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A Restarts and repeats

As any k-means algorithm, DER’s results depend somewhat on its random initializations, and can
be improved by multiple runs on the same instance with different initializations. We refer to this as
restarts of the algorithm. We have observed empirically the following behaviour of DER: Suppose
a graph G has a ground truth partition P1, . . . , Pk. Then the output of a typical restart of DER will
be a partition C1, . . . , Ck with the property that for each Ci,i ≤ k, either there is j ≤ k such that
Ci = Pj , or there are j1, j2 such that Ci = Pj1 ∪Pj2 or there are j and l such that Ci ∪Cl = Pj . In
other words, DER tends to either find the precise cluster, or to glue together two original clusters, or
split an original cluster into two parts. Usually most of the clusters will be found precisely, and there
will be some small number of (usually small) clusters that are glued or splitted. Which clusters will
be glued or splitted would depend on the random initialization. An simple way to deal with this is
to use the following “repeats” strategy: Choose a number of repeats, R (say, R = 5) and run DER
R times. Construct the node co-occurence matrix:

R̂ij = number of runs such that i and j appear in the same cluster. (1)

for all i, j ∈ V .

The matrix R̂ can now be regarded as an adjacency matrix of a weighted graph and can be clustered
itself. However, R̂ will often have very clear clusters, which can be found using the following trivial
threshold algorithm: Define T = dR/2e. Initialize a set U = V . Choose an arbitrary i ∈ U and
define a cluster C by

C = {j ∈ U | R̂ij ≥ T}.

Then output cluster C, set U = U \ C, choose a new i ∈ U and repeat until U is empty.

While on the benchmarks a single run of DER with a single restart usually has quite high precision,
repeats are a more effective way to deal with glueing and splitting than the restarts. It is of course
also possible to use more sophisticated but slower algorithms instead of the threshold one to cluster
the co-occurence matrix R.

B Proofs

B.1 Lemma 3.1

Proof Of Lemma 3.1: The claim is obvious for step (2) of the algorithm. For step (1) the claim is
implied by the following standard fact: Let ν1, ν2, . . . , νz be any finite collection of measures. Set
ν̃ = 1

z

∑
i νi. Then for any measure κ,

z∑
i=1

D(νi, κ) ≤
z∑
i=1

D(νi, ν̃). (2)
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Indeed, by rearranging terms in (2), we get

∑
j∈V

(
z∑
i=1

νi(j)

)
(log ν̃(j)− log κ(j)) =

z ·
∑
j∈V

ν̃(j)

(
log

ν̃(j)

κ(j)

)
≥ 0

which is the non-negativity of the Kullback-Leibler divergence [1], with equality iff κ = ν̃.

B.2 Main result

We now prove Theorem 5.1, which we restate here for convenience.

Theorem B.1. For every ε > 0 there exists C > 0 and c > 0 such that if

p ≥ C ·N− 1
2+ε (3)

and

p− q ≥ c
√
pN−

1
2+ε logN (4)

then DER recovers the partition P1, P2 after one iteration, with probability φ(N) such that φ(N)→
1 when N →∞.

Recall that a general plan of the proof was discussed in Section 5.

We note that the use of paths of length two is essential for the argument to work. Similar argument
with paths of length one (edges) will not work (unless p is of the order of a constant). However, we
also note that paths of length two are never explicitly computed, as this would require squaring the
adjacency matrix. Instead, this is achieved by considering paths of length one from the target set C1

(via µC1
) and paths of length one from the nodes (via wi).

We proceed to implement that plan. We start with stating some preliminaries. First, we state a
version of Chernoff’s bound for binomial variables.

Theorem B.2 (Theorem 2.1 in [2]). Let X ∼ Bin(n, p) be a binomial variable and set λ = np.
Then for all t ≥ 0,

P (X ≥ EX + t) ≤ exp
(
− t2

2(λ+ t/3)

)
(5)

P (X ≤ EX − t) ≤ exp
(
− t

2

2λ

)
(6)

In general given a binomial X ∼ Bin(n, p) we will often refer to λ = np as X’s lambda.

