
Supplementary Material
Smooth and Strong: MAP Inference with Linear Convergence

A The Primal of the Strongly-Convex Dual

We start from the strongly convex dual Eq. (7):

min

�

�

2

k�k2 +

X

r

max

xr

✓

r

(x
r

) +

X

p:r2p

�
pr

(x
r

)�
X

c:c2r

�
rc

(x
c

)

!

To derive the primal we rewrite this dual as:

min

�,⇠

�

2

k�k2 +

X

r

⇠
r

s.t. ⇠
r

� ✓
r

(x
r

) +

X

p:r2p

�
pr

(x
r

)�
X

c:c2r

�
rc

(x
c

) 8r, x
r

The Lagrangian is then:

L(�, ⇠, µ � 0) =

�

2

k�k2 +

X

r

⇠
r

+

X

r

X

xr

µ
r

(x
r

)

"
✓

r

(x
r

) +

X

p:r2p

�
pr

(x
r

)�
X

c:c2r

�
rc

(x
c

)� ⇠
r

#

Deriving optimality conditions, we obtain:

@L

@⇠
r

= 1�
X

xr

µ
r

(x
r

) = 0 [normalization]

@L

@�
pr

(x
r

)

= ��
pr

(x
r

)� µ
p

(x
r

) + µ
r

(x
r

) = 0) �
pr

(x
r

) =

1

�
(µ

p

(x
r

)� µ
r

(x
r

))

where µ
p

(x
r

) =

P
xp\xr

µ
p

(x
p

).
Plugging back in L, we get the primal:

max

µ2�⇥
µ>✓ � �

2

kAµk2

B L2-Smoothed Dual

We first show the L2 smoothing for the max function and then use it to derive the dual. The following
derivation is based on section (5.7.1) in Boyd and Vandenberghe (2004) and section (5.1) in Shalev-
Shwartz and Zhang (2014).

�(x) = max

i

x
i

= max

�2�

X

i

�
i

x
i

�?

(y) = max

x

x>y � �(x) = max

x

x>y �max

�2�
�>x = min

�2�
max

x

(y � �)

>x

where �? is the convex conjugate of �. Unless y = � the inner max gives1. Therefore:

�?

(y) =

⇢
0 y 2 �

1 ow

To smooth, we add a simple L2 term:

�?

�

(y) =

⇢
�

2 kyk
2 y 2 �

1 ow

Going back to the primal:

�
�

(x) = max

y

x>y � �?

�

(y) = max

y2�
x>y � �

2

kyk2

From this we obtain the bound:

max

i

x
i

 �

2

+ max

u2�

⇣
u>x� �

2

kuk2
⌘

We start from the smoothed dual and show the corresponding primal has the desired form.

min

�

X

r

max

u2�

⇣
u>

(✓
r

+ A>
r

�)� �

2

kuk2
⌘

(12)

where A>
r

is the reparameterization matrix (and A
r

is a marginalization matrix, but without the
scaling 1/�). Next, we rewrite this by introducing auxiliary variables and equality constraints:

min

z,�

X

r

max

u2�

⇣
u>z

r

� �

2

kuk2
⌘

s.t. z
r

(x
r

) = ✓
r

(x
r

) + A>
r,xr

� for all r, x
r

The Lagrangian is then:
L(z, �, µ) =

˜�
�

(z) + µ>
(✓ + A>� � z)

where ˜�
�

(z) =

P
r

�
�

(z
r

). Hence the dual is:

max

µ

min

z,�

˜�
�

(z) + µ>
(✓ + A>� � z)

= max

µ

µ>✓ + (min

z

˜�
�

(z)� µ>z
| {z }

��̃

?
�(µ)

) + (min

�

�>Aµ)

Unless Aµ = 0, the min

�

term goes to �1, so we get:

max

µ

µ>✓ � ˜�?

�

(µ) s.t. Aµ = 0

Notice that Aµ = 0 enforces marginalization constraints.

Now, since ˜�
�

(z) =

P
r

�
�

(z
r

) (each term in the sum has its own exclusive variables z
r

), the dual
is the sum of duals ˜�?

�

(µ) =

P
r

�?

�

(µ
r

). So finally plugging �?

