ ]

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

,

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
E[WT

i,`,`′,`′′Wi,`,`′,`′′ ]

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2





≤ max

{
2|Ta| ,

2d1|Ta|
d2

}
=

2d1|Ta|
min{d1, d2}

≤ 2d1k

3 min{d1, d2}
,

since we have designed Ta’s such that |Ta| ≤ k/3. Applying matrix Bernstein inequality [25] yields
the tail bound

P





∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
Wi,`,`′,`′′

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≥ t



 ≤ (d1 + d2) exp

( −t2/2
σ2 +

√
2t/3

)
.

Choosing t = max
{√

32kd1 log d/(3 min{d1, d2}), (16
√

2/3) log d
}

, we obtain with probability
at least 1− 2d−3,∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
Wi,`,`′,`′′

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≤ max

{√
32kd1 log d

3 min{d1, d2}
,

16
√

2 log d

3

}
.

It follows from the fact
∣∣∣
∣∣∣
∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈TaWi,`,`′,`′′

∣∣∣
∣∣∣
∣∣∣
2
≤ ∑

i,(`,`′,`′′) |||Wi,`,`′,`′′ |||2 ≤√
2d1k/3 that

E



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈[d1]

∑

(`,`′,`′′)∈Ta
Wi,`,`′,`′′

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2


 ≤ max

{√
32kd1 log d

3 min{d1, d2}
,

16
√

2 log d

3

}
+

2
√

2d1k

3d3

≤ 2

√
32kd1 log d

3 min{d1, d2}
,

where the last inequality follows from the assumption that (16 min{d1, d2} log d)/(3d1) ≤ k ≤
d2

1 log d. Substituting this in the RHS of Eq. (49), and then together with Eqs. (48) and (47), this
gives the following desired bound:

E[Z] ≤
∑

a∈[N ]

sup
∆∈B(D)

16αe−2α

k3 d1

√
32kd1 log d

3 min{d1, d2}
|||∆|||nuc

≤
∑

a∈[N ]

e−4α
√

2

16
√

3k2 d1 d2

(
210e2ααd2

√
d1 log d

kmin{d1, d2}
)

︸ ︷︷ ︸
=µ

|||∆|||nuc

≤ 9e−4αD2

40d1d2
,

where the last inequality holds because N ≤ 4k2 and µ|||∆|||nuc ≤ D2.
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A.6 Proof of Lemma A.7

Recall that Yi,`,`′,`′′(∆) = (∆i,ji,` −∆i,ji,`′ )
2χi,`,`′,`′′ , as defined in (46). From the random utility

model (RUM) interpretation of the MNL model presented in Section 1, it is not difficult to show
that Yi,`,`′,`′′ and Yi,˜̀,˜̀′,˜̀′′ are mutually independent if the two triples (`, `′, `′′) and (˜̀, ˜̀′, ˜̀′′) do not
overlap, i.e., no index is present in both triples.

Now, borrowing the terminologies from round robin tournaments, we construct a schedule for a
tournament with k teams where each match involve three teams. Let Ta,b denote a set of triples
playing at the same round, indexed by two integers a ∈ {3, . . . , 2k − 3} and b ∈ {5, . . . , 2k − 1}.
Hence, there are total N = (2k − 5)2 rounds.

Each round (a, b) consists of disjoint triples and is defined as

Ta,b ≡
{

(`, `′, `′′) ∈ [k]× [k]× [k] | ` < `′ < `′′, `+ `′ = a, and `′ + `′′ = b
}
.

We need to prove that (a) there is no missing triple; and (b) no team plays twice in a single round.
First, for any ordered triple (`, `′, `′′), there exists a ∈ {3, . . . , 2k − 3} and b ∈ {5, . . . , 2k − 1}
such that ` + `′ = a and `′ + `′′ = b. This proves that all ordered triples are covered by the above
construction. Next, given a pair (a, b), no two triples in Ta,b can share the same team. Suppose
there exists two distinct ordered triples (`, `′, `′′) and (˜̀, ˜̀′, ˜̀′′) both in Ta,b, and one of the triples
are shared. Then, from the two equations `+ `′ = ˜̀+ ˜̀′ = a and `′ + `′′ = ˜̀′ + ˜̀′′ = b, it follows
that all three indices must be the same, which is a contradiction. This proves the desired claim for
ordered triples.

One caveat is that we wanted to cover the whole [k]× [k]× [k], and not just the ordered triples. In the
above construction, for example, a triple (3, 2, 1) does not appear. This can be resolved by simply
taking all Ta,b’s from the above construction, and make 6 copies of each round, and permuting all
the triples in each copy according to the same permutation over {1, 2, 3}. This increases the total
rounds to N = 6(2k− 5)2 ≤ 24k2. Note that |Ta,b| ≤ bk/3c since no item can be in more than one
triple.

B Proof of estimating approximate low-rank matrices in Corollary 3.2

We follow closely the proof of a similar corollary in [22]. First fix a threshold τ > 0, and set
r = max{j|σj(Θ∗) > τ}. With this choice of r, we have

min{d1,d2}∑

j=r+1

σj(Θ
∗) = τ

min{d1,d2}∑

j=r+1

σj(Θ
∗)

τ
≤ τ

min{d1,d2}∑

j=r+1

(σj(Θ∗)
τ

)q
≤ τ1−qρq .

Also, since rτ q ≤∑r
j=1 σj(Θ

∗)q ≤ ρq , it follows that
√
r ≤ √ρaτ−q/2. Using these bounds, Eq.

(8) is now
∣∣∣
∣∣∣
∣∣∣Θ̂−Θ

∣∣∣
∣∣∣
∣∣∣
2

F
≤ 288

√
2c0e

4αd1d2λ0︸ ︷︷ ︸
=A

(√
ρqτ
−q/2

∣∣∣
∣∣∣
∣∣∣Θ̂−Θ

∣∣∣
∣∣∣
∣∣∣
F

+ τ1−qρq
)
.