The following Corollary will be useful.

Corollary B.3 (Corrolary 2.3 in [2]). Let X ∼ Bin(n, p) be a binomial variable. Then for all
ε ≤ 3

2 ,

P (|X − EX| ≥ ε · EX) ≤ 2exp

(
−ε

2

3
EX
)

(7)

We will also often use the following Corollary of Theorem B.2.

Corollary B.4. There is a constant c > 0 such that the following holds:
Let X ∼ Bin(n, p) be a binomial variable such that λ = np > 1. Then for any N > 0,

P
(
|X − EX| ≥ 20 ·

√
λ · logN

)
≤ c/N2. (8)
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We now present a series of Lemmas about random graphs in the p, q- SBM model and about random
initializations. Throughout G = (V,E) will be assumed to be a random graph from the p, q-SBM
and we denote this G ∼ Gp,q . Recall that N = |V | is the size of the node set, and for a node i ∈ V
in a fixed graph G, ni is the set of neighbours of i, and di = |ni| is the degree of i. Also, for a set
S ⊂ V , its full degree is dS =

∑
i∈S di. Next, for a set S ⊂ V , we denote by d(i, S) = |ni ∩S| the

number of edges between i and S and for two sets, S, T ⊂ V define d(S, T ) =
∑
i∈S d(i, T ) to be

the number of edges between S and T . Finally, set d2(i, T ) = d(ni, T ) to be the number of paths
of length two that start at i and end at T .

In addition, let C1, C2, with |C1| = |C2| = N/2, be a random partition of V into two sets, the
initialization of DER. Denote N1 = |C1 ∩ P1|, and N2 = N/2−N1 = |C1 ∩ P2| = |C2 ∩ P1|. We
assume without loss of generality that N1 ≥ N2, and set ∆N = N1−N2. The partition C1, C2 will
be considered fixed in all the lemmas that concern the random graphs.

We proceed to give bounds on the expectations and concentration intervals of several quantities
related to our problem.

For a fixed node i ∈ V , the degree di is distributed as a sum of two independent binomials,

di ∼ Bin(N/2− 1, p) +Bin(N/2, q), (9)

the first term counts the edges to the component to which i belongs, the second to the other compo-
nent. In particular, the expected degree is

Edi = (N/2− 1)p+ (N/2)q. (10)

Lemma B.5 (Degree bounds). Let G ∼ Gp,q . There exists a constant ĉ1 such that the following
holds: Assume that

Np ≥ 100 logN. (11)

Then with probability at least 1− ĉ1/N , for all i ∈ V

1

4
· N

2
p ≤ di ≤ 2 ·Np. (12)

Proof. Fixed a node i ∈ V , and let X ∼ Bin(N/2 − 1, p) and Y ∼ Bin(N/2, q) be two in-
dependent binomials such that di ∼ X + Y . By applying (7) to X with ε = 1

2 , we obtain that

1

4

N

2
p ≤ EX − 1

2
EX ≤ X < di (13)

with probability at least 1 − 2exp(− 1
12 (N2 p − 1)). Using the assumption (11), it follows that there

is c > 0 such that 2exp(− 1
12 (N2 p− 1)) ≤ c/N2. Using the union bound we therefore conclude that

1

4

N

2
p ≤ di (14)

holds for all nodes i ∈ V with probability at least 1 − c/N . Similarly, we use (7) to obtain that
X ≤ Np with probability at least 1 − c/N2, perhaps with a different c and that Y ≤ Np with
probability at least 1−c′/N2, because q < p. By the union bound it follows that di = X+Y ≤ 2Np
with probability at least 1− (c+ c′)/N2, and by the union bound again, we obtain di ≤ 2Np for all
i ∈ V , with probability ate least 1− c′′/N .

