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Abstract

In regression problems involving vector-valued outputs (or equivalently, multiple
responses), it is well known that the maximum likelihood estimator (MLE), which
takes noise covariance structure into account, can be significantly more accurate
than the ordinary least squares (OLS) estimator. However, existing literature com-
pares OLS and MLE in terms of their asymptotic, not finite sample, guarantees.
More crucially, computing the MLE in general requires solving a non-convex op-
timization problem and is not known to be efficiently solvable. We provide fi-
nite sample upper and lower bounds on the estimation error of OLS and MLE, in
two popular models: a) Pooled model, b) Seemingly Unrelated Regression (SUR)
model. We provide precise instances where the MLE is significantly more ac-
curate than OLS. Furthermore, for both models, we show that the output of a
computationally efficient alternating minimization procedure enjoys the same per-
formance guarantee as MLE, up to universal constants. Finally, we show that for
high-dimensional settings as well, the alternating minimization procedure leads
to significantly more accurate solutions than the corresponding OLS solutions but
with error bound that depends only logarithmically on the data dimensionality.

1 Introduction

Regression problems with vector-valued (or, equivalently, multiple) response variables — where we
want to predict multiple responses based on a set of predictor variables— is a classical problem that
arises in a wide variety of fields such as economics [1, 2, 3], and genomics [4]. In such problems,
it is natural to assume that the noise, or error, terms in the underlying linear regression model are
correlated across the response variables. For example, in multi-task learning, the errors in different
task outputs can be heavily correlated due to similarity of the tasks.

Regression with multiple responses is a classical topic. Textbooks in statistics [5, 6] and economet-
rics [7] cover it in detail and illustrate practical applications. [2] and [3] provide recent overviews
of the Seemingly Unrelated Regressions (SUR) model and the associated estimation procedures. It
is well known that for SUR models, the standard Ordinary Least Squares (OLS) estimator may not
be (asymptotically) efficient (i.e., may not achieve the Cramer-Rao lower bound on the asymptotic
variance) and that efficiency can be gained by using an estimator that exploits noise correlations
[3] such as the Maximum Likelihood Estimator (MLE). The two well-known exceptions to this un-
derperformance of OLS are: when the noise across tasks is uncorrelated and when the regressors
are shared across tasks. The later is the well-known multivariate regression (MR) setting (see [5,
Chapter 6]). However, there are at least two limitations of the existing MLE literature in this context.

First, despite being a classical and widely studied problem, little attention has been paid to the fact
that MLE involves solving a non-convex optimization problem in general and is not known to be
efficiently solvable. For example, a standard text in econometrics [7, p. 298, footnote 15], when
discussing the SUR model, says, “We note, this procedure [i.e., AltMin] produces the MLE when it
converges, but it is not guaranteed to converge, nor is it assured that there is a unique MLE.” The



text also cites [8] to claim that “if the [AltMin] iteration converges, it reaches the MLE” but the result
[8, Theorem 1] itself only claims that “the iterative procedure always converges to a solution of the
first-order maximizing conditions” and not necessarily to “the absolute maximum of the likelihood
function” (emphasis on the word “absolute” is in the original text).

Second, improvement claims for MLE over OLS are based on asymptotic efficiency comparisons
[7, Chapter 10] that are valid only in the limit as the sample size goes to infinity. Little is known
about the estimation error with a finite number of samples. When discussing the failure of AltMin
to converge even after 1,000 iterations, the text [7] says that the “problem with this application may
be the very small sample size, 17 observations”. This is consistent with our theoretical results that
guarantee error bounds for AltMin once the sample size is large enough (in a quantifiable way).

The main contribution of this paper is quantifying, via finite sample bounds, the improvement in es-
timation error resulting from joint estimation of the regression coefficients and the noise covariance.
Our approach is firmly rooted in the statistical learning theory tradition: we pay attention to efficient
computation and use concentration inequalities, rather than limit theorems, to derive finite sample
guarantees. In order to have a computationally efficient approach, we adopt an alternating mini-
mization (AltMin) procedure that alternatingly estimates the regression coefficients and the noise
covariance matrix, while keeping the other unknown fixed. While both of the individual problems
are “easy” to solve and can be implemented efficiently, the general problem is still non-convex and
such a procedure might lead to local optima. Whereas practitioners have long recognized that Alt-
Min works well for such problems [1, Chapter 5], we are not aware of any provable guarantees for
it in the setting of multiple response regression.