With the choice of τ = A, it follows after some algebra that
∣∣∣
∣∣∣
∣∣∣Θ̂−Θ

∣∣∣
∣∣∣
∣∣∣
F
≤ 2
√
ρqA

(2−q)/2 .

C Proof of the information-theoretic lower bound in Theorem 2

The proof uses information-theoretic methods which reduces the estimation problem to a multiway
hypothesis testing problem. to prove a lower bound on the expected error, it suffices to prove

sup
Θ∗∈Ωα

P
{∣∣∣
∣∣∣
∣∣∣Θ̂−Θ∗

∣∣∣
∣∣∣
∣∣∣
2

F
≥ δ2

4

}
≥ 1

2
. (50)
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To prove the above claim, we follow the standard recipe of constructing a packing in Ωα. Con-
sider a family {Θ(1), . . . ,Θ(M(δ)} of d1 × d2 dimensional matrices contained in Ωα satisfying∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣
F
≥ δ for all `1, `2,∈ [M(δ)]. We will use M to refer to M(δ) for simplify the

notation. Suppose we draw an index L ∈ [M(δ)] uniformly at random, and we are given direct
observations σi as per MNL model with Θ∗ = Θ(L) on a randomly chosen set of k items Si for each
user i ∈ [d1]. It follows from triangular inequality that

sup
Θ∗∈Ωα

P
{∣∣∣
∣∣∣
∣∣∣Θ̂−Θ∗

∣∣∣
∣∣∣
∣∣∣
2

F
≥ δ2

4

}
≥ P

{
L̂ 6= L

}
, (51)

where L̂ is the resulting best estimate of the multiway hypothesis testing on L. The generalized
Fano’s inequality gives

P
{
L̂ 6= L|S(1), . . . , S(d1)

}
≥ 1− I(L̂;L) + log 2

logM
(52)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ]DKL(Θ(`1)‖Θ(`2)) + log 2

logM
, (53)

where DKL(Θ(`1)‖Θ(`2)) denotes the Kullback-Leibler divergence between the
distributions of the partial rankings P

{
σ1, . . . , σd1 |Θ(`1), S(1), . . . , S(d1)

}
and

P
{
σ1, . . . , σd1 |Θ(`2), S(1), . . . , S(d1)

}
. The second inequality follows from a standard technique,

which we repeat here for completeness. Let Σ = {σ1, . . . , σd1} denote the observed outcome
of comparisons. Since L–Θ(L)–Σ–L̂ form a Markov chain, the data processing inequality
gives I(L̂;L) ≤ I(Σ;L). For simplicity, we drop the conditioning on the set of alternatives
{S(1), . . . , S(d1)}, and and let p(·) denotes joint, marginal, and conditional distribution of
respective random variables. It follows that

I(Σ;L) =
∑

`∈[M ],Σ

p(Σ|`) 1

M
log

p(`,Σ)

p(`)p(Σ)

=
1

M

∑

`∈[M ]

∑

Σ

p(Σ|`) log
p(Σ|`)

1
M

∑
`′ p(Σ|`′)

≤ 1

M2

∑

`,`′∈[M ]

∑

Σ

p(Σ|`) log
p(Σ|`)
p(Σ|`′)

=
1

M2

∑

`,`′∈[M ]

DKL(Θ(`1)‖Θ(`2)) , (54)

where the first inequality follows from Jensen’s inequality. To compute the KL-divergence, recall
that from the RUM interpretation of the MNL model (see Section 1), one can generate sample
rankings Σ by drawing random variables with exponential distributions with mean eΘ∗ij ’s. Precisely,
let X(`) = [X

(`)
ij ]i∈[d1],j∈Si denote the set of random variables, where X(`)

ij is drawn from the

exponential distribution with mean e−Θ
(`)
ij . The MNL ranking follows by ordering the alternatives

in each Si according to this {X(`)
ij }j∈Si by ranking the smaller ones on the top. This forms a Markov

chain L–X(L)–Σ, and the standard data processing inequality gives

DKL(Θ(`1)‖Θ(`2)) ≤ DKL(X(`1)‖X(`2)) (55)

=
∑

i∈[d1]

∑

j∈Si

{
eΘ

(`1)
ij −Θ

(`2)
ij − (Θ

(`1)
ij −Θ

(`2)
ij )− 1

}
(56)

≤ e2α

4α2

∑

i∈[d1]

∑

j∈Si
(Θ

(`1)
ij −Θ

(`2)
ij )2 , (57)

where the last inequality follows from the fact that ex − x − 1 ≤ (e2α/(4α2))x2 for any x ∈
[−2α, 2α]. Taking expectation over the randomly chosen set of alternatives,

ES(1),...,S(d1)[DKL(Θ(`1)‖Θ(`2))] ≤ e2α k

4α2 d2

∣∣∣
∣∣∣
∣∣∣Θ(`1) −Θ(`2)

∣∣∣
∣∣∣
∣∣∣
2

F
. (58)
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Combined with (53), we get that

P
{
L̂ 6= L

}
= ES(1),...,S(d1)[P

{
L̂ 6= L|S(1), . . . , S(d1)

}
] (59)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ](e

2αk/(4α2d2))
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F

+ log 2

logM
, (60)

The remainder of the proof relies on the following probabilistic packing.

