
Appendix
The Appendix contains proofs for Propositions 1 and 2, as well as additional computational details
for both KMC lite in Section A and KMC finite in Section B. Section C covers the proof of geometric
ergodicity of KMC lite from Proposition 3. Section D describes further experimental details.

A Lite Estimator

Proof of Proposition 1

The proof below extends the model in [20, Section 4.1]. We assume that the model log-density (4)
takes the form in Proposition 1, then directly implement score functions (5), from which we derive
an empirical score matching objective as a system of linear equations.

Proof. As assumed the log unnormalised density takes the form

f(x) =

n∑
i=1

αik(xi, x)

where k : Rd × Rd → R is the Gaussian kernel in the form

k(xi, x) = exp

(
− 1

σ
‖xi − x‖2

)
= exp

(
− 1

σ

d∑
`=1

(xi` − x`)2
)
.

The score functions for (5) are then given by

ψ`(x;α) :=
∂ log π̃(x; f)

∂x`
=

2

σ

n∑
i=1

αi(xi` − x`) exp

(
−‖xi − x‖

2

σ

)
,

and

∂`ψ`(x;α) :=
∂2 log π̃(x; f)

∂2x`

= − 2

σ

n∑
i=1

αi exp

(
−‖xi − x‖

2

σ

)
+

(
2

σ

)2 n∑
i=1

αi(xi` − x`)2 exp

(
−‖xi − x‖

2

σ

)

=
2

σ

n∑
i=1

αi exp

(
−‖xi − x‖

2

σ

)[
−1 +

2

σ
(xi` − x`)2

]
.

Substituting this into (5) yields

J(α) =
1

n

n∑
i=1

d∑
`=1

[
∂`ψ`(xi;α) +

1

2
ψ`(xi;α)2

]

=
2

nσ

d∑
`=1

n∑
i=1

n∑
j=1

αi exp

(
−‖xi − xj‖

2

σ

)[
−1 +

2

σ
(xi` − xj`)2

]

+
2

nσ2

d∑
`=1

n∑
i=1

 n∑
j=1

αj(xj` − xi`) exp

(
−‖xi − xj‖

2

σ

)2

.

We now rewrite J(α) in matrix form. The expression for the term J(α) being optimised is the sum
of two terms.

First Term:
d∑
`=1

n∑
i=1

n∑
j=1

αi exp

(
−‖xi − xj‖

2

σ

)[
−1 +

2

σ
(xi` − xj`)2

]

10



We only need to compute
n∑
i=1

n∑
j=1

αi exp

(
−‖xi − xj‖

2

σ

)
(xi` − xj`)2

=

n∑
i=1

n∑
j=1

αi exp

(
−‖xi − xj‖

2

σ

)(
x2i` + x2j` − 2xi`xj`

)
.

Define
x` := [ x1` . . . xm` ]

>
.

The final term may be computed with the right ordering of operations,

−2(α� x`)>Kx`,
where α�x` is the entry-wise product. The remaining terms are sums with constant row or column
terms. Define s` := x` � x` with components si` = x2i`. Then

n∑
i=1

n∑
j=1

αikijsj` = α>Ks`.

Likewise
n∑
i=1

n∑
j=1

αix
2
i`kij = (α� s`)>K1.

Second Term: Considering only the `-th dimension, this is

n∑
i=1

 n∑
j=1

αj(xj` − xi`) exp

(
−‖xi − xj‖

2

σ

)2

.

In matrix notation, the inner sum is a column vector,

K(α� x`)− (Kα)� x`.
We take the entry-wise square and sum the resulting vector. Denote by Dx := diag(x), then the
following two relations hold

K(α� x) = KDxα,

(Kα)� x = DxKα.

This means that J(α) as defined previously,

J(α) =
2

nσ

d∑
`=1

[
2

σ

[
αTKs` + (α� s`)>K1− 2(α� x`)>Kx`

]
− αTK1

]

+
2

nσ2

d∑
`=1

[
(α� x`)>K − x>` � (α>K)

]
[K(α� x`)− (Kα)� x`] ,

can be rewritten as

J(α) =
2

nσ
αT

d∑
`=1

[
2

σ
(Ks` +Ds`K1− 2Dx`Kx`)−K1

]

+
2

nσ2
αT

(
d∑
`=1

[Dx`K −KDx` ] [KDx` −Dx`K]

)
α

=
2

nσ
αT b+

2

nσ2
α>Cα,

11



where

b =

d∑
`=1

(
2

σ
(Ks` +Ds`K1− 2Dx`Kx`)−K1

)
∈ Rn,

C =

d∑
`=1

[Dx`K −KDx` ] [KDx` −Dx`K] ∈ Rn×n.

Assuming C is invertible, this is minimised by

α̂ = −σ
2
C−1b.

