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Abstract

This paper is concerned with robustness analysis of decision making under un-
certainty. We consider a class of iterative stochastic policy optimization problems
and analyze the resulting expected performance for each newly updated policy
at each iteration. In particular, we employ concentration-of-measure inequali-
ties to compute future expected cost and probability of constraint violation using
empirical runs. A novel inequality bound is derived that accounts for the possi-
bly unbounded change-of-measure likelihood ratio resulting from iterative policy
adaptation. The bound serves as a high-confidence certificate for providing future
performance or safety guarantees. The approach is illustrated with a simple robot
control scenario and initial steps towards applications to challenging aerial vehicle
navigation problems are presented.

1 Introduction

We consider a general class of stochastic optimization problems formulated as

ξ∗ = arg min
ξ

Eτ∼p(·|ξ)[J(τ)], (1)

where ξ defines a vector of decision variables, τ represents the system response defined through
the density p(τ |ξ), and J(τ) defines a positive cost function which can be non-smooth and non-
convex. It is assumed that p(τ |ξ) is either known or can be sampled from, e.g. in a black-box
manner. The objective is to obtain high-confidence sample complexity bounds on the expected cost
for a given decision strategy by observing past realizations of possibly different strategies. Such
bounds are useful for two reasons: 1) for providing robustness guarantees for future executions, and
2) for designing new algorithms that directly minimize the bound and therefore are expected to have
built-in robustness.

Our primary motivation arises from applications in robotics, for instance when a robot executes
control policies to achieve a given task such as navigating to a desired state while perceiving the
environment and avoiding obstacles. Such problems are traditionally considered in the framework
of reinforcement learning and addressed using policy search algorithms, e.g. [1, 2] (see also [3] for a
comprehensive overview with a focus on robotic applications [4]). When an uncertain system model
is available the problem is equivalent to robust model-predictive control (MPC) [5].

Our specific focus is on providing formal guarantees on future executions of control algorithms in
terms of maximum expected cost (quantifying performance) and maximum probability of constraint
violation (quantifying safety). Such bounds determine the reliability of control in the presence of
process, measurement and parameter uncertainties, and contextual changes in the task. In this work
we make no assumptions about nature of the system structure, such as linearity, convexity, or Gaus-
sianity. In addition, the proposed approach applies either to a physical system without an available
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model, to an analytical stochastic model, or to a white-box model (e.g. from a high-fidelity open-
source physics engine). In this context, PAC bounds have been rarely considered but could prove
essential for system certification, by providing high-confidence guarantees for future performance
and safety, for instance “with 99% chance the robot will reach the goal within 5 minutes”, or “with
99% chance the robot will not collide with obstacles”.
Approach. To cope with such general conditions, we study robustness through a statistical learn-
ing viewpoint [6, 7, 8] using finite-time sample complexity bounds on performance based on em-
pirical runs. This is accomplished using concentration-of-measure inequalities [9] which provide
only probabilistic bounds , i.e. they certify the algorithm execution in terms of statements such as:
“in future executions, with 99% chance the expected cost will be less than X and the probability of
collision will be less than Y”. While such bounds are generally applicable to any stochastic decision
making process, our focus and initial evaluation is on stochastic control problems.
Randomized methods in control analysis. Our approach is also inspired by existing work on
randomized algorithms in control theory originally motivated by robust linear control design [10].
For example, early work focused on probabilistic root-locus design [11] and later applied to con-
straint satisfaction [12] and general cost functions [13]. High-confidence bounds for decidability of
linear stability were refined in [14]. These are closely related to the concepts of randomized sta-
bility robustness analysis (RSRA) and randomized performance robustness analysis (RPRA) [13].
Finite-time probabilistic bounds for system identification problems have also been obtained through
a statistical learning viewpoint [15].