Lemma C.1. Let d2 ≥ d1 ≥ 607 be positive integers. Then for each r ∈ {1, . . . , d1}, and for
any positive δ > 0 there exists a family of d1 × d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))} with
cardinalityM(δ) = b(1/4) exp(rd2/576)c such that each matrix is rank r and the following bounds
hold:

∣∣∣
∣∣∣
∣∣∣Θ(`)

∣∣∣
∣∣∣
∣∣∣
F
≤ δ , for all ` ∈ [M ] (61)

∣∣∣
∣∣∣
∣∣∣Θ(`1) −Θ(`2)

∣∣∣
∣∣∣
∣∣∣
F
≥ δ , for all `1, `2 ∈ [M ] (62)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (63)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

Suppose δ ≤ αd2/(8
√

2 log d) such that the matrices in the packing set are entry-wise bounded by
α, then the above lemma implies that

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
≤ 4δ2, which gives

P
{
L̂ 6= L

}
≥ 1−

e2αkδ2

α2d2
+ log 2

rd
576 − 2 log 2

≥ 1

2
,

where the last inequality holds for δ2 ≤ (α2d2/(e
2αk))((rd/1152) − 2 log 2). If we assume rd ≥

3195 for simplicity, this bound on δ can be simplified to δ ≤ αe−α
√
r d2 d/(2304 k). Together with

(50) and (51), this proves that for all δ ≤ min{αd2/(8
√

2 log d), αe−α
√
r d2 d/(2304 k)},

inf
Θ̂

sup
Θ∗∈Ωα

E
[ ∣∣∣
∣∣∣
∣∣∣Θ̂−Θ∗

∣∣∣
∣∣∣
∣∣∣
F

]
≥ δ

4
.

Choosing δ appropriately to maximize the right-hand side finishes the proof of the desired claim.

C.1 Proof of Lemma C.1

Following the construction in [22], we use probabilistic method to prove the existence of the desired
family. We will show that the following procedure succeeds in producing the desired family with
probability at least half, which proves its existence. Let d = (d1 + d2)/2, and suppose d2 ≥ d1

without loss of generality. For the choice of M ′ = erd2/576, and for each ` ∈ [M ′], generate a
rank-r matrix Θ(`) ∈ Rd1×d2 as follows:

Θ(`) =
δ√
rd2

U(V (`))T
(
Id2×d2 −

1

d2
11T

)
, (64)

where U ∈ Rd1×r is a random orthogonal basis such that UTU = Ir×r and V (`) ∈ Rd2×r is a
random matrix with each entry V (`)

ij ∈ {−1,+1} chosen independently and uniformly at random.

By construction, notice that
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
F

= (δ/
√
rd2)

∣∣∣∣∣∣(V (`))T (I− (1/d2)11T )
∣∣∣∣∣∣

F
≤ δ, since∣∣∣∣∣∣V (`)

∣∣∣∣∣∣
F

=
√
rd2 and (I− (1/d2)11T ) is a projection which can only decrease the norm.

Now, consider
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F

= (δ2/(rd2))
∣∣∣∣∣∣(I− (1/d2)11T )(V (`1) − V (`2))

∣∣∣∣∣∣2
F
≡

f(V (`1), V (`2)) which is a function over 2rd2 i.i.d. random Rademacher variables V (`1) and V (`2)

which define Θ(`1) and Θ(`2) respectively. Since f is Lipschitz in the following sense, we can apply
McDiarmid’s concentration inequality. For all (V (`1), V (`2)) and (Ṽ (`1), Ṽ (`2)) that differ in only
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one variable, say Ṽ (`1) = V (`1) + 2eij , for some standard basis matrix eij , we have
∣∣f(V (`1), V (`2))− f(Ṽ (`1), Ṽ (`2))

∣∣ =∣∣∣∣∣
δ2

r d2

∣∣∣∣
∣∣∣∣
∣∣∣∣(I−

1

d2
11T )(V (`1) − V (`2))

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

F

− δ2

r d2

∣∣∣∣
∣∣∣∣
∣∣∣∣(I−

1

d2
11T )(V (`1) − V (`2) + 2eij)

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

F

∣∣∣∣∣
(65)

=

∣∣∣∣∣
δ2

r d2

∣∣∣∣
∣∣∣∣
∣∣∣∣2(I− 1

d2
11T )eij

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

F

+
δ2

r d2
〈〈(I− 1

d2
11T )(V (`1) − V (`2)), 2eij〉〉

∣∣∣∣∣ (66)

≤ 4 δ2

r d2
+

δ

r d2

∣∣∣∣
∣∣∣∣
∣∣∣∣(I−

1

d2
11T )(V (`1) − V (`2))

∣∣∣∣
∣∣∣∣
∣∣∣∣
∞
|||2eij |||1 (67)

≤ 12 δ2

r d2
, (68)

where we used the fact that (I − 1
d2
11T )(V (`1) − V (`2)) is entry-wise bounded by four. The

expectation E[f(V (`1), V (`2))] is

δ2

r d2
E

[∣∣∣∣
∣∣∣∣
∣∣∣∣(I−

1

d2
11T )(V (`1) − V (`2))

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

F

]
=

2δ2

r d2
E

[∣∣∣∣
∣∣∣∣
∣∣∣∣(I−

1

d2
11T )V (`1)

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

F

]
(69)

=
2δ2

r d2
E
[∣∣∣
∣∣∣
∣∣∣V (`1)

∣∣∣
∣∣∣
∣∣∣
2

F

]
− 2δ2

r d2
2

E
[
‖1TV (`1)‖2

]
(70)

=
2 δ2 (d2 − 1)

d2
. (71)

Applying McDiarmid’s inequality with bounded difference 12δ2/(rd2), we get that

P
{
f(V (`1), V (`2)) ≤ 2δ2(1− 1/d2)− t

}
≤ exp

{
− t2 r d2

144 δ4

}
, (72)

Since there are less than (M ′)2 pairs of (`1, `2), setting t = (1 − 2/d2)δ2 and applying the union
bound gives

P
{

min
`1,`2∈[M ′]

∣∣∣
∣∣∣
∣∣∣Θ(`1) −Θ(`2)

∣∣∣
∣∣∣
∣∣∣
2

F
≥ δ2

}
≥ 1− exp

{
− r d2

144

(
1− 2

d2

)2

+ 2 logM ′
}
≥ 7

8
,(73)

where we used M ′ = exp{rd2/576} and d2 ≥ 607.