As in [13], we add a term λ‖f‖2H for λ ∈ R+, in order to control the norm of the natural parameters
in the RKHS ‖f‖2H. This results in the regularised and numerically more stable solution α̂λ :=
(C + λI)−1b.

Reduced Computational Costs via Low-rank Approximations and Conjugate Gradient

Solving the linear system in (7) requires O(n3) computation and O(n2) storage for a fixed random
sub-sample of the chain history z. In order to allow for large n, and to exploit potential manifold
structure in the RKHS, we apply a low-rank approximation to the kernel matrix via incomplete
Cholesky [28, Alg. 5.12], that is a standard way to achieve linear computational costs for kernel
methods. We rewrite the kernel matrix

K ≈ LL>,
where L ∈ Rn×` is obtained via dual partial Gram–Schmidt orthonormalisation and costs both
O(n`) computation and storage. Usually ` � n, and ` can be chosen via an accuracy cut-off
parameter on the kernel spectrum in the same fashion as for other low-rank approximations, such as
PCA5. Given such a representation of K, we can rewrite any matrix-vector product as

Kb ≈ (LL>)b = L(L>b),

where each left multiplication of L costs O(n`) and we never need to store LL>. This idea can be
used to achieve costs ofO(n`) when computing b, and left-multiplying C. Combining the technique
with conjugate gradient (CG) allows to solve (7) with a maximum of n such matrix-vector products,
yielding a total computational cost of O(n2`). In practice, we can monitor residuals and stop CG
after a fixed number of iterations τ � n, where τ depends on the decay of the spectrum of K.
We arrive at a total cost of O(n`τ) computation and O(n`) storage. CG also has the advantage of
allowing for ’hot starts’, i.e. initialising the linear solver at a previous solution. Further details can
be found in our implementation.

B Finite Feature Space Estimator

Proof of Proposition 2

We assume the model log-density (4) takes the primal form in a finite dimensional feature space as
in Proposition 2, then again directly implement score functions in (5) and minimise it via a linear
solve.

Proof. As assumed the log unnormalised density takes the form

f(x) = 〈θ, φx〉Hm = θ>φx,

5In this paper, we solely use the Gaussian kernel, whose spectrum decays exponentially fast.

12



where x ∈ Rd is embedded into a finite dimensional feature spaceHm = Rm as x 7→ φx. The score
functions in (5) then can be written as the simple linear form

ψ`(ξ; θ) :=
∂ log π̃(x; θ)

∂x`
= θ>φ̇`x and ∂`ψ`(ξ; θ) :=

∂2 log π̃(x; θ)

∂x2`
= θ>φ̈`x, (10)

where we defined the m-dimensional feature vector derivatives φ̇`x := ∂
∂x`

φx and φ̈`x := ∂2

∂x2
`
φx.

Plugging those into the empirical score matching objective in (5), we arrive at

J(θ) =
1

n

n∑
i=1

d∑
`=1

[
∂`ψ`(xi; θ) +

1

2
ψ2
` (xi; θ)

]

=
1

n

n∑
i=1

d∑
`=1

[
θT φ̈`xi +

1

2
θT
(
φ̇`xi

(
φ̇`xi

)T)
θ

]
=

1

2
θTCθ − θT b (11)

where

b := − 1

n

n∑
i=1

d∑
`=1

φ̈`xi ∈ Rm and C :=
1

n

n∑
i=1

d∑
`=1

(
φ̇`xi

(
φ̇`xi

)>)
∈ Rm×m. (12)

Assuming that C is invertible (trivial for n ≥ m), the objective is uniquely minimised by differenti-
ating (11) wrt. θ, setting to zero, and solving for θ. This gives

θ̂ := C−1b. (13)

Again, similar to [13], we add a term λ/2‖θ‖22 for λ ∈ R+ to (11), in order to control the norm of
the natural parameters θ ∈ Hm. This results in the regularised and numerically more stable solution
θ̂λ := (C + λI)−1b.

Next, we give an example for the approximate feature spaceHm. Note that the above approach can
be combined with any set of finite dimensional approximate feature mappings φx.

Example: Random Fourier Features for the Gaussian Kernel

We now combine the finite dimensional approximate infinite dimensional exponential family model
with the “random kitchen sink” [17]. Assume a translation invariant kernel k(x, y) = k̃(x − y).
Bochner’s theorem gives the representation

k(x, y) = k̃(x− y) =

ˆ
Rd

exp
(
iω>(x− y)

)
dΓ(ω),

where Γ(ω) is the Fourier transform of the kernel. An approximate feature mapping for such kernels
can be obtained via dropping imaginary terms and approximating the integral with Monte Carlo
integration. This gives

φx =

√
2

m

[
cos(ω>1 x+ u1), . . . , cos(ω>mx+ um)

]
,

with fixed random basis vector realisations that depend on the kernel via Γ(ω),

ωi ∼ Γ(ω),

and fixed random offset realisations

ui ∼ Uniform[0, 2π],

for i = 1 . . .m. It is easy to see that this approximation is consistent for m→∞, i.e.