We consider two widely-used vector-output models, namely the Pooled model (Section 2) and the
Seemingly Unrelated Regression (SUR) model (Section 3). For both models, we show that the es-
timation error of AltMin matches the MLE solution’s error up to log factors. Moreover, we show
that in general, the error bounds of MLE (and AltMin) are significantly better than that of OLS. To
derive our finite sample guarantees, we rely on concentration inequalities from random matrix the-
ory. For AltMin, our proof exploits a virtuous circle: better estimation of the regression coefficients
helps covariance estimation and vice-versa. As a result, we are able to show that the both parameter
estimation errors reduce by at least a constant factor in each iteration of AltMin.

Ilustrative Example. To whet the reader’s appetite for what follows, we consider here a simple

regression problem with two responses: y; 1 = Xile* + i, Yi2 = X;':zw* +n;, 1 <i<n,

where X; 1, X; 0 € R¢ are drawn i.i.d. from the spherical normal distribution. The coefficient vector
w, is shared across the two problems, which holds true in the pooled model studied in Section 2.
Later in Section 3, we also consider the SUR model that allows for different coefficient vectors
across problems. More importantly, notice that the i.i.d. noise, n; (say, it is standard Gaussian) is
shared across the two problems. If we estimate w, using OLS:
_ . 1 = XT 2 1 = XT 2
WoLs = argmin — Z(yi,l — X1 w)" + - Z(yi,l — X;owW)

i=1 i=1

then we will have |[wors — wi|2 = Q(1/y/n). However, subtracting the two equations gives:
Vi1 — Yi2 = (Xi1 — Xi2)"w., 1 <i < n. Thatis, as soon as we have n > d samples, we will
recover w, exactly by solving the above system of linear equations!

Our toy example motivates the fundamental question that this paper answers: how much can we
improve OLS by exploiting noise correlations? Let us make the example more realistic by assuming
the model: y; = X;w, +n;, 1 <7 < n, wherey, € R™ is a vector of m responses, each element
of X; € R™*4 is sampled i.i.d. from the standard Gaussian and noise vector 7; is drawn from
N(0,X,). A corollary of the main result in Section 2 shows that MLE (see (3)) improves upon the
OLS parameter error bound by a factor of Errorors/Erroryrr g = tr(3.) tr(X; 1) /m?2. This factor
can easily be seen to be larger than 1 by using Cauchy-Schwarz inequality: tr(3,) tr(3;1)/m? =
OIFPVIODF 1/2j)/m? > (25 VAj - 1/\/A;)%/m? = 1, where \; be the j-th largest eigenvalue
of ¥,. The inequality is tight when \/g =c/ \/x for some constant c. That is, when ¥, = ¢l
which holds true iff the noise in each response is mutually independent and has same variance.
The more 3, departs from being c - I, the larger the improvement factor. For example, consider
m = 2 case again, but rather than 7; 1 = 7; 2, we have highly correlated [n; 1,7 2] with covariance
1 1—e€

1—¢ 1

matrix X, = { Ze—eZ [—14¢ 1

} So, ;= [ 1 —1+ 6}. The improvement factor becomes



tr(,) tr(3;1)/m? = 1/(2€ — €2) which blows up to 0o as € — 0. As mentioned earlier, we show
a similar improvement for the output of a computationally efficient AltMin procedure.

Related Works. Vector-output regression problems are also studied in the context of multi-task
learning. Following the terminology introduced by [9], we can classify this literature as exploit-
ing task structure (shared structure in the regression coefficients) or output structure (correlation in
noise across tasks) or both. The large body of work [10, 11, 12] on structured sparsity regularization
and on using (reproducing) kernels for multi-task learning [13, 14], falls mostly into the former cat-
egory. In this body of work, problem formulations are often convex and efficient learning algorithms
with finite sample guarantees can be derived. Our focus in this paper, however, is on methods that
exploit noise correlation. Rai et al. [9] summarize the relevant multitask literature on exploiting
output structure and provide novel results by exploiting both task and output structure simultane-
ously. Neither they, nor the work they cite, provide any finite sample guarantees for the iterative
procedures employed. The same comment applies to work in high-dimensional settings on learning
structured sparsity as well as output structure via joint regularization of regression coefficients and
noise covariance matrix [15, 16, 17]. We hope that techniques developed in this paper pave the way
for studying such joint regularization problems involving non-convex objectives.

