
Supplementary Material
Smooth and Strong: MAP Inference with Linear Convergence

A The Primal of the Strongly-Convex Dual

We start from the strongly convex dual Eq. (7):
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To derive the primal we rewrite this dual as:
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The Lagrangian is then:
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Deriving optimality conditions, we obtain:
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Plugging back in L, we get the primal:
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B L2-Smoothed Dual

We first show the L2 smoothing for the max function and then use it to derive the dual. The following
derivation is based on section (5.7.1) in Boyd and Vandenberghe (2004) and section (5.1) in Shalev-
Shwartz and Zhang (2014).
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where �? is the convex conjugate of �. Unless y = � the inner max gives1. Therefore:
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To smooth, we add a simple L2 term:
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Going back to the primal:
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From this we obtain the bound:
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We start from the smoothed dual and show the corresponding primal has the desired form.
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where A>
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is the reparameterization matrix (and A
r

is a marginalization matrix, but without the
scaling 1/�). Next, we rewrite this by introducing auxiliary variables and equality constraints:

min

z,�

X

r

max

u2�

⇣
u>z

r

� �

2

kuk2
⌘

s.t. z
r

(x
r

) = ✓
r

(x
r

) + A>
r,xr

� for all r, x
r

The Lagrangian is then:
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Notice that Aµ = 0 enforces marginalization constraints.
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C Guarantees for Strongly-Convex Dual

Denote by g⇤ the optimal value of g(�), and �⇤ is a minimizer. We similarly define g⇤
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Note that this proof still holds if we use the smooth g
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D Convergence Rate of Algorithm 1

To analyze the convergence rate of Algorithm 1, we use the following result from Lacoste-Julien
et al. [13]:
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To use this result, we need to bound the curvature constant of the objective function, denoted by C⌦
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.
It is shown in Lacoste-Julien et al. [13] that in the case of a product domain, the overall curvature is
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To use this bound, we compute the Hessian for our problem3 Eq. (8): r2
µ

= �A>A, which is
constant in µ. Using arguments similar to Lemma A.2 in Lacoste-Julien et al. [13], we obtain:
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Plugging this in Theorem D.1, we obtain a rate of O(
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E Executing Algorithm 1 with Global Factors

To execute Algorithm 1 for global factors, we need to avoid storing µ
r

for the large factors. We
assume those factors have no parents in the region graph, which is sensible. We will maintain the
following variables during the run:
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Notice that we never store � variables for regions with no parents (e.g., global).

Now, we explain how Algorithm 1 can be executed when the chosen region r has global scope.
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by maximization, which is assumed tractable. Second, to compute the step size ⌘ we need for the
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F Algorithms with Linear Convergence Rate

In this section we describe the objective functions and algorithms for the smooth and strongly convex
variants (the difference from the basic formulation is marked in blue).

First, we add an L2 term to the smooth dual Eq. (11), obtaining:
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Hence we can run gradient-based algorithms with this small modification.

As expected, the primal function corresponding to the smooth and strongly convex dual of Eq. (13)
is equivalent to appending an L2 term to the primal in Eq. (8):
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Finally, we point out that this algorithm cannot be used with global factors due to the need to store
u

r
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G Runtime Comparison

In this section we compare the runtime of various MAP inference algorithms for the image segmen-
tation problem from Section 5. We show convergence on time scale rather than iteration scale in
Fig. 3, which is analogous to Fig. 2 (right). We can see that the behavior is very similar to Fig. 2
since the cost of an iteration is roughly the same for all algorithms. For MPLP we use the efficient
message computation from Tarlow et al. (2010). In fact, FW shows slightly better runtime, but
the main reason is the faster computation of the objective value. Computing the objective is faster
because we use the FW variant from Appendix E, which maintains dual variables that make this
computation very fast.
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Figure 3: Same as Fig. 2 (right), but the objective values are shown as a function of runtime instead
of iterations.
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