Eω,b
[
φTxφy

]
= k(x, y).

13



See [17] for details and a uniform convergence bound and [21] for a more detailed analysis with
tighter bounds. Note that it is possible to achieve logarithmic computational costs in d exploiting
properties of Hadamard matrices [29].

The feature map derivatives (10) are given by

φ̇`ξ =

√
2

m

∂

∂ξ`

[
cos(ωT1 ξ + u1), . . . , cos(ωTmξ + um)

]
= −

√
2

m

[
sin(ωT1 ξ + u1)ω1`, . . . , sin(ωTmξ + um)ωm`

]
= −

√
2

m

[
sin(ωT1 ξ + u1), . . . , sin(ωTmξ + um)

]
� [ω1`, . . . , ωm`] ,

where ωj` is the `-th component of ωj , and

φ̈`ξ : = −
√

2

m

∂

∂ξ`

[
sin(ωT1 ξ + u1), . . . , sin(ωTmξ + um)

]
� [ω1`, . . . , ωm`]

= −
√

2

m

[
cos(ωT1 ξ + u1), . . . , cos(ωTmξ + um)

]
�
[
ω2
1`, . . . , ω

2
m`

]
= −φξ �

[
ω2
1`, . . . , ω

2
m`

]
,

where � is the element-wise product. Consequently the gradient is given by

∇ξφξ =

φ̇
1
ξ
...
φ̇dξ

 ∈ Rd×m.

As an example, the translation invariant Gaussian kernel and its Fourier transform are

k(x, y) = exp

(
−‖x− y‖

2
2

2σ2

)
and Γ(ω) = N

(
ω
∣∣∣0, 2

σ2
Im

)
.

Constant Cost Updates

A convenient property of the finite feature space approximation is that its primal representation of
the solution allows to update (12) in an online fashion. When combined with MCMC, each new
point xt+1 of the Markov chain history only adds a term of the form −

∑d
`=1 φ̈

`
xt+1

∈ Rm and∑d
`=1 φ̇

`
xt+1

(φ̇`xt+1
)> ∈ Rm×m to the moving averages of b and C respectively. Consequently, at

iteration t, rather than fully re-computing (13) at the cost ofO(tdm2 +m3) for every new point, we
can use rank-d updates to construct the minimiser of (11) from the solution of the previous iteration.
Assume we have computed the sum of all moving average terms,

C̄−1t :=

(
t∑
i=1

d∑
`=1

(
φ̇`xi

(
φ̇`xi

)>))−1
from feature vectors derivatives φ̈`xi ∈ Rm of some set of points {xi}ti=1, and subsequently receive
receive a new point xt+1. We can then write the inverse of the new sum as

C̄−1t+1 : =

(
C̄t +

d∑
`=1

(
φ̇`xt+1

(
φ̇`xt+1

)>))−1
.

This is the inverse of the rank-d perturbed previous matrix C̄t. We can therefore construct this
inverse using d successive applications of the Sherman-Morrison-Woodbury formula for rank-one
updates, each using O(m2) computation. Since C̄t is positive definite6, we can represent its inverse
as a numerically much more stable Cholesky factorisation C̄t = L̄tL̄

>
t . It is also possible to perform

6C is the empirical covariance of the feature derivatives φ̇`xi .

14



cheap rank-d updates of such Cholesky factors7. Denote by b̄t the sum of the moving average b. We
solve (13) as

θ̂ = C−1b =

(
1

t
C̄t

)−1(
1

t
b̄t

)
= C̄−1t b̄t = L̄−>t L̄−1t b̄t,

using cheap triangular back-substitution from L̄t, and never storing C̄−1t or L̄−1t explicitly.

Using such updates, the computational costs for updating the approximate infinite dimensional ex-
ponential family model in every iteration of the Markov chain areO(dm2), which constant in t. We
can therefore use all points in the history for constructing a proposal. See our implementation for
further details.

Algorithmic Description:

1. Update sums

b̄t+1 = b̄t −
d∑
`=1

φ̈`xt+1
and C̄t+1 = C̄t +

1

2

d∑
`=1

φ̇`xt+1
(φ̇`xt+1

)>.

2. Perform rank-d update to obtain updated Cholesky factorisation L̄t+1L̄
T
t+1 = C̄t+1.

3. Update approximate infinite dimensional exponential family parameters

θ̂ = L̄−>t+1L̄
−1
t+1b̄t+1.

C Ergodicity of KMC lite

Notation Denote by α(xt, x
∗(p′)) the probability of accepting a (p′, x∗) proposal at state xt. Let

a ∧ b = min(a, b). Define c(x(0)) := Lε2∇ log π(x(0))/2 + ε2
∑L−1