�

(µ) from before we get the primal:

max

µ2ML

µ>✓ � �

2

kµk2

as required.

11

C Guarantees for Strongly-Convex Dual

Denote by g⇤ the optimal value of g(�), and �⇤ is a minimizer. We similarly define g⇤
�

and �⇤
�

. We
have:

g⇤
= min

�

g(�)

 g(�⇤
�

)

 g(�⇤
�

) +

�

2

k�⇤
�

k2

= g⇤
�

On the other hand, we use a bound on the norm of the optimal solution k�⇤k2 h, where h =

(4Mqk✓k1)

2 (see Appendix B.1 in Meshi et al. (2015)).

g⇤
�

= min

�

g(�) +

�

2

k�k2

 g(�⇤
) +

�

2

k�⇤k2

= g⇤
+

�

2

k�⇤k2

 g⇤
+

�

2

h

So finally we obtain:

g⇤ g⇤
�

 g⇤
+

�

2

h

Note that this proof still holds if we use the smooth g
�

instead of g.

D Convergence Rate of Algorithm 1

To analyze the convergence rate of Algorithm 1, we use the following result from Lacoste-Julien
et al. [13]:

Theorem D.1. For each t > 0 it holds that f⇤
�

�E
h
f (t)

�

i
 2q

t+2q

⇣
C⌦

f�
+ (f⇤

�

� f (0)
�

)

⌘
, where C⌦

f�

is the curvature constant of f
�

, and the expectation is over the random choice of factors. Further-
more, the duality gap is bounded by: E

h
D(t̂)

�

i
 6q

t+1

⇣
C⌦

f�
+ (f⇤

�

� f (0)
�

)

⌘
, for some 0 ˆt t.

To use this result, we need to bound the curvature constant of the objective function, denoted by C⌦
f�

.
It is shown in Lacoste-Julien et al. [13] that in the case of a product domain, the overall curvature is
the sum of block-wise curvature constants: C⌦

f�
=

P
r

Cr

f�

Furthermore, the curvature constant of a single factor is bounded in terms of the Hessian as follows:

Cr

f�
 sup

µ,µ

02�⇥
,

(µ0�µ)2�r,

z2[µ,µ

0]✓�⇥

(µ0 � µ)

>r2f(z)(µ0 � µ) ,

12

To use this bound, we compute the Hessian for our problem3 Eq. (8): r2
µ

= �A>A, which is
constant in µ. Using arguments similar to Lemma A.2 in Lacoste-Julien et al. [13], we obtain:

Cr

f�
 sup

µ,µ

02�⇥
,

(µ0�µ)2�r

(µ0 � µ)

> ��A>A
�
(µ0 � µ)

 � sup

µ,µ

02�⇥
,

(µ0�µ)2�r

kA(µ0 � µ)k22

 4� sup

v2A�r

kvk22

 4R2

�

where R = 1 + max

p,r

Wp

Wr
is the maximal number of marginalized assignments.

Finally, we have:

C⌦
f�

=

X

r

Cr

f�
 q

✓
4R2

�

◆
= O

⇣ q

�

⌘

Plugging this in Theorem D.1, we obtain a rate of O(

q

2

�✏

) for both the objective and duality gap.

E Executing Algorithm 1 with Global Factors

To execute Algorithm 1 for global factors, we need to avoid storing µ
r

for the large factors. We
assume those factors have no parents in the region graph, which is sensible. We will maintain the
following variables during the run:

�
pr

(x
r

) =

1

�
(µ

p

(x
r

)� µ
r

(x
r

)) 8r, x
r

, p : r 2 p

↵
r

= µ>
r

✓
r

8r

�
rc

(x
c

) =

X

xr\xc

µ
r

(x
r

) 8r, c : c 2 r

Notice that we never store � variables for regions with no parents (e.g., global).