In what follows we will often encounter situations where we need to bound fluctuations of sums of
a fixed number of not necessarily independent random variables, and considerations similar to those
in Lemma B.5 will often be omitted.

We now consider the degree of C1, dC1
. Note that by symmetry EdC1

= EdC2
, and that the total

degree of the graph satisfies dG = dC1
+ dC2

. Therefore

EdC1 =
1

2
dG = NEdi = N ((N/2− 1)p+ (N/2)q) . (15)

The next lemma concerns the concentration of the degree of C1.
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Lemma B.6. Set λ = N2p. There exist constants ĉ3,ĉ4 such that with probability at least 1− ĉ3/N ,

|dC1
− EdC1

| ≤ ĉ4 logN ·
√
λ. (16)

Proof. For l, s ∈ {1, 2}, set Sls = Cl ∩ Ps. Observe that dC1 can be written as

dC1 = 2 · d(S11, S11) + 2 · d(S12, S12) + 2 · d(S11, S12) +

+d(S11, S21) + d(S11, S22) +

+d(S12, S21) + d(S12, S22).

Note that each of the terms in the sum above is a binomial variable with lambda that is smaller or
equal to cN2p for some constant c > 0. Therefore by applying Corollary B.4 to each term and using
union bound, we obtain the result.

The next Lemma provides an upper bound on ∆N .
Lemma B.7. There are constants c1, c2 > 0 such that

∆N ≤ c1
√
N logN (17)

with probability at least 1− c2/N .

Proof. For the purposes of this lemma we do not assume that N1 > N2. Recall that N1 is the size
of the intersection P1 with a random subset of V of size N/2, denoted C1. Hence N1 has has the
hypergeometric distribution. Set

λ = EN1 =
|P1||C1|
|V |

=
1

4
N. (18)

The hypergeometric distribution satisfies concentration inequalities similar to those satisfied by the
binomials. Specifically, by Theorem 2.10 in [2], the conclusion of Corollary B.4, inequality (8)
holds for hypergeometric variables, with λ is defined as in (18). The result follows by an application
of that inequality.

We now examine the quantity d(j, C2) for a node j ∈ V . The expectations satisfy

Ed(j, C2) = N2p+N1q if j ∈ P1 (19)
Ed(j, C2) = N1p+N2q if j ∈ P2. (20)

This follows from the decomposition of d(j, C2) as a sum of two binomials. Similar expressions
hold also for d(j, C1). Note that when, for instance j ∈ P1, in fact Ed(j, C2) = N2p + N1q if
j ∈ C1 ∩ P1, and Ed(j, C2) = (N2 − 1)p + N1q if j ∈ C1 ∩ P1. Since we will be interested
only in orders of magnitude, we will disregard the difference between the two cases in what follows.
Throughout the proof we denote

L = N2p+N1q (21)

as a convenient shorthand for Ed(j, C2) (when j ∈ P1).

The quantities in the following Lemma will be relevant in what follows:
Lemma B.8. Assume that the partition C1, C2 is such that

∆N ≤ c
√
N logN. (22)

Then there exist constants c1, c2, c3, c4 > 0 and κ1 > 0 such that if Np > κ1 then with probability
at least 1− c1

N the following holds: For all j ∈ V ,

d(j, C2) ≥ c2Np (23)

|d(j, C1)− d(j, C2)| ≤ c3
√
Np logN (24)

d(j, C1)/d(j, C2) ≥ 1

2
(25)

|d(j, C2)− L| ≤ c4
√
Np logN. (26)
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Proof. We show that the statements hold for every j ∈ V individually with probability at least
1− c4/N2, from which the claim of the Lemma follows by the union bound.

Using inequality (8), we obtain that with probability at least 1− c5/N2,

|d(j, C2)− Ed(j, C2)| ≤ c6
√
Np logN, (27)

and similarly
|d(j, C1)− Ed(j, C1)| ≤ c6

√
Np logN, (28)

where in a way similar to the proof of Lemma B.5, we have used the decomposition of d(j, Cl) into
two binomials and the fact that q < p.