Recent results have shown that alternating minimization leads to exact parameter recovery in certain
observation models such as matrix completion [18], and dictionary learning [19]. However, most
of the existing results are concerned with exact parameter estimation and their techniques do not
apply to our problems. In contrast, we provide better statistical rates by exploiting the hidden noise
covariance matrix. To the best of our knowledge, ours is first such result for AltMin in the statistical
setting where AltMin leads to dramatic improvement in the error rates.

Notations. Vectors are in general represented using bold-face letters, e.g. w. Matrices are repre-
sented by capital letters, e.g. . For data matrix X € R™*9, X7 ¢ R'*9 represents the j-th row
of X. Throughout the paper, ¥ x = Ex[X7 X] is the covariance of the data matrix and X, denotes
the covariance of the noise matrix. A;(X) denotes the j-largest eigenvalue of 3 € R™*™. That is,
Amax(Z) = A1 (2) = A2(B) -+ > A () = Amin () are the eigenvalues of . Universal constants
denoted by “C” can take different values in different steps. ||All2 = maxy jju|,=1 [|Aul|2 denotes
the spectral norm of A, while || A||r denotes the Frobenius norm of A. Following Matlab notation,
diag(A) represents the vector of diagonal entries of A.

2 The Pooled Model

We first consider a pooled model where a single coefficient vector is used across all data points
and tasks (hence the name “pooled” [7]). It may seem that the model is very restrictive compared
to the MR and SUR models. However, as we show later, by vectorizing the coefficient matrices,
both MR and SUR models can be thought of as special cases of the pooled model. Moreover, the
pooled model is in itself interesting for several applications, such as query-document rankings. For
example, the ranking method of [20] is equivalent to OLS estimation under the pooled model.

Let D = {(X1,y1),--.,(Xn,yn)} where the i-th data point X; € R™*?, and its output y; € R™.
m denotes the number of “tasks” and d is the “data” dimensionality. Given D, the goal is to learn
weights w € R? s.t. Xw = y for a novel data point X and the target output y. We assume that the
data is generated according to the following model:

yi=Xw.+mn;, 1 <i<n, (D

. . . . i.a.d. .
where w, € R%is the optimal parameter vector we wish to learn, data points X; B Px,1<i<n

and the noise vectors 7; Y (0,3,) are sampled independent of X;’s.

A straightforward approach to estimating w., is to ignore correlation in the noise vector 7); and treat
the problem as a large regression problem with m - n examples. That is, perform the Ordinary Least
Squares (OLS) procedure:

1 )
WOLS =argﬁgng2|\yi — Xiwl|3. @)
i=1
It is easy to see that the above solution is “consistent”. That is, for n — oo, we have Ex p, [||Xw—

Xw.||3] — 0. However, intuitively, by using the noise correlations, one should be able to obtain
significantly more accurate solution for finite n.



Algorithm 1 AltMin-Pooled: Alternating Minimization for the Pooled Model

Require: D = {(X1,y1) ... (Xonr,¥Yonr)}, Number of iterations: T’
1: Randomly partition D = {D¥, Dy, DY, DY, ..., D, D¥}, where |[D}| = |DF| = n, Vt
2: Initialize wo = 0
3: fort=0,...,T—1do

4:  Covariance Estimation: X; = % ZieD? (yi — Xiwy)(yi — Xowy)T

5

6

7

Least-squares Solution: w, | = arg miny + >iepy 15, 2 (ys — Xiw)||2
: end for
: Output: wp

Ideally, if X, was known, we would like to estimate w, by decorrelating the noise'. That is,

1 — _1
— i 2 Y. 2
WLE = argmin — Z} 124 2 (yi — Xiw)l|3- 3)
However, X, is not known apriori and in general can only be estimated if w, is known. To avoid
this circular requirement, we can jointly estimate (w.,, X, ) by maximizing the joint likelihood. The
joint maximum likelihood estimation (MLE) problem for (w, X) is given by:

ooy 1 Ty—1
(W,E)fargvglzaé(o log |X] nZ(yz X;w)' X (y; — Xyw). 4)

=1

n

The problem above is non-convex in (X, w) jointly, and hence standard convex optimization tech-
niques do not apply to the problem. A straightforward heuristic approach is to use alternating min-
imization (AltMin) where we alternately solve for w (and ) while keeping ¥ (and w) fixed. Note
that, each of the above mentioned individual problems are fairly straightforward and can be solved
efficiently (see Steps 4, 5 of Algorithm 1). Despite its simplicity and availability of optimal solutions
at each iteration, AltMin need not converge to a global optima of the joint problem. Below, we show
that despite non-convexity of (4), we can still show that the the AltMin procedure has a matching
error bound when compared to the optimal MLE solution.