2 Iterative Stochastic Policy Optimization

Instead of directly searching for the optimal ξ to solve (1) a common strategy in direct policy search
and global optimization [16, 17, 18, 19, 20, 21] is to iteratively construct a surrogate stochastic
model π(ξ|ν) with hyper-parameters ν ∈ V , such as a Gaussian Mixture Model (GMM), where V
is a vector space. The model induces a joint density p(τ, ξ|ν) = p(τ |ξ)π(ξ|ν) encoding natural
stochasticity p(τ |ξ) and artificial control-exploration stochasticity π(ξ|ν). The problem is then to
find ν to minimize the expected cost

J (v) , E τ,ξ∼p(·|ν) [J(τ)],

iteratively until convergence, which in many cases also corresponds to π(·|ν) shrinking close to a
delta function around the optimal ξ∗ (or to multiple peaks when multiple disparate optima exist as
long as π is multi-modal).

The typical flow of the iterative policy optimization algorithms considered in this work is:

Iterative Stochastic Policy Optimization (ISPO)
0. Start with initial hyper-parameters ν0 (i.e. a prior), set i = 0

1. Sample M trajectories (ξj , τj) ∼ p(·|νi) for j = 1, . . . ,M

2. Compute new policy νi+1 using observed costs J(τj)

3. Compute bound on expected cost and Stop if below threshold, else set i= i+1 and Goto 1

The purpose of computing probably-approximate bounds is two-fold: a) to analyze the performance
of such standard policy search algorithms; b) to design new algorithms by not directly minimizing
an estimate of the expected cost, but by minimizing an upper confidence bound on the expected
cost instead. The computed policy will thus have “built-in” robustness in the sense that, with high-
probability, the resulting cost will not exceed an a-priori known value. The present paper develops
bounds applicable to both (a) and (b), but only explores their application to (a), i.e. to the analysis
of existing iterative policy search methods.

Cost functions. We consider two classes of cost functions J . The first class encodes system per-
formance and is defined as a bounded real-valued function such that 0 ≤ J(τ) ≤ b for any τ .
The second are binary-valued indicator functions representing constraint violation. Assume that the
variable τ must satisfy the condition g(τ) ≤ 0. The cost is then defined as J(τ) = I{g(τ)>0} and its
expectation can be regarded as the probability of constraint violation, i.e.

P(g(τ) > 0) = Eτ∼p(·|ξ)I{g(τ)>0}.

In this work, we will be obtain bounds for both classes of cost functions.
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3 A Specific Application: Discrete-time Stochastic Control

We next illustrate the general stochastic optimization setting using a classical discrete-time non-
linear optimal control problem. Specific instances of such control problems will later be used for
numerical evaluation. Consider a discrete-time dynamical model with state xk ∈ X , where X is
an n-dimensional manifold, and control inputs uk ∈ Rm at time tk ∈ [0, T ] where k = 0, . . . , N
denotes the time stage. Assume that the system dynamics are given by

xk+1 = fk(xk, uk, wk), subject to gk(xk, uk) ≤ 0, gN (xN ) ≤ 0,

where fk and gk correspond either to the physical plant, to an analytical model, or to a “white-box”
high-fidelity physics-engine update step. The terms wk denotes process noise. Equivalently, such a
formulation induces the process model density p(xk+1|xk, uk). In addition, consider the cost

J(x0:N , u0:N−1) ,
N−1∑
k=0

Lk(xk, uk) + LN (xN ),

where x0:N , {x0, . . . , xN} denotes the complete trajectory and Lk are given nonlinear functions.
Our goal is to design feedback control policies to optimize the expected value of J . For simplicity,
we will assume perfect measurements although this does not impose a limitation on the approach.

