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A Outline of the NVIL algorithm

The outline of the NVIL algorithm for computing gradients are shown below (reproduced from [[1]).
Cx(vy) represents the data-dependent baseline, and o = 0.8 throughout the experiments.

Algorithm 1 Compute gradient estimates for the model pa-
rameters and recognition parameters.

AO — 0,A¢p <+ 0,AXN <0
L+ 0
fort < 1to T do
hi ~ qg(hi|ve)
li < logpe(ve, hi) — log qg (hilve)

L+ E + lt
lz — lt — C)‘('Ut)
end for
¢y < mean(ly,...,lr)
vy < variance(l1,...,IT)

c+—ac+ (1 —a)e
v+ av+ (1 —a)v
fort < 1to 7T do

li—c
by < max(1,,/v)

AB < A0 + Vg logpe(ve, hy)
A < Ag +1:V g log qp (hi|ve)
AX = AX + [, VACx (vy)

end for

B Learning and Inference Details on TSBN

Fort = 1,...,T, consider v; € {0,1}M, h; € {0, ljé‘], the model parameters 6 are specified as
W, € R7XI Wy € RMXT W3 e R7*M W, € RM*M b ¢ R7 and ¢ € RM. The generative
model is expressed as

p(hjt = 1|ht_1, Ut—l) = O’(’wirjht_1 + w;jvt_l + b]) y (1)
P(Vme = Lhy,vi-1) = o(wg,, hy + Wi, vi1 + cm) )

The recognition model is expressed as
q(hje = 1hi—1, v, v41) = O'(U,Ijht_l + u;jvt + u;—jvt_l +d;), 3)

where the recognition parameters are specified as U; € R7*7 Uy € R7*M U3 € R7XM and
d € R’. hg and vy, needed for p(hy), p(vi|hy) and q(hy|v,), are defined as zero vectors, for
conciseness.



In order to implement the NVIL algorithm described in [1]], we need to calculate the lower bound

and also the gradients. Specifically, we have the variational lower bound £ = Zthl Eq, (hjw)ll]s
where [ is expressed as

M
Z (1/)( "hje — log(1 + exp(yly ) +) ( 82 0y — log(1 +eXp(w£,2L£))> 4)

J=1 m=1

J
S (947 ke — tog(1 + exp(u ) |

j=1
and we have defined
¢(1) =w hi_1 +wgv1 +b;, (5)
wmt = wy, hi + Wi, V1 + Cm, (6)
wjt = ulTjht_l + uQijt + u;jvt_l +d;. @)
By further defining
X = hie — @), X = vme — o@D, XD = h = o (e, (8)
The gradients for the model parameters 8 are expressed as
alogpg(vt, ht) (1) 0log pe (v, hy) (1) alogpg(vt7 ht)
_— = " _ 7 = m , o~ - 7 7 = , 9
awljj’ Xyt jri—1, angm = Xjt Umt—1 6bj gt 9
dlog pe(vy, hy) _ (Q)h , dlog pe(vy, hy) _ (2)@ ey dlog pe(vy, hy) _ 2 .
8mej " OWarmm meem ’ dem mt
(10)

The gradients for the recognition parameters ¢ are expressed as

0log qe(hi|vy) (3) 0log qe(hi|vy) 3)
g084g\ V) _  B)y g8 99 bt [Vt) ot 1
auljj/ Xjt j't—1, aUij = Xjt Umt (11)
dlog gy (hilve) NG dlogqe(hilve) (3 12
e = Xt Umt—1, —ad. "Xt - (12)
3jm J

B.1 Modeling Real-valued Data

When modeling real-valued data, we substitute (2) with p(v;|hs, v;_1) = N (e, diag(o?)), where
fimt = WP+ W1 Vi1 + oy 108 0 = (Whyy,) The 4 (W) 01 + ¢ (13)

and we have W} € RM>*7 and W/, € RM*M _ The recognition model remains the same as in .
Let 7., = log 0.,,¢, We obtain

J M 9
_ (1) (1) 1 (’Unzt - ,ant)
ly = ;:1 (wjt hjr —log(1+ eXP(¢jt ))) - mE:1 (2 log 2m + Tt + et ) (14)