We are left to prove that Θ(`)’s are in Ω(8δ/d2)
√

2 log d2
as defined in (7). Since we removed the mean

such that Θ(`)1 = 0 by construction, we only need to show that the maximum entry is bounded
by (8δ/d2)

√
2 log d2. We first prove an upper bound in (75) for a fixed ` ∈ [M ′], and use this to

show that there exists a large enough subset of matrices satisfying this bound. From (129), consider
(UV T )ij = 〈〈ui, vj〉〉, where ui ∈ Rr is the first r entries of a random vector drawn uniformly
from the d2-dimensional sphere, and vj ∈ Rr is drawn uniformly at random from {−1,+1}r with
‖vj‖ =

√
r. Using Levy’s theorem for concentration on the sphere [27], we have

P {|〈〈ui, vj〉〉| ≥ t} ≤ 2 exp
{
− d2 t

2

8 r

}
. (74)

Notice that by the definition (129), maxi,j |Θ(`)
ij | ≤ (2δ/

√
rd2) maxi,j |〈〈ui, vj〉〉|. Setting t =√

(32r/d2) log d2 and taking the union bound over all d1d2 indices, we get

P
{

max
i,j
|Θ(`)
ij | ≤

2δ
√

32 log d2

d2

}
≥ 1− 2d1d2 exp

{
− 4 log d2

}
≥ 1

2
, (75)

for a fixed ` ∈ [M ′]. Consider the event that there exists a subset S ⊂ [M ′] of cardinality M =
(1/4)M ′ with the same bound on maximum entry, then from (75) we get

P
{
∃S ⊂ [M ′] such that

∣∣∣
∣∣∣
∣∣∣Θ(`)

∣∣∣
∣∣∣
∣∣∣
∞
≤ 2δ

√
32 log d2

d2
for all ` ∈ S

}
≥

M ′∑

m=M

(
M ′

m

)(1

2

)m
,(76)

which is larger than half for our choice of M < M ′/2.
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D Proof of Theorem 3

We use similar notations and techniques as the proof of Theorem 1 in Appendix A. From the def-
inition of L(Θ) in Eq. (17), we have for the true parameter Θ∗, the gradient evaluated at the true
parameter is

∇L(Θ∗) = − 1

n

n∑

i=1

(euie
T
vi − pi) , (77)

where pi denotes the conditional probability of the MNL choice for the i-th sample. Precisely,
pi =

∑
j1∈Si

∑
j2∈Ti pj1,j2|Si,Tiej1e

T
j2

where pj1,j2|Si,Ti is the probability that the pair of items
(j1, j2) is chosen at the i-th sample such that pj1,j2|Si,Ti ≡ P {(ui, vi) = (j1, j2)|Si, Ti} =

eΘ∗j1,j2 /(
∑
j′1∈Si,j′2∈Ti e

Θ∗
j′1,j
′
2 ), where (ui, vi) is the pair of items selected by the i-th user among

the set of pairs of alternatives Si × Ti. The Hessian can be computed as

∂2L(Θ)

∂Θj1,j2 ∂Θj′1,j
′
2

=
1

n

n∑

i=1

I
(
(j1, j2) ∈ Si × Ti

)∂pj1,j2|Si,Ti
∂Θj′1,j

′
2

(78)

=
1

n

n∑

i=1

I
(
(j1, j2), (j′1, j

′
2) ∈ Si × Ti

) (
pj1,j2|Si,TiI((j1, j2) = (j′1, j

′
2))− pj1,j2|Si,Tipj′1,j′2|Si,Ti

)
,

(79)

We use ∇2L(Θ) ∈ Rd1d2×d1d2 to denote this Hessian. Let ∆ = Θ∗ − Θ̂ where Θ̂ is an optimal
solution to the convex optimization in (15). We introduce the following key technical lemmas.

Lemma A.1 Eq. (26)

The following lemma provides a bound on the gradient using the concentration of measure for sum
of independent random matrices [25].

Lemma D.1. For any positive constant c ≥ 1 and n ≥ (4(1 + c)e2αd1d2 log d)/max{d1, d2}, with
probability at least 1− 2d−c,

|||∇L(Θ∗)|||2 ≤
√

4(1 + c)e2α max{d1, d2} log d

d1 d2 n
. (80)

Since we are typically interested in the regime where the number of samples is much smaller than
the dimension d1 × d2 of the problem, the Hessian is typically not positive definite. However, when
we restrict our attention to the vectorized ∆ with relatively small nuclear norm, then we can prove
restricted strong convexity, which gives the following bound.

Lemma D.2 (Restricted Strong Convexity for bundled choice modeling). Fix any Θ ∈ Ω′α
and assume (min{d1, d2}/min{k1, k2}) log d ≤ n ≤ min{d5 log d, k1k2 max{d2

1, d
2
2} log d}. Un-

der the random sampling model of the alternatives {jia}i∈[n],a∈[k1] from the first set of items [d1],
{jib}i∈[n],b∈[k1] from the second set of items [d2] and the random outcome of the comparisons de-
scribed in section 1, with probability larger than 1− 2d−225

,

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−2α

8 d1 d2
|||∆|||2F , (81)

for all ∆ in A′ where

A′ =
{

∆ ∈ Rd1×d2
∣∣ |||∆|||∞ ≤ 2α ,

∑

j1∈[d1],j2∈[d2]

∆j1j2 = 0 and |||∆|||2F ≥ µ′|||∆|||nuc

}
. (82)

with

µ′ ≡ 210 αd1d2

√
log d

n min{d1, d2} min{k1, k2}
. (83)
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Building on these lemmas, the proof of Theorem 3 is divided into the following two cases. In both
cases, we will show that

|||∆|||2F ≤ 12 e2αc1λ1 d1d2 |||∆|||nuc , (84)

with high probability. Applying Lemma A.1 proves the desired theorem. We are left to show Eq.
(84) holds.

Case 1: Suppose |||∆|||2F ≥ µ′ |||∆|||nuc. With ∆ = Θ∗ − Θ̂, the Taylor expansion yields

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉+
1

2
Vec(∆)∇2L(Θ)VecT (∆), (85)

where Θ = aΘ̂ + (1− a)Θ∗ for some a ∈ [0, 1]. It follows from Lemma D.2 that with probability
at least 1− 2d−225

,

L(Θ̂)− L(Θ∗) ≥ −|||∇L(Θ∗)|||2|||∆|||nuc +
e−2α

8 d1 d2
|||∆|||2F .