Assume that any decision variables in the problem (such as feedforward or feedback gains, obstacle
avoidance terms, mode switching variables) are encoded using a finite-dimensional vector ξ ∈ Rnξ
and define the control law uk = Φk(xk)ξ using basis functions Φk(x) ∈ Rm×nξ for all k =
0, . . . , N − 1. This representation captures both static feedback control laws as well as time-varying
optimal control laws of the form uk = u∗k + KLQR

k (xk − x∗k) where u∗k = B(tk)ξ is an optimized
feedforward control (parametrized using basis functions B(t) ∈ Rm×z such as B-splines), KLQR

k
is the optimal feedback gain matrix of the LQR problem based on the linearized dynamics and
second-order cost expansion around the optimized nominal reference trajectory x∗, i.e. such that
x∗k+1 = fk(x∗k, u

∗
k, 0).

The complete trajectory of the system is denoted by the random variable τ = (x0:N , u0:N−1) and
has density p(τ |ξ) = p(x0)ΠN−1

k=0 p(xk+1|xk, uk)δ(uk − Φk(xk)ξ), where δ(·) is the Dirac delta.
The trajectory constraint takes the form {g(τ) ≤ 0} ,

∧N−1
k=0 {gk(xk, uk) ≤ 0} ∧ {gN (xN ) ≤ 0}.

A simple example. As an example, consider a point-mass robot modeled as a double-integrator
system with state x = (p, v) where p ∈ Rd denotes position and v ∈ Rd denotes velocity with d = 2
for planar workspaces and d = 3 for 3-D workspaces. The dynamics is given, for ∆t = T/N , by

pk+1 = pk + ∆tvk +
1

2
∆t2(uk + wk),

vk+1 = vk + ∆t(uk + wk),

where uk are the applied controls and wk is zero-mean white noise. Imagine that the constraint
gk(x, u) ≤ 0 defines circular obstacles O ⊂ Rd and control norm bounds defined as

ro − ‖p− po‖ ≤ 0, ‖u‖ ≤ umax,

where ro is the radius of an obstacle at position po ∈ Rd. The cost J could be arbitrary but a
typical choice is L(x, u) = 1

2‖u‖
2
R + q(x) where R > 0 is a given matrix and q(x) is a nonlinear

function defining a task. The final cost could force the system towards a goal state xf ∈ Rn (or a
region Xf ⊂ Rn) and could be defined according to LN (x) = 1

2‖x− xf‖
2
Qf

for some given matrix
Qf ≥ 0. For such simple systems one can choose a smooth feedback control law uk = Φk(x)ξ with
static positive gains ξ = (kp, kd, ko) ∈ R3 and basis function

Φ(x) = [ pf − p vf − v ϕ(x,O) ] ,

where ϕ(x,O) is an obstacle-avoidance force, e.g. defined as the gradient of a potential field or as a
gyroscopic “steering” force ϕ(x,O) = s(x,O)× v that effectively rotates the velocity vector [22] .
Alternatively, one could employ a time-varying optimal control law as described in §3.
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4 PAC Bounds for Iterative Policy Adaptation

We next compute probabilistic bounds on the expected cost J (ν) resulting from the execution of
a new stochastic policy with hyper-parameters ν using observed samples from previous policies
ν0, ν1, . . . . The bound is agnostic to how the policy is updated (i.e. Step 2 in the ISPO algorithm).

4.1 A concentration-of-measure inequality for policy adaptation

The stochastic optimization setting naturally allows the use of a prior belief ξ ∼ π(·|ν0) on what
good control laws could be, for some known ν0 ∈ V . After observing M executions based on such
prior, we wish to find a new improved policy π(·|ν) which optimizes the cost

J (ν) , Eτ,ξ∼p(·|ν)[J(τ)] = Eτ,ξ∼p(·|ν0)

[
J(τ)

π(ξ|ν)

π(ξ|ν0)

]
, (2)

which can be approximated using samples ξj ∼ π(ξ|ν0) and τj ∼ p(τ |ξj) by the empirical cost

1

M

M∑
j=1

[
J(τj)

π(ξj |ν)

π(ξj |ν0)

]
. (3)