Assume that Np is large enough so that

c6
√
Np logN ≤ 1

10
Np (29)

holds.

By using the assumption (22) and (19) or (20), we obtain that

Ed(j, C2) ≥ 1

4
Np

for all N ≥ κ2 for some constant κ2 > 0. Combining this with (27) and with (29), we obtain

d(j, C2) ≥ Ed(j, C2)− c6
√
Np logN ≥ (

1

4
− 1

10
)Np, (30)

thereby proving (23). Next, using (19), (20) and similar expressions for d(j, C1) we obtain that

|Ed(j, C1)− Ed(j, C2)| = ∆N(p− q). (31)

Using (31) with (27) and (28), it follows that

|d(j, C1)− d(j, C2)| ≤ c∆Np+ c′
√
Np logN ≤ c8

√
Np logN, (32)

for appropriate constants c, c′ > 0. This proves (24. Similarly, the claim (26) holds for all j ∈ P1

and for j ∈ P2 we have

|d(j, C2)− L| ≤ |L− Ed(j, C2)|+ c′′
√
Np logN ≤

≤ c∆Np+ c′′
√
Np logN ≤ c9

√
Np logN.

Thus (26) holds for all j ∈ V . Finally, to show (25) write

d(j, C1)

d(j, C2)
= 1− d(j, C1)− d(j, C2)

d(j, C2)
. (33)

Then (25) holds if |d(j,C1)−d(j,C2)
d(j,C2)

| ≤ 1
2 holds, which in turn holds by (23) and (24) , for N and Np

larger than some fixed constant.

We now provide some estimates on the number of length two paths (which we also referr to as
2-paths in what follows).
Lemma B.9. For a node j ∈ P1,

Ed2(j, C1) =
1

2
N
(
N1p

2 + 2pqN2 +N1q
2
)

(34)

Ed2(j, C2) =
1

2
N
(
N2p

2 + 2pqN1 +N2q
2
)

(35)

Proof. For l, s ∈ {1, 2}, set Sls = Cl ∩ Ps. There are four types of 2-paths from j to C1. Those
that land in P1 at first step, and then land at S11. We denote paths of this type by P1S11. There exist
1
2N ·N1 such possible paths and each one exists in Gp,q model with probability p2. For some concrete
path of type P1S11, say p = j, u, v, with u ∈ P1 and v ∈ S11, letEp be the event that this path exists
in the graph. The number of such paths is then

∑
p∈P1S11

1Ep
and the expected number of such

paths is therefore 1
2NN1p

2. The other path types are P1S12, P2S11,P2S12, with expected numbers
of paths 1

2NN2pq, 12NN1q
2 and 1

2NN2pq respectively. Hence (34) holds. Similar considerations
yield (35).
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Next we obtain concentration bounds on d2.
Lemma B.10. There are constants c1, c2 > 0, such that with probability at least 1 − c1/N the
following holds: For all i ∈ P1,

|d2(i, C1)− Ed2(i, C1)| ≤ c1Np logN (36)
|d2(i, C2)− Ed2(i, C2)| ≤ c1Np logN (37)

Proof. Let ni be the neighbourhood of i in G. Set as before Sls = Cl ∩ Ps for l, s ∈ {1, 2} and set
also Als = Sls ∩ ni. Similarly to the arguments in the previous Lemmas, to obtain concentration
bounds on d2(i, C1) we represent it as a sum of binomials

d2(i, C1) =
∑

l,s∈{1,2}

∑
t,r∈{1,2}

d(Als, Str).

Then one observes that the lambda of each such binomial is of the order Np ·N · p, because the size
of Als is of the order of Np and the size of Str is of the order of N . Then the conclusion follows
by inequality (8). Since the sets Als are random sets, to carry the above argument precisely we first
condition on the neighbourhood of ni and ensure (using (7)) that the sets Als are indeed not larger
that cNp for an appropriate c > 0. The full details are straightforward but somewhat lengthy and
are omitted.