Now, we explain how Algorithm 1 can be executed when the chosen region r has global scope.
First, ˆ✓�

r

can be easily computed from the maintained dual variables �, and then s
r

can be obtained
by maximization, which is assumed tractable. Second, to compute the step size ⌘ we need for the
nominator:4

ˆ✓>
r

(s
r

� µ
r

) =

ˆ✓>
r

s
r

� ˆ✓>
r

µ
r

=

ˆ✓>
r

s
r

� ✓>
r

µ
r

� µ>
r

(A>
r

�
r

)

=

ˆ✓>
r

s
r

� ✓>
r

µ
r

+

X

c

�>
rc

�
rc

where �
r

= �
r·(·), and A

r

is the reparameterization matrix, as before. For the denominator, the first
term is 0 since P

r

= 0. Furthermore,
P

xr\c
s

r

(x
r

) is easy to compute since s
r

is an indicator for
the maximizer, and �

rc

(x
c

) =

P
xr\c

µ
r

(x
r

) is maintained. Finally, the updates to the auxiliary

3Here we actually use the negative of Eq. (8) and treat this as a minimization problem.
4To simplify notation we use ✓̂r instead of ✓̂�

r .

13

variables are:

�
rc

(x
c

) �
rc

(x
c

) +

⌘

�

X

xr\xc

s
r

(x
r

)� ⌘

�
�

rc

(x
c

) 8c : c 2 r

↵
r

 (1� ⌘)↵
r

+ ⌘✓>
r

s
r

�
rc

(x
c

) (1� ⌘)�
rc

(x
c

) + ⌘
X

xr\xc

s
r

8c : c 2 r

F Algorithms with Linear Convergence Rate

In this section we describe the objective functions and algorithms for the smooth and strongly convex
variants (the difference from the basic formulation is marked in blue).

First, we add an L2 term to the smooth dual Eq. (11), obtaining:

min

�

ḡ
�,�

:= g̃
�

(�)+
�

2

k�k2 (13)

Combining the guarantees of sections 4.1 and 4.2 yields:

g⇤ ḡ⇤
�,�

 g⇤
+

�

2

h +

�

2

q

The gradient then needs to be slightly adjusted:

r
�pr(xr)ḡ�,�

=

0

@u
r

(x
r

)�
X

xp\xr

u
p

(x
p

)

1

A
+��

pr

(x
r

)

Hence we can run gradient-based algorithms with this small modification.

As expected, the primal function corresponding to the smooth and strongly convex dual of Eq. (13)
is equivalent to appending an L2 term to the primal in Eq. (8):

max

µ2�⇥
µ>✓ � �

2

kAµk2��

2

kµk2

To apply dual coordinate ascent [27] (with line search), we make the following modifications in
Algorithm 1. First, we replace s

r

by the projection onto the simplex u
r

. Second, we use ˜✓�

r

(x
r

) =

ˆ✓�

r

(x
r

)��µ
r

(x
r

) instead of ˆ✓�

r

(x
r

) when computing the step size:

⌘ =

˜✓>
r

(u
r

� µ
r

)

(�+

1
�

P
r

)ku
r

� µ
r

k2 +

1
�

P
c:c2r

kA
rc

(u
r

� µ
r

)k2
.

Finally, we point out that this algorithm cannot be used with global factors due to the need to store
u

r

.

G Runtime Comparison

In this section we compare the runtime of various MAP inference algorithms for the image segmen-
tation problem from Section 5. We show convergence on time scale rather than iteration scale in
Fig. 3, which is analogous to Fig. 2 (right). We can see that the behavior is very similar to Fig. 2
since the cost of an iteration is roughly the same for all algorithms. For MPLP we use the efficient
message computation from Tarlow et al. (2010). In fact, FW shows slightly better runtime, but
the main reason is the faster computation of the objective value. Computing the objective is faster
because we use the FW variant from Appendix E, which maintains dual variables that make this
computation very fast.

14

100 101 102 103 104

−8

−6

−4

−2

0 x 105

Time (sec)

O
bj

ec
tiv

e

Subgradient
MPLP
FW

Figure 3: Same as Fig. 2 (right), but the objective values are shown as a function of runtime instead
of iterations.

References

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

O. Meshi, N. Srebro, and T. Hazan. Efficient training of structured SVMs via soft constraints. In AISTATS,
2015.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss
minimization. In ICML, 2014.

D. Tarlow, I. Givoni, and R. Zemel. Hop-map: Efficient message passing with high order potentials. In
AISTATS, 2010.

15