The goal is to compute the parameters ν using the sampled decision variables ξj and the corre-
sponding observed costs J(τj). Obtaining practical bounds for J (ν) becomes challenging since the
change-of-measure likelihood ratio π(ξ|ν)

π(ξ|ν0) can be unbounded (or have very large values) [23] and a
standard bound, e.g. such as Hoeffding’s or Bernstein’s becomes impractical or impossible to apply.
To cope with this we will employ a recently proposed robust estimation [24] technique stipulating
that instead of estimating the expectation m = E[X] of a random variable X ∈ [0,∞) using its
empirical mean m̂ = 1

M

∑M
j=1Xj , a more robust estimate can be obtained by truncating its higher

moments, i.e. using m̂α , 1
αM

∑M
j=1 ψ(αXj) for some α > 0 where

ψ(x) = log(1 + x+
1

2
x2). (4)

What makes this possible is the key assumption that the (possibly unbounded) random variable must
have bounded second moment. We employ this idea to deal with the unboundedness of the policy
adaptation ratio by showing that in fact its second moment can be bounded and corresponds to an
information distance between the current and previous stochastic policies.

To obtain sharp bounds though it is useful to employ samples over multiple iterations of the ISPO
algorithm, i.e. from policies ν0, ν1, . . . , νL−1 computed in previous iterations. To simplify notation
let z = (τ, ξ) and define `i(z, ν) , J(τ) π(ξ|ν)

π(ξ|νi) . The cost (2) of executing ν can now be equivalently
expressed as

J (ν) ≡ 1

L

L−1∑
i=0

Ez∼p(·|νi)`i(z, ν)

using the computed policies in previous iterations i = 0, . . . , L− 1. We next state the main result:
Proposition 1. With probability 1 − δ the expected cost of executing a stochastic policy with pa-
rameters ξ ∼ π(·|ν) is bounded according to:

J (ν) ≤ inf
α>0

{
Ĵα(ν) +

α

2L

L−1∑
i=0

b2i e
D2(π(·|ν)||π(·|νi)) +

1

αLM
log

1

δ

}
, (5)

where Ĵα(ν) denotes a robust estimator defined by

Ĵα(ν) ,
1

αLM

L−1∑
i=0

M∑
j=1

ψ (α`(zij , ν)) ,

computed after L iterations, with M samples zi1, . . . , ziM ∼ p(·|νi) obtained at iterations i =
0, . . . , L− 1, where Dβ(p||q) denotes the Renyii divergence between p and q defined by

Dβ(p||q) =
1

β − 1
log

∫
pβ(x)

qβ−1(x)
dx.

The constants bi are such that 0 ≤ J(τ) ≤ bi at each iteration i = 0, . . . , L− 1.
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Proof. The bound is obtained by relating the mean to its robust estimate according to

P
(
LM(J (ν)− Ĵα(ν)) ≥ t

)
= P

(
eαLM(J (ν)−Ĵα(ν)) ≥ eαt

)
,

≤ E
[
eαLM(J (ν)−Ĵα(ν))

]
e−αt, (6)

= e−αt+αLMJ (ν)E
[
e
∑L−1
i=0

∑M
j=1−ψ(α`i(zij ,ν))

]
= e−αt+αLMJE

L−1∏
i=0

M∏
j=1

e−ψ(α`i(zij ,ν))


= e−αt+αLMJ

L−1∏
i=0

M∏
j=1

E z∼p(·|νi)

[
1− α`i(z, ν) +

α2

2
`i(z, ν)2

]
(7)

= e−αt+αLMJ (ν)
L−1∏
i=0

M∏
j=1

(
1− αJ (ν) +

α2

2
E z∼p(·|νi)[`i(z, ν)2]

)

≤ e−αt+αLMJ (ν)
L−1∏
i=0

M∏
j=1

e−αJ (ν)+α2

2 Ez∼p(·|νi)[`i(z,ν)2] (8)

≤ e−αt+M α2

2

∑L−1
i=0 Ez∼p(·|νi)[`i(z,ν)2],

using Markov’s inequality to obtain (6), the identities ψ(x) ≥ − log(1 − x + 1
2x