J
— |32 (ke — log(1 + exp(i))))
j=1
All the gradient calculation remains the same as (9)-(12), except the following.

dlogpe(vy, hy) @ dlogpe(vy, hy) @ dlogpg(vy, hy) @
) - mthj — XmtUm/t—1, — Xmt> (15)
W2m,j a'wélmn’b’ aCm
Jlog pe(’Uu ht) (5) 0log pe(vt, ht) (5) dlog pe(vt, ht) (5)
81,0/2,,”] = mthjta awilmm/ X tvm t—1, aC’m = th ) (16)

where we have defined

() _ alOgPB(Utaht) _ Umt — Mt 5) _ alOgPB('Utaht) _ (Umt - ,Umt)2 1 (17)
mt ) mt 8Tmt egfmt .

a,umt e2Tmt



B.2 Modeling Count Data

We also introduce an approach for modeling time-series data with count observations, by replacing

with p(vi|h, vi—1) = Hi\nl:l Yot where

T T
eXp(’LUtht + Wy, V-1 + Cm)

(18)

ymt = M .
T T
Zm’:l CXp(me/ ht + w4m/vt—1 + Cm’)

The recognition model still remains the same as in (3)). The /; now is expressed as

J M M
=3 (5 hye — 1og(1 + exp(}))) + 3 <w5§2vmt —Upelog Y exp(wf,’fi)) (19)

j=1 m=1 m’'=1

> (6 hs —log(1 + exp(ul)))

j=1
All the gradient calculations remain the same as (9)-(12), except the following

dlog pe(vy, hy)
8w2mj

dlog pe(vy, hy) () dlogpe(vy, hy) ()
= XmtUm’t—1, = Xmt -
au]élmm’ 8Cm

= x5 hje, (20)

where we have defined XES% = Umt — Ymt Z%zl U/t

C Learning and Inference Details on Deep TSBN

For the ease of notation, we consider a two-hidden-layer deep TSBN here, which can be readily
extended to a deep model with any depth. For ¢ = 1,...,T, we consider the observation as v; €
{0,1}M. The top hidden layer is denoted as z; € {0,1}”.

(a) Generative model (b) Recognition model

Figure 1: Generative and recognition model of a two-layer Deep TSBN.

C.1 Using stochastic hidden layer

Denote the first stochastic hidden layer as h; € {0,1}. The generative model is expressed as

p(zje = 1) = o(w{;zi—1 + wg;hy_1 + b1j), 1)
p(hit = 1) = 0(wapz + wihi—1 + Wapvi1 + bay) (22)
p(vmt = 1) = O'(w[—)rmht + 'w;rmvt—l + b3m) y (23)

where we have defined W; € R7*7, W, € REX/ W4 € R7*K W, € REXK W, ¢ RM*K,
Wg € REXM and W, € RM*M  The bias terms are b; € R7*!, by € RE*! and by € RM*1,
The corresponding recognition model is expressed as

q(hie = 1) = o(ugpvr + wdphi—1 + ugvi—1 + cax) 24)

q(th = 1) = a(ugjht + ulTth_l + u;jht—l + Clj) (25)



where the recognition parameters are specified as U; € R7%7, U, € R7*K U; € R/*K Uy €
REXK Uy € REXM and Ug € REXM | The bias terms are ¢; € R7*! and ¢, € RE*1. Now, I,
is expressed as

J K
ly = Z (wj(i)zjt log(1 + exp 1/} ) + Z (wl(j)hkt —log(1+ exp(w,(j))))
j=1 k=1
M
+> (w‘ivmt ~ log(1 + exp(v7))) ) 26)
m=1
J
5
w,(ct)hkt log(1 + exp( ) + Z <¢j(t zjt — log(1 + exp(¢§t)))> ,
1 j=1
and we have defined
’L/J(l) = wljzt 1+ ’nght 1 +0b1y, 27)
’(ii) - w2th + w4kht 1 + w6kvt 1 + ka 5 (28)
) = wd Ry + wih v 1+ ba (29)
O\ = wh v+ ufihe )+ udvr 1 + con (30)
O = udhy +ufizey +udihe ey €3]

All the gradients can be calculated readily as in (9)-(12).