Specifically, we analyze Algorithm 1 which is just the standard AltMin method but uses fresh sam-
ples (y, X) for each of the covariance estimation and the least squares step. Practical systems do
not perform such re-sampling, but fresh samples at every iteration ensure that errors do not get cor-
related in adversarial fashion and allows us to use standard concentration bounds. Moreover, since
we show convergence at a geometric rate, the number of iterations is not large and hence the sample
complexity does not increase by a significant factor.

To prove our convergence results, we require the probability distribution Px to be a sub-Gaussian
distribution with the sub-Gaussian norm (|| X||,5,) defined as:

Definition 1. Let X € R™*% be a random variable (R.V.) with distribution Px. Then, the sub-
Gaussian norm of X is given by:

[Rg [

_1
ﬁnﬁx ) VIS5 X ully,, where, Sxy, = Exopy [XTuu’ X].
u,|ju =
vilviz=1

Sub-Gaussian norm of a univariate variable Q) is defined as: ||Q|y, = maxp>1 % : ]E[|Q|p]%. If
Y x4 is not invertible for any fixed u then, we define | X ||y, = oo

We pre-multiply X u by 2 for normalization, so that for Gaussian X, || X||;, = 1. For bounded
variables X, s.t., each entry |X;;| < M, we have: || X[y, < MvVmd - maxy, ju),—1 [|Zxy ]2

Theorem 2 (Result for Pooled Model). Let X; i Px,1 < 1 < n with sub-Gaussian norm
1 Xy, < oo andmn; b (0,%,) are independent of X;’s. Let w. € R? be a fixed vector and

"For simplicity of exposition, throughout the remaining paper, we assume that 3, is invertible. Non-
invertible X, can be handled using simple limit arguments and in fact, our results get significantly better if
>, is not invertible



n > C - (m+ d)||X||y,. Then, the output wr of Algorithm 1 satisfies (w.p. > 1 — 5 ):

Cdlogn 1 A e
Ex. py [[X(wr —w.)[3] < D O + /\2;2 T

_1 _1
where Xii = Amin (Zx4), Moax = Amax(Zx4), and Sx. = Ex_p (X2 XTE1XE 2. Also,
Yx = Ex~py [XTX] is the covariance of the regressors.

Remarks: Using Theorem 15, we also have the following bound for the OLS solution:
C -dlogn
Ex_px [[IX(Wors — w.)[3] < —

The above bound for OLS can be shown to be tight as well (up to logn factor) by selecting each
X; = UWmax; Umax 18 the eigenvector of X, corresponding to Apax (24 ). Now, it is easy to see that:
55— < [|Z4]|2 (see Claim 17). Hence, our bound for AltMin (as well as MLE) is tighter than that
of OLS. Sub-sections 2.1 and 2.2 demonstrates gains over OLS in several standard settings.

N2 ll2-

Our proof of the above theorem critically uses the following lemma which shows that a particular
potential function drops (up to MLE error) geometrically at each step of the AltMin procedure.
Lemma 3. Assume the notation of Theorem 2. Let w11 be the (t + 1)-th iterate of Algorithm 1.
Then, the following holds w.p. > 1 — 1/n'°:

2C - dlogn
n

_1 1 _1
Ex_px [I37F X (w1 - w.)[3] < + 5 Exopy |57 X (wi = w)l]

See Appendix C for detailed proofs of both of the results given above.

2.1 Gaussian X: Independent Rows

We first consider a special case where each row of X is sampled i.i.d. from a Gaussian distribution.
That is, i
X7 "R N(0,A), V1<i<n, 1<j<m,

where A = 0 € R%*? is a covariance matrix and Xx = Exp[XTX] = m - A. Let &, =

Z;nzl i (Z4)u;ul be the eigenvalue decomposition of 3,.. Then,

Exopy Sy XTuul X537]  tr(20))

Sxe =Ex pe S XTEIXT 2] =) ) = — —laxa
j e

We now combine the above given observation with Theorem 2 to obtain our error bound for AltMin
procedure. Using a slightly stronger version of Theorem 15, we can also obtain the error bound for
the OLS (Ordinary Least Squares) solution as well the MLE solution.