2) in (7) and
1 + x ≤ ex in (8). Here, we adapted the moment-truncation technique proposed by Catoni [24] for
general unbounded losses to our policy adaptation setting in order to handle the possibly unbounded
likelihood ratio. These results are then combined with

E [`i(z, ν)2] ≤ b2iEπ(·|νi)

[
π(ξ|ν)2

π(ξ|νi)2

]
= b2i e

D2(π||πi),

where the relationship between the likelihood ratio variance and the Renyii divergence was estab-
lished in [23].

Note that the Renyii divergence can be regarded as a distance between two distribution and can be
computed in closed bounded form for various distributions such as the exponential families; it is
also closely related to the Kullback-Liebler (KL) divergence, i.e. D1(p||q) = KL(p||q).

4.2 Illustration using simple robot navigation

We next illustrate the application of these bounds using the simple scenario introduced in §3. The
stochasticity is modeled using a Gaussian density on the initial state p(x0), on the disturbances wk
and on the goal state xf . Iterative policy optimization is performed using a stochastic model π(ξ|ν)
encoding a multivariate Gaussian, i.e.

π(ξ|ν) = N (ξ|µ,Σ)

which is updated through reward-weighted-regression (RWR) [3], i.e. in Step 2 of the ISPO algo-
rithm we take M samples, observe their costs, and update the parameters according to

µ =

M∑
j=1

w̄(τj)ξj , Σ =

M∑
j=1

w̄(τj)(ξj − µ)(ξj − µ)T , (9)

using the tilting weights w(τ) = e−βJ(τ) for some adaptively chosen β > 0 and where w̄(τj) ,
w(τj)/

∑M
`=1 w(τ`) are the normalized weights.

At each iteration i one can compute a bound on the expected cost using the previously computed
ν0, . . . , νi−1. We have computed such bounds using (5) for both the expected cost and probability of
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Figure 1: Robot navigation scenario based on iterative policy improvement and resulting predicted perfor-
mance: a) evolution of the density p(ξ|ν) over the decision variables (in this case the control gains); b) cost
function J and its computed upper bound J+ for future executions; c) analogous bounds on probability-of-
collision P ; snapshots of sampled trajectories (top). Note that the initial policy results in ≈ 30% collisions.
Surprisingly, the standard empirical and robust estimates are nearly identical.

collision, denoted respectively by J + and P+ using M = 200 samples (Figure 1) at each iteration.
We used a window of maximum L = 10 previous iterations to compute the bounds, i.e. to compute
νi+1 all samples from densities νi−L+1, νi−L+2, . . . , νi were used. Remarkably, using our robust
statistics approach the resulting bound eventually becomes close to the standard empirical estimate
Ĵ . The collision probability bound P+ decreses to less than 10% which could be further improved
by employing more samples and more iterations. The significance of these bounds is that one can
stop the optimization (regarded as training) at any time and be able to predict expected performance
in future executions using the newly updated policy before actually executing the policy, i.e. using
the samples from the previous iteration.

Finally, the Renyii divergence term used in these computations takes the simple form

Dβ (N (·|µ0,Σ0)‖N (·|µ1,Σ1)) =
β

2
‖µ1 − µ0‖2Σ−1

β

+
1

2(1− β)
log

|Σβ |
|Σ0|1−β |Σ1|β

,

where Σβ = (1− β)Σ0 + βΣ1.