From the definition of Θ̂ as an optimal solution of the minimization, we have

L(Θ̂)− L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣
∣∣∣
∣∣∣Θ̂
∣∣∣
∣∣∣
∣∣∣
nuc

)
≤ λ|||∆|||nuc .

By the assumption, we choose λ ≥ 8λ1. In view of Lemma D.1, this implies that λ ≥ 2|||∇L(Θ∗)|||2
with probability at least 1− 2d−3. It follows that with probability at least 1− 2d−3 − 2d−225

,

e−2α

8d1d2
|||∆|||2F ≤

(
λ+ |||∇L(Θ∗)|||2

)
|||∆|||nuc ≤

3λ

2
|||∆|||nuc .

By our assumption on λ ≤ c1λ1, this proves the desired bound in Eq. (84)

Case 2: Suppose |||∆|||2F ≤ µ′ |||∆|||nuc. By the definition of µ and the fact that c1 ≥
128/

√
min{k1, k2}, it follows that µ′ ≤ 12 e2αc1λ1 d1d2, and we get the same bound as in Eq.

(84).

D.1 Proof of Lemma D.1

DefineXi = −(euie
T
vi−pi) such that∇L(Θ∗) = (1/n)

∑n
i=1Xi, which is a sum of n independent

random matrices. Note that since pi is entry-wise bounded by e2α/(k1k2),

|||Xi|||2 ≤ 1 +
e2α

√
k1k2

,

and
n∑

i=1

E[XiX
T
i ] =

n∑

i=1

(E[euie
T
ui ]− pipTi ) (86)

�
n∑

i=1

E[euie
T
ui ] (87)

� e2α n

d1
Id1×d1 , (88)

where the last inequality follows from the fact that for any given Si, ui will be chosen with proba-
bility at most e2α/k1, if it is in the set Si which happens with probability k1/d1. Therefore,

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

E[XiX
T
i ]

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤ e2α n

d1
. (89)

Similarly,
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

E[XT
i Xi]

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤ e2α n

d2
. (90)
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Applying matrix Bernstein inequality [25], we get

P {|||∇L(Θ∗)|||2 > t} ≤ (d1 + d2) exp
{ −n2t2/2

(e2αnmax{d1, d2}/(d1d2)) + ((1 + (e2α/
√
k1k2))nt/3)

}
, (91)

which gives the desired tail probability of 2d−c for the choice of

t = max
{√4(1 + c)e2α max{d1, d2} log d

d1d2n
,

4(1 + c)(1 + e2α√
k1k2

) log d

3n

}

=

√
4(1 + c)e2α max{d1, d2} log d

d1d2n
,

where the last equality follows from the assumption that n ≥ (4(1+c)e2αd1d2 log d)/max{d1, d2}.

D.2 Proof of Lemma D.2

Thee quadratic form of the Hessian defined in (79) can be lower bounded by

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−2α

2 k2
1 k

2
2 n

n∑

i=1

∑

j1,j′1∈Si

∑

j2,j′2∈Ti

(
∆j1,j2 −∆j′1,j

′
2

)2

︸ ︷︷ ︸
≡H′(∆)

, (92)

which follows from Remark A.5. To lower bound H ′(∆), we first compute the mean:

E[H ′(∆)] =
e−2α

2 k2
1 k

2
2 n

n∑

i=1

E
[ ∑

j1,j′1∈Si

∑

j2,j′2∈Ti

(
∆j1,j2 −∆j′1,j

′
2

)2]
(93)

=
e−2α

d1 d2
|||∆|||2F , (94)

where we used the fact that E[
∑
j1∈Si,j2∈Ti ∆j1,j2 ] = (k1k2/(d1d2))

∑
j′1∈[d1],j′2∈[d2] ∆j′1,j

′
2

= 0

for ∆ ∈ Ω′2α in (17).

We now prove that H ′(∆) does not deviate from its mean too much. Suppose there exists a ∆ ∈ A′
defined in (82) such that Eq. (81) is violated, i.e. H ′(∆) < (e−2α/(8k1k2d1d2))|||∆|||2F. In this
case,

E[H ′(∆)]−H ′(∆) ≥ 7 e−2α

8d1d2
|||∆|||2F . (95)

We will show that this happens with a small probability. We use the same peeling argument as in
Appendix A with

S ′` =
{

∆ ∈ Rd1×d2 | |||∆|||∞ ≤ 2α, β`−1µ′ ≤ |||∆|||F ≤ β`µ′,
∑

j1∈[d1],j2∈[d2]

∆j1,j2 = 0, and |||∆|||nuc ≤ β2`µ′
}
,

where β =
√

10/9 and for ` ∈ {1, 2, 3, . . .}, and µ′ is defined in (83). By the peeling argument,
there exists an ` ∈ Z+ such that ∆ ∈ S ′` and

E[H ′(∆)]−H ′(∆) ≥ 7 e−2α

8d1d2
β2`−2(µ′)2 ≥ 7 e−2α

9 d1d2
β2`(µ′)2 . (96)

Applying the union bound over ` ∈ Z+,

P
{
∃∆ ∈ A′ , H ′(∆) <

e−2α

8 d1 d2
|||∆|||2F

}
≤

∞∑

`=1

P

{
sup

∆∈S′`

(
E[H ′(∆)]−H ′(∆)

)
>

7 e−2α

9d1d2
(β`µ′)2

}

≤
∞∑

`=1

P

{
sup

∆∈B′(β`µ′)

(
E[H ′(∆)]−H ′(∆)

)
>

7e−2α

9d1d2
(β`µ′)2

}
,

(97)
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where we define the set B′(D) such that S ′` ⊆ B′(β`µ′):

B′(D) =
{

∆ ∈ Rd1×d2
∣∣ ‖∆‖∞ ≤ 2α, |||∆|||F ≤ D,

∑

j1∈[d1],j2∈[d2]

∆j1j2 = 0, µ′|||∆|||nuc ≤ D2
}
.