We will also make use of the following inequalities:

log(1 + t) ≤ t for all t ≥ −1 (38)

t− t2 ≤ log(1 + t) for all t ≥ − 1
2 (39)

| log
t

s
| ≤ |t− s|

min{t, s}
for all t, s > 0 (40)

| s

t+ θ
− s

t
| = | θ

t+ θ
| · |s

t
| for all t, s, θ (41)

Proof of Theorem B.1: For x ∈ V , denote by nx the set of neighbours of x in G. As indicated
earlier, we shall use that fact that C1 is slightly biased towards either P1 or P2. Specifically, set
δ = 1

2ε and assume throughout the proof, without loss of generality, that N1 > N2. Then the
following holds with high probability:

∆N = N1 −N2 ≥ N
1
2−δ. (42)

Indeed, note that N1, as a function of the random partition, is hypergeometrically distributed with
mean N/4 and standard deviation of order N

1
2 . Hence, by the central limit theorem for the hyper-

geometric distribution (see [3]; [4]),

P
(∣∣∣∣N1 −

1

4
·N
∣∣∣∣ ≥ N 1

2−δ
)
→ 1 (43)

with N → ∞. Statement (43) guarantees a deviation from the mean, and in particular that (42)
holds with high probability.

To prove the Theorem we now establish the following claim:

Claim B.11. Fix a partition C1, C2 of V , satisfying eq. (42) and (22). Under assumptions (3) and
(4), with probability at least 1− 1

N graph G satisfies: For all i ∈ P1,

D(wi, µC1
) > D(wi, µC2

). (44)

Note that the assumptions of the Claim depend only on randomness of the partitions and are satisfied
with high probability. Indeed, (42) holds as discussed above and (22) follows from Lemma (B.7).

Once we prove the claim, by symmetry we will also have for all i ∈ P2 a reverse inequality in (44),
and together with (42) this will prove the theorem. We proceed to prove the claim.

Observe that by definition we have µCl
(i) = d(i,Cl)

dCl
for every i ∈ V .
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Therefore we can rewrite (44) as: ∑
j∈ni

log d(j,C1)
d(j,C2)

+ (45)

+di log
dC2

dC1
(46)

> 0 (47)

We now bound the term (46). Using (40) we obtain∣∣∣∣log
dC2

dC1

∣∣∣∣ ≤ |dC2 − dC1 |
min{dC2

, dC1
}
. (48)

Using (15) and (16) we obtain that

min{dC2
, dC1
} ≥ cN2p, (49)

and that
|dC2

− dC1
| ≤ cN logN

√
p. (50)

In addition, recall that by Lemma B.5, di ≤ cNp. Therefore we obtain that∣∣∣∣di log
dC2

dC1

∣∣∣∣ ≤ cNpN logN
√
p

c′′N2p
≤ c′′′ logN

√
p ≤ c′′′ logN (51)

for some constant c′′′ > 0.

We now examine the term (45). Using (39), write

log
d(j, C1)

d(j, C2)
≥ d(j, C1)− d(j, C2)

d(j, C2)
−
(
d(j, C1)− d(j, C2)

d(j, C2)

)2

. (52)

Note that by (25), d(j,C1)
d(j,C2)

≥ 1
2 and therefore (39) applies. We now replace the denominator in the

first term of the right hand of (52) by a quantity independent of j, namely by L as defined in (21).
Using (41) with s = d(j, C1)− d(j, C2), t = L and θ = d(j, C2)− L, write

d(j, C1)− d(j, C2)

d(j, C2)
≥ d(j, C1)− d(j, C2)

L
− |d(j, C2)− L|

d(j, C2)
· |d(j, C1)− d(j, C2)|

L
. (53)

To summarize, we have obtained that ∑
j∈ni

log d(j,C1)
d(j,C2)