Corollary 4_(Resu1t for Pooled Model, Gaussian Data, Independent Rows). Let X; be sampled s.t.
each row X;] ~ N(0,A) and A - 0. Also, let y; = X;w, +n;, where m; ~ N(0,%,), X, = 0. Let
n > C(m + d)log(m + d). Then, the OLS solution (2) and the MLE solution (3) has the following
error bounds (w.p. > 1 —1/n'0):
Cdlogn tr(Xy) 97 _ Cdlogn m
. , Exl|| X(w — W, < . .

- - x[IX(Warre Mzl < — (o)
Moreover, the output wr (T = log %) of Algorithm 1 satisfies (wp. > 1 —T/n'%):
8Cdlogn m

n tr(Z;l)

Ex[[|X(Wors — w.)|3] <

Errorr = Ex_p [| X(wr - w.)[3] < e

Lower Bound for OLS and MLE: We now show that the error bounds for both the OLS as well as
the MLE solution stated above are in fact tight up to log-factors.

Lemma 5. Let the assumptions of Corollary 4 hold. Then, we have (w.p. > 1—1/n1% —exp(—d)):
Cd tr(3) Cd m
n o tr(:h)

Ex[[|X(wors — w.)[3] > , Ex[||X(ware —w.)ll3] >

where C' > 0 is a universal constant.



m < tr(3,)
(=) —  0m
moves away from c - I. Hence, in the light of the above two lower-bound and upper-bound results,
it is clear that AltMin (and MLE) solutions are significantly more accurate than OLS, especially for
highly correlated noise vectors. This claim is also bore out from our simulation results (Figure 4).

Remarks: As mentioned in the introduction,

and the gap becomes larger as X,

2.2 Gaussian X: Dependent Rows

We now generalize the above given special case by removing the row-wise independence assump-

1 -
tion. That is, X = $3ZA%, where Z;; "< N(0,1) Vi,j and S € R™*™, A € R4 are the
row and the column correlation matrices, respectively. It is easy to see that (see Claim 18),

_1 _1
EX* = EXN’PX [EszTE;lexz] = 'Id><d7 where EX = tI‘(ER) <A

Using Theorem 2 with Theorem 15 and (32) (with certain A, B) we obtain the following corollary.

Corollary 6 (Result for Pooled Model, Gaussian Data, Dependent Rows). Let X; be as defined
above. Letn > C(m + d) log(m + d). Then the followings holds (w.p. > 1 — T /n?):

8Cdlogn m

E X — w2 <
xpalIX (v —wo) ] £ = e

+e€,

where W is the output of Algorithm I with T = log %

Similarly, bound for OLS is given by: Ex_p. [| X (Wors — w.)||3] < €4oen . m'ttrrg:)%*). Here

again, it is easy to see that the output of AltMin is significantly more accurate than the OLS solution.
Y also plays a critical role here. In fact, if ¥ is nearly orthogonal to Y1, then the gain over OLS
is negligible. To understand this better, consider the following 2-task example:

yi = (Xi, W) 0, YP = (Xi, W) + 1

Note that the noise 7); is perfectly correlated here. However, as rows X f = x; are also completely
correlated. So, the two equations are just duplicates of each other and hence, AltMin cannot obtain
any gains over OLS (as predicted by our bounds as well).

3 Seemingly Unrelated Regression

Seemingly-unrelated regression (SUR) model [21, 22] is a generalization of the basic linear re-
gression model to handle vector valued outputs and has applications in several domains including
multi-task learning, economics, genomics etc. Below we present the SUR model and our main result
for estimating the coefficients in such a model.

Let X; € R™*? 1 < i < n be sampled i.i.d. from a fixed distribution Px. Let W, € R™*? be a
fixed matrix of coefficients. The vector-valued output for each data point X, is given by:
yi=Xioe W, +mn;, 5)
where X; @ W, = diag(X; W) and n; ~ N(0,.) is the noise vector with covariance ..
OLS and MLE solution can be defined similar to the Pooled model:
1 & R TR 2
Wors = argmin > llyi = X e W[, Warse = argmin > |27 (vi = Xi e W)
ors = argmin — ; lyi = Xi e W3, Warpp = argmin — ; (vi— XioW)|_
(6)
Here again, we expect MLE to provide significantly better estimation of W, by exploiting noise

correlation. As Y, is not available apriori, both X, and W, are estimated by solving the following
MLE problem:

(W 5)) = argmax — log |2| — lzn:HE’%( oy 'W)H2 o
, T e W72>J( & n — Yi i X

Here again, the MLE problem is non-convex and hence standard analysis does not provide strong
convergence guarantees. Still, alternating minimization (of negative log-likelihood) for W, X leads