(98)

The following key lemma provides the upper bound on this probability.

Lemma D.3. For (min{d1, d2}/min{k1, k2}) log d ≤ n ≤ d5 log d,

P

{
sup

∆∈B′(D)

(
E[H ′(∆)]−H ′(∆)

)
≥ e−2αD2

2d1d2

}
≤ exp

{
− n min{k2

1, k
2
2} k1k2D

4

210α4d2
1d

2
2

}
.(99)

Let η = exp
(
−nk1k2 min{k21,k22}(β−1.002)(µ′)4

210α4d21d
2
2

)
. Applying the tail bound to (97), we get

P
{
∃∆ ∈ A′ , H ′(∆) <

e−2α

8 d1d2
|||∆|||2F

}
≤

∞∑

`=1

exp
{
− nk1k2 min{k2

1, k
2
2} (β`µ′)4

210α4d2
1d

2
2

}

(a)

≤
∞∑

`=1

exp
{
− nk1k2 min{k2

1, k
2
2}`(β − 1.002)(µ′)4

210α4d2
1d

2
2

}

≤ η

1− η ,

where (a) holds because βx ≥ x log β ≥ x(β − 1.002) for the choice of β =
√

10/9. By the
definition of µ′,

η = exp
{
− 230 k1k2 max{d2

2, d
2
1}(log d)2(β − 1.002)

n

}
≤ exp{− 225 log d} ,

where the last inequality follows from the assumption that n ≤ k1k2 max{d2
1, d

2
2} log d, and β −

1.002 ≥ 2−5. Since for d ≥ 2, exp{−225 log d} ≤ 1/2 and thus η ≤ 1/2, the lemma follows by
assembling the last two displayed inequalities.

D.3 Proof of Lemma D.3

Let Z ≡ sup∆∈B′(D) E[H ′(∆)]−H ′(∆) and consider the tail bound using McDiarmid’s inequality.
Note that Z has a bounded difference of (8α2e−2α max{k1, k2})/(k2

1k
2
2n) when one of the k1k2n

independent random variables are changed, which gives

P {Z − E[Z] ≥ t} ≤ exp
(
− k4

1k
4
2n

2t2

64α4e−4α max{k2
1, k

2
2}k1k2n

)
. (100)

With the choice of t = D2/(4e2α d1d2), this gives

P
{
Z − E[Z] ≥ e−2α

4d1d2
D2

}
≤ exp

(
− k3

1k
3
2nD

4

210α4d2
1d

2
2 max{k2

1, k
2
2}
)
. (101)

We first construct a partition of the space similar to Lemma A.7. Let

k̃ ≡ min{k1, k2} . (102)

Lemma D.4. There exists a partition (T1, . . . , TN ) of {[k1]× [k2]} × {[k1]× [k2]} for some N ≤
2k2

1k
2
2/k̃ such that T`’s are disjoint subsets,

⋃
`∈[N ] T` = {[k1] × [k2]} × {[k1] × [k2]}, |T`| ≤ k̃

and for any ` ∈ [N ] the set of random variables in T` satisfy

{(∆ji,a,ji,b −∆ji,a′ ,ji,b′ )
2}i∈[n],((a,b),(a′,b′))∈T` are mutually independent .

where ji,a for i ∈ [n] and a ∈ [k1] denote the a-th chosen item to be included in the set Si.
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Now we prove an upper bound on E[Z] using the symmetrization technique. Recall that ji,a is inde-
pendently and uniformly chosen from [d1] for i ∈ [n] and a ∈ [k1]. Similarly, ji,b is independently
and uniformly chosen from [d1] for i ∈ [n] and b ∈ [k2].

E[Z] =
e−2α

2 k2
1 k

2
2 n

E


 sup

∆∈B′(D)

n∑

i=1

∑

a,a′∈[k1]

∑

b,b′∈[k2]

E
[(

∆ji,a,ji,b −∆ji,a′ ,ji,b′

)2]−
(
∆ji,a,ji,b −∆ji,a′ ,ji,b′

)2

(103)

≤ e−2α

2 k2
1 k

2
2 n

∑

`∈[N ]

E


 sup

∆∈B′(D)

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

E
[(

∆j1,j2 −∆j′1,j
′
2

)2]−
(
∆j1,j2 −∆j′1,j

′
2

)2

 (104)

≤ e−2α

k2
1 k

2
2 n

∑

`∈[N ]

E


 sup

∆∈B′(D)

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
∆j1,j2 −∆j′1,j

′
2

)2

 , (105)

where the first inequality follows for the fact that the supremum of the sum is smaller than the sum of
supremum, and the second inequality follows from standard symmetrization with i.i.d. Rademacher
random variables ξi,j1,j2,j′1,j′2 ’s. It follows from Ledoux-Talagrand contraction inequality that

E


 sup

∆∈B′(D)

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
∆j1,j2 −∆j′1,j

′
2

)2

 (106)

≤ 8αE


 sup

∆∈B′(D)

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
∆j1,j2 −∆j′1,j

′
2

)

 (107)

≤ 8αE


 sup

∆∈B′(D)

|||∆|||nuc

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2


 (108)

≤ 8αD2

µ′
E



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2


 , (109)

where the second inequality follows for the Hölder’s inequality and the last inequality follows from
µ′|||∆|||nuc ≤ D2 for all ∆ ∈ B′(D). To bound the expected spectral norm of the random matrix,
we use matrix Bernstein’s inequality. Note that

∣∣∣∣∣∣ξi,j1,j2,j′1,j′2c
∣∣∣∣∣∣

2
≤
√

2 almost surely, E[(ej1,j2 −
ej′1,j′2)(ej1,j2−ej′1,j′2)T ] � (2/d1)Id1×d1 , and E[(ej1,j2−ej′1,j′2)T (ej1,j2−ej′1,j′2)] � (2/d2)Id2×d2 .
It follows that σ2 = 2n|T`|/min{d1, d2}, where |T`| ≤ min{k1, k2}. It follows that