≥ (54)∑
j∈ni

d(j,C1)−d(j,C2)
L (55)

−
∑
j∈ni

|d(j,C2)−L|
d(j,C2)

· |d(j,C1)−d(j,C2)|
L (56)

−
∑
j∈ni

(
d(j,C1)−d(j,C2)

d(j,C2)

)2
. (57)

Note that the term (55) satisfies∑
j∈ni

d(j, C1)− d(j, C2)

L
=
d2(i, C1)− d2(i, C2)

L
. (58)

This term counts the number of 2-paths and is the heart of the proof. Before analysing it, we bound
the other two terms in the inequality in (54). Plugging in the estimates from Lemma B.8, we obtain
for (56) that∑

j∈ni

|d(j, C2)− L|
d(j, C2)

· |d(j, C1)− d(j, C2)|
L

≤ c · di
√
Np logN

Np
·
√
Np logN

Np
. (59)

Using the degree estimate form Lemma B.5, di ≤ cNp, we thus get∑
j∈ni

|d(j, C2)− L|
d(j, C2)

· |d(j, C1)− d(j, C2)|
L

≤ c(logN)2 (60)
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for an appropriate c > 0. Similarly, for the term (57) we have∑
j∈ni

(
d(j, C1)− d(j, C2)

d(j, C2)

)2

≤ c · di ·
Np log2N

N2p2
≤ c · log2N, (61)

with some (perhaps different) c > 0.

We now proceed to obtain a lower bound on (58). The crucial property of length two path counts,
d2(i, C1) and d2(i, C2), that enables such a bound is that the difference between the expectations of
these quantities is of larger order of magnitude than their fluctuations.

Indeed, by Lemma B.10, with probability at least 1− c/N we have that

d2(i, C1)− d2(i, C2) ≥ Ed2(i, C1)− Ed2(i, C2)− 2cNp logN (62)

for all i ∈ P1. In addition, by Lemma B.9,

Ed2(i, C1)− Ed2(i, C2) =
1

2
N∆N(p− q)2 ≥ N3/2−δ(p− q)2, (63)

where we have used (42) in the last inequality.

Incorporating the inequalities (51), (60), (61), we obtain that D(wi, µC1
) > D(wi, µC2

) holds if the
following inequality holds:

N3/2−δ(p− q)2 − 2cNp logN

L
− c logN > 0. (64)

To prove the theorem, it remains to choose p and q such that (64) is satisfied. Such p, q are given by
the assumptions (3), (4). Indeed, recall that L satisfies L ≤ cNp for an appropriate c > 0 and hence
under assumptions (3), (4) we have

N3/2−δ(p− q)2 − 2cNp logN

L logN
→∞ (65)

with N →∞, hence yielding (64).

C LFR benchmarks

In this section we specify the full parameters used for the experiments in the paper.

The LFR model is generated from the following parameters: The graph sizeN , the mixing parameter
µ, community size lower and upper bounds cmin, cmax, average degree d, maximal degree dmax,
and the power law exponents for the degree and community size distributions - which are in all cases
set to their default values of −2 and −1 respectively. In addition, in the overlapping case, parameter
n specifies the number of nodes that will participate in multiple communities, and the parameter m
specifies the number of communities in which each such node will participate.

The LFR models were generated using the software available at [5].

For the non overlapping LFR benchmarks we have used d = 20 and dmax = 50, with the rest of
parameters as specified in Section 4.2. This corresponds precisely to the experiments in [6]. The
repeats strategy is described in Section A. For each given graph instance, DER was run with 15
repeats, using 3 restarts in each run. The results of the repeats were clustered using the threshold
algorithm described in Section A, except in the µ = 0.7 in which we have used the spectral clustering
to cluster the co-occurence matrix.