4.3 Policy Optimization Methods

We do not impose any restrictions on the specific method used for optimizing the policy π(ξ|ν).
When complex constraints are present such computation will involve a global motion planning step
combined with local feedback control laws (we show such an example in §5). The approach can
be used to either analyze such policies computed using any method of choice or to derive new
algorithms based on minimizing the right-hand side of the bound. The method also applies to model-
free learning. For instance, related to recent methods in robotics one could use reward-weighted-
regression (RWR) or policy learning by weighted samples with returns (PoWeR) [3], stochastic
optimization methods such as [25, 26], or using the related cross-entropy optimization [16, 27].
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5 Application to Aerial Vehicle Navigation
Consider an aerial vehicle such as a quadrotor navigating at high speed through a cluttered environ-
ment. We are interested in minimizing a cost metric related to the total time taken and control effort
required to reach a desired goal state, while maintaining low probability of collision. We employ an
experimentally identified model of an AscTec quadrotor (Figure 2) with 12-dimensional state space
X = SE(3) × R6 with state x = (p,R, ṗ, ω) where p ∈ R3 is the position, R ∈ SO(3) is the
rotation matrix, and ω ∈ R3 is the body-fixed angular velocity. The vehicle is controlled with inputs
u = (F,M) ∈ R4 including the lift force F ≥ 0 and torque moments M ∈ R3. The dynamics is

mp̈ = Re3F +mg + δ(p, ṗ), (10)

Ṙ = Rω̂, (11)
Jω̇ = Jω × ω +M, (12)

where m is the mass, J–the inertia tensor, e3 = (0, 0, 1) and the matrix ω̂ is such that ω̂η = ω × η
for any η ∈ R3. The system is subject to initial localization errors and also to random disturbances,
e.g. due to wind gusts and wall effects, defined as stochastic forces δ(p, ṗ) ∈ R3. Each component
in δ is zero-mean and has standard deviation of 3 Newtons, for a vehicle with mass m ≈ 1 kg.

The objective is to navigate through a given urban environment at high speed to a desired goal
state. We employ a two-stage approach consisting of an A*-based global planner which produces
a sequence of local sub-goals that the vehicle must pass through. A standard nonlinear feedback
backstepping controller based on a “slow” position control loop and a “fast” attitude control is
employed [28, 29] for local control. In addition, and obstacle avoidance controller is added to avoid
collisions since the vehicle is not expected to exactly follow the A* path. At each iterationM = 200
samples are taken with 1 − δ = 0.95 confidence level. A window of L = 5 past iterations were
used for the bounds. The control density π(ξ|ν) is a single Gaussian as specified in §4.2. The most
sensitive gains in the controller are the position proporitional and derivative terms, and the obstacle
gains, denoted by kp, kd, and ko, which we examine in the following scenarios:
a) fixed goal, wind gusts disturbances, virtual environment: the system is first tested in a cluttered

simulated environment (Figure 2). The simulated vehicle travels at an average velocity of 20
m/s (see video in Supplement) and initially experiences more than 50% collisions. After a few
iterations the total cost stabilizes and the probability of collision reduces to around 15%. The
bound is close to the empirical estimate which indicates that it can be tight if more samples are
taken. The collision probability bound is still too high to be practical but our goal was only
to illustrate the bound behavior. It is also likely that our chosen control strategy is in fact not
suitable for high-speed traversal of such tight environments.

b) sparser campus-like environment, randomly sampled goals: a more general evaluation was per-
formed by adding the goal location to the stochastic problem parameters so that the bound will
apply to any future desired goal in that environment (Figure 3). The algorithm converges to
similar values as before, but this time the collision probability is smaller due to more expan-
sive environment. In both cases, the bounds could be reduced further by employing more than
M = 200 samples or by reusing more samples from previous runs according to Proposition 1.

6 Conclusion
This paper considered stochastic decision problems and focused on a probably-approximate bounds
on robustness of the computed decision variables. We showed how to derive bounds for fixed poli-
cies in order to predict future performance and/or constraint violation. These results could then be
employed for obtaining generalization PAC bounds, e.g. through a PAC-Bayesian approach which
could be consistent with the proposed notion of policy priors and policy adaptation. Future work
will develop concrete algorithms by directly optimizing such PAC bounds, which are expected to
have built-in robustness properties.
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