P





∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2

> t



 ≤ (d1 + d2) exp

{ −t2/2
2nmin{k1,k2}

min{d1,d2} +
√

2t
3

}
,

Choosing t = max{
√

64n(min{k1, k2}/min{d1, d2}) log d, (16
√

2/3) log d}, we obtain a
bound on the spectral norm of t with probability at least 1 − 2d−7. From the fact that∣∣∣
∣∣∣
∣∣∣
∑n
i=1

∑
(j1,j2,j′1,j

′
2)∈T` ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣
∣∣∣
∣∣∣
2
≤ (n/

√
2) min{k1, k2}, it follows that

E



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

n∑

i=1

∑

(j1,j2,j′1,j
′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2


 (110)

≤ max
{√64n min{k1, k2} log d

min{d1, d2}
, (16
√

2/3) log d
}

+
2nmin{k1, k2}√

2d7
(111)

≤
√

66n min{k1, k2} log d

min{d1, d2}
(112)
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which follows form the assumption that nmin{k1, k2} ≥ min{d1, d2} log d and n ≤ d5 log d.
Substituting this bound in (105), and (109), we get that

E[Z] ≤ 16e−2ααD2

µ′

√
66 log d

nmin{k1, k2}min{d1, d2}
(113)

≤ e−2αD2

4 d1d2
. (114)

E Proof of the information-theoretic lower bound in Theorem 4

This proof follow closely the proof of Theorem 2 in Appendix C. We apply the generalized Fano’s
inequality in the same way to get Eq. (53)

P
{
L̂ 6= L

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ]DKL(Θ(`1)‖Θ(`2)) + log 2

logM
, (115)

The main challenge in this case is that we can no longer directly apply the RUM interpretation to
compete DKL(Θ(`1)‖Θ(`2)). This will result in over estimating the KL-divergence, because this
approach does not take into account that we only take the top winner, out of those k1k2 alternatives.
Instead, we compute the divergence directly, and provide an appropriate bound. Let the set of k1

rows and k2 columns chosen in one of the n sampling be S ⊂ [d1] and T ⊂ [d2] respectively. Then,

DKL(Θ(`1)‖Θ(`2))
(a)
=

n(
d1
k1

)(
d2
k2

)
∑

S,T

∑

i∈S
j∈T

eΘ
(`1)
ij

∑
i′∈S
j′∈T

e
Θ

(`1)

i′j′
log



eΘ

(`1)
ij
∑

i′∈S
j′∈T

e
Θ

(`2)

i′j′

eΘ
(`2)
ij
∑

i′∈S
j′∈T

e
Θ

(`1)

i′j′


 (116)

(b)

≤ n(
d1
k1

)(
d2
k2

)
∑

S,T



∑

i,j

e2Θ
(`1)
ij
∑
i′,j′ e

Θ
(`2)

i′j′ − eΘ
(`1)
ij +Θ

(`2)
ij
∑
i′,j′ e

Θ
(`1)

i′j′

eΘ
(`2)
ij

(∑
i′,j′ e

Θ
(`1)

i′j′

)2


 (117)

(c)

≤ ne2α

k2
1k

2
2

(
d1
k1

)(
d2
k2

)
∑
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∑

i,j


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ij −Θ
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ij
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i′j′ − eΘ
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ij
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e
Θ
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i′j′


 (118)

=
ne2α

k2
1k

2
2

(
d1
k1

)(
d2
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)
∑

S,T


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∑

i′,j′

e
Θ

(`2)

i′j′
∑
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(
eΘ

(`1)
ij − eΘ

(`2)
ij

)2

eΘ
(`2)
ij

−
(∑

i,j

(eΘ
(`1)
ij − eΘ

(`2)
ij )

)2


(119)

(d)

≤ ne4α

k1k2

(
d1
k1

)(
d2
k2

)
∑

S,T

∑

i,j

(
eΘ

(`1)
ij − eΘ

(`2)
ij
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(120)

(e)

≤ ne5α

k1k2

(
d1
k1

)(
d2
k2

)
∑

S,T

∑

i,j

(
Θ

(`1)
ij −Θ

(`2)
ij

)2

(121)

(f)
=

ne5α

d1d2

∣∣∣
∣∣∣
∣∣∣Θ(`1)

ij −Θ
(`2)
ij

∣∣∣
∣∣∣
∣∣∣
2

F
(122)

(123)

Here (a) is by definition of KL-distance and the fact that S, T are chosen uniformly
from all possible such sets and (b) is due to the fact that log(x) ≤ x − 1 with x =

(eΘ
(`1)
ij
∑
i′∈S,j′∈T e

Θ
(`2)

i′j′ )/(eΘ
(`2)
ij
∑
i′∈S,j′∈T e

Θ
(`1)

i′j′ ). The constants at (c) is due to the fact that
each element of Θ(`1) is upper bounded by α and lower bounded by −α. We can get (d) by remov-
ing the second term which is always negative, and using the bond of α. (e) is obtained because ex
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where −α ≤ x ≤ α is Lipschitz continuous with Lipschitz constant eα. At last (f) is obtained by
simple counting of the occurrences of each ij. Thus we have,

P
{
L̂ 6= L

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ]

ne5α

d1d2

∣∣∣
∣∣∣
∣∣∣Θ(`2)

ij −Θ
(`2)
ij

∣∣∣
∣∣∣
∣∣∣
2

F
+ log 2

logM
, (124)

The remainder of the proof relies on the following probabilistic packing.