The LFR experiments with the spectral clustering algorithm that are shown in Figure 2.b were per-
formed using the spectral clustering version in Python sklearn v0.14.1 package, which is an imple-
mentation of the algorithm in [7]. The spectral clustering was run with 150 restarts of its final stage
Euclidean k-means step. We note that while the repeats strategy could be applied to the spectral
clustering too, it did not improve the performance in this case (despite the fact that different runs of
spectral clustering returned somewhat different results). The results shown in Figure 2.b are without
repeats.
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For the overlapping community benchmarks we have used the following settings: N = 10000,
d = 60, dmax = 100, cmin = 200, cmax = 500. The value of n was 5000 and m was 4. These are
the settings that were used in [8]. As discussed in the next section, in one sense these settings can be
considered a heavy overlap, while there is a different sense in which they can be considered sparse.
In all cases we have run DER with 15 repeats and 3 restarts per run, and we have used the spectral
clustering to cluster the co-occurence matrix.

Recall that our approach to overlapping communities is to first obtain a non-overlapping clustering
and then to post-process it to obtain overlapping communities. One can ask therefore what will
happen if in the non- overlapping step, DER is replaced by another non-overlapping clustering
algorithm. We have tried using spectral clustering instead of DER, and applied the same post-
processing. In all cases this resulted in ENMI values close to 0.

D Overlapping LFR benchmarks

We refer to [9] and [10] for the definitions of the LFR models. In this section we make a few brief
comments regarding the structure of the overlapping LFR communities.

To simplify the discussion, we restrict our attention to the particular settings that were used in the
evaluation in Section 4.3. The settings n = 5000 and m = 4 (see Section C) imply that there
are 5000 such that each node belongs to a single community, and 5000 nodes such that each node
belongs to 4 communities. These settings may be considered as a heavy overlap (see [11]). Indeed,
it follows theoretically from the way LFR communities are generated, and also is observed in actual
graphs, that under these settings each community C contains about 20% of nodes that belong only
to C, and each of the remaining 80% of the nodes belongs to C and to 3 other communities.

On the other hand, for a node i ∈ C that belongs to 3 other communities, the 3 other communities
are chosen at random among about 75 remaining communities of the graph. This implies that for
each pair of communities C, J , the intersection between them is small and if a node i ∈ V is chosen
at random, the event i ∈ C is almost independent of the event i ∈ J .

The above small intersections and lack of correlations between communities property implies that
random walk started from communityC, after two steps has a chance of about 1/16 of returning toC
while the rest of the probability is distributed more or less uniformly between the other communities
(and is much less than 1/16 for each community that is not C). In other words, the measures wi and
wj have much more chance of being correlated if i and j belong to some common C than otherwise.
This explains why DER works well on these graphs.

References
[1] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in

Telecommunications and Signal Processing). Wiley-Interscience, 2006.
[2] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. Wiley Series in Discrete Mathematics

and Optimization. Wiley, 2011.
[3] W. Feller. An introduction to probability theory and its applications. Wiley series in probability

and mathematical statistics: Probability and mathematical statistics. Wiley, 1971.
[4] W. L. Nicholson. On the normal approximation to the hypergeometric distribution. Ann. Math.

Statist., 27(2):471–483, 06 1956.
[5] https://sites.google.com/site/santofortunato/inthepress2.
[6] Santo Fortunato and Andrea Lancichinetti. Community detection algorithms: A comparative

analysis. In Fourth International ICST Conference, 2009.
[7] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an

algorithm. In Advances in Neural Information Processing Systems 14, 2001.
[8] Prem K Gopalan and David M Blei. Efficient discovery of overlapping communities in massive

networks. Proceedings of the National Academy of Sciences, 110(36):14534–14539, 2013.
[9] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection

algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E,
80(1):016118, 2009.

9



[10] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Phys. Rev. E, 78(4), 2008.

[11] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. Overlapping community detection in
networks: The state-of-the-art and comparative study. ACM Comput. Surv., 45(4):43:1–43:35,
August 2013.

10


	Restarts and repeats
	Proofs
	Lemma 3.1
	Main result

	LFR benchmarks
	Overlapping LFR benchmarks