C.2 Using deterministic hidden layer

For the generative model, denote the deterministic hidden layer as h{ € R, For the recognition
model, denote the deterministic hidden layer as h] € RE. W3 and Usj are set to be zero matrices
for the ease of gradient calculation. The generative model is expressed as

p(zje =1) = O—(wirjzt—l +b15), 32)
hiy = f(wspze + wiphi y + wive 1 +bat) (33)
P(Ume = 1) = o(w3,, hy + Wy, Vi1 + bam) (34)
The corresponding recognition model is expressed as
= f(uspvr + u he 1+ ud v 1 + con) (35)
g(zp=1)= cr(uQTjht + ulszt_l +c1j) (36)

Hence, £ =31, Eq, (hjv)[lt], and [; is expressed as

M

=y (047250 = 10g(1 + exp(@}))) + D (Vintvme —log(1 + exp(¥))  (T)
j=1 m=1
J
3 3
> (w](-t)zjt —log(1 + exp(¢]<t>))) ,
j=1
and we have defined
zb](t =wz1+ by, (38)
Y2 = wi, b+ wl, v+ by, (39)
zﬁ(?’) =ug;hy +uy;z 1+ cyj . (40)

The gradients w.rt. W1, W5, W, U; and Uj can be calculated easﬂy In order to calculate the

gradients w.r.t. Wy, Wy, Wg, Uy, U; and Ug, we need to obtain W and ahr , which can be
kt



Table 1:

frame for the bouncing balls dataset. (¢) taken from [2].

Average prediction error and the average negative log-likelihood per

MODEL Dim ORDER PRED. ERR. NEG. LOG. LIKE.
DTSBN-s 100-100 2 2.79 + 0.39 69.29 £ 1.52
DTSBN-p  100-100 2 2.99£0.42 70.47 £1.52
DTSBN-s 100-100 1 10.39 £ 0.38 78.63 £0.92
TSBN 100 4 3.07 £0.40 70.41 £1.55
TSBN 100 2 4.00 £ 0.45 7332+ 1.75
TSBN 100 1 9.48 £0.38 77.71 £0.83
HMSBN 100 1 23.94 £0.41 86.27 + 0.80
AR 0 2 3.63 £0.42 73.80 £ 1.46
AR 0 1 11.01 £0.24 93.61 £0.67
RTRBM 3750 1 3.88 £0.33 -
SRTRBM® 3750 1 3.31£0.33 —

calculated recursively via the back-propagation through time algorithm. Specifically, -24-

and we have defined

(2)

mt Umt —

log(1 + exp(t3)) -

We observe that Q; can be computed recursively using

Z Z (wm‘rvmf —log(1+ exp(wﬁgl)))

T=t m=1

- Qf+1 + Z < mfvmf 1Og(1 +6Xp(¢7(,2“2))) )

where Q71 = 0. Using the chain rule, we have

0Qr 8Qi41  Ohy

_ kel
Oy 45 Oy O,
0Qp1

8h’k’f+1

where we have defined

m=1

M
Z Wsmk (Umt - 0’(1[)7(32))
m=1

M
f (wk’t+1)w4k/k + Z w5mk(vmt - 0(7?532)) )

4 _ 7T Tig T.,.9
Yre = Wopzt + wyhi_ | +wegvy_y +bay,

and

ah,‘it

oL . .
any, can be calculated similarly.

D Additional Results

D.1 Generated Data

The generated,

E w5mk UmT —

m=1

a(¥2))).

tht

(41)

(42)

(43)

(44)

(45)

(46)

(47)

synthetic motion capture data, and polyphonic music data can be down-

loaded from |https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_

SWt0aSloYmlneDQ.

D.2 Bouncing balls dataset

Additional experimental results are shown in Table [l AR represents an auto-regressive Markov

model without latent variables [3]].


https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ

Table 2: Average prediction error obtained for
the MIT motion capture dataset.

MODEL PRED. ERR.
DTSBN-s 3.71 £ 0.03
DTSBN-D 4.19 £0.01
TSBN 3.86 £0.02
HMSBN 17.49 £ 0.20

D.3 MIT motion capture dataset

We randomly select 10% of the dataset as the test set. Quantitative results are shown in Table 2]
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