Lemma E.1. Let d2 ≥ d1 be sufficiently large positive integers. Then for each r ∈ {1, . . . , d1}, and
for any positive δ > 0 there exists a family of d1 × d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))}
with cardinality M(δ) = b(1/4) exp(rd2/576)c such that each matrix is rank r and the following
bounds hold:

∣∣∣
∣∣∣
∣∣∣Θ(`)

∣∣∣
∣∣∣
∣∣∣
F
≤ δ , for all ` ∈ [M ] (125)

∣∣∣
∣∣∣
∣∣∣Θ(`1) −Θ(`2)

∣∣∣
∣∣∣
∣∣∣
F
≥ 1

2
δ , for all `1, `2 ∈ [M ] (126)

Θ(`) ∈ Ω′α̃ , for all ` ∈ [M ] , (127)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

Suppose δ ≤ αd2/(8
√

2 log d) such that the matrices in the packing set are entry-wise bounded by
α, then the above lemma E.1 implies that

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
≤ 4δ2, which gives

P
{
L̂ 6= L

}
≥ 1−

e5αn4δ2

d1d2
+ log 2

rd2
576 − 2 log 2

≥ 1

2
, (128)

where the last inequality holds for δ2 ≤ (rd1d
2
2/(1152e5αn)) and assuming rd2 ≥ 1600. Together

with (128) and (126), this proves that for all δ ≤ min{αd2/(8
√

2 log d), rd1d
2
2/(1152e5αn)},

inf
Θ̂

sup
Θ∗∈Ωα

E
[ ∣∣∣
∣∣∣
∣∣∣Θ̂−Θ∗

∣∣∣
∣∣∣
∣∣∣
F

]
≥ δ/4 .

Choosing δ appropriately to maximize the right-hand side finishes the proof of the desired claim.
Also by symmetry, we can apply the same argument to get similar bound with d1 and d2 inter-
changed.

E.1 Proof of Lemma E.1

We show that the following procedure succeeds in producing the desired family with probability at
least half, which proves its existence. Let d = (d1 + d2)/2, and suppose d2 ≥ d1 without loss
of generality. For the choice of M ′ = erd2/576, and for each ` ∈ [M ′], generate a rank-r matrix
Θ(`) ∈ Rd1×d2 as follows:

Θ(`) =
δ√
rd2

U(V (`))T
(
Id2×d2 −

1TU(V (`))T1

d1d2
11T

)
, (129)

where U ∈ Rd1×r is a random orthogonal basis such that UTU = Ir×r and V (`) ∈ Rd2×r is a
random matrix with each entry V (`)

ij ∈ {−1,+1} chosen independently and uniformly at random.
By construction, notice that

∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣

F
≤ (δ/

√
rd2)

∣∣∣∣∣∣U(V (`))T
∣∣∣∣∣∣

F
= δ.

Now, by triangular inequality, we have
∣∣∣
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∣∣∣
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F
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∣∣∣
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F
− δ |1TU(V (`1) − V (`2))T1|

d1d2

√
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≥ δ√
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∣∣∣
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∣∣∣
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F︸ ︷︷ ︸
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− δ√
r d1 d2

2

(
|1TU(V (`1))T1|︸ ︷︷ ︸

B

+|1TU(V (`2))T1|
)
.
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We will prove that the first term is bounded by A ≥
√
rd2 with probability at least 7/8 for all

M ′ matrices, and we will show that we can find M matrices such that the second term is bounded
by B ≤ 8

√
2rd2 log(32r) log(32d) with probability at least 7/8. Together, this proves that with

probability at least 3/4, there exists M matrices such that

∣∣∣
∣∣∣
∣∣∣Θ(`1) −Θ(`2)

∣∣∣
∣∣∣
∣∣∣
F
≥ δ

(
1−

√
27 log(32r) log(32d)

d1d2

)
≥ 1

2
δ ,

for all `1, `2 ∈ [M ] and for sufficiently large d1 and d2.

Applying similar McDiarmid’s inequality as Eq. (73) in Appendix C, it follows that A2 ≥ rd2 with
probability at least 7/8 for M ′ = erd2/576 and a sufficiently large d2.

To prove a bound on B, we will show that for a given `,

P
{
|1TU(V (`))T1| ≤ 8

√
2rd2 log(32r) log(32d)

}
≥ 7

8
. (130)

Then using the similar technique as in (76), it follows that we can find M = (1/4)M ′ ma-
trices all satisfying this bound and also the bound on the max-entry in (131). We are left
to prove (130). We apply a series of concentration inequalities. Let H1 be the event that
{|〈〈V (`)

i ,1〉〉| ≤
√

2d2 log(32r) for all i ∈ [r]}. Then, applying the standard Hoeffding’s in-
equality, we get that P {H1} ≥ 15/16, where V (`)

i is the i-th column of V (`). We next change
the variables and represent 1TU as

√
d1u

T Ũ , where u is drawn uniformly at random from the
unit sphere and Ũ is a r dimensional subspace drawn uniformly at random. By symmetry,√
d1u

T Ũ have the same distribution as 1TU . Let H2 be the event that {|〈〈Ũi, (V (`))T1〉〉| ≤√
16r(d2/d1) log(32r) log(32d) for all i ∈ [d1]}, where Ũi is the i-th row of Ũ . Then, applying

Levy’s theorem for concentration on the sphere [27], we have P {H2|H1} ≥ 15/16. Finally, let
H3 be the event that {|

√
d1〈〈u, Ũ(V (`))T 〉〉1| ≤ 8

√
2rd2 log(32r) log(32d)}. Then, again applying

Levy’s concentration, we get P {H3|H1, H2} ≥ 15/16. Collecting all three concentration inequal-
ities, we get that with probability at least 13/16, |1TU(V (`))T1| ≤ 8

√
2rd2 log(32r) log(32d),

which proves Eq. (130).

We are left to prove that Θ(`)’s are in Ω(8δ/d2)
√

2 log d2
as defined in (17). Similar to Eq. (75),

applying Levy’s concentration gives

P
{

max
i,j
|Θ(`)
ij | ≤

2δ
√

32 log d2

d2

}
≥ 1− 2 exp

{
− 2 log d2

}
≥ 1

2
, (131)

for a fixed ` ∈ [M ′]. Then using the similar technique as in (76), it follows that there exists M =
(1/4)M ′ matrices all satisfying this bound and also the bound on B in Eq. (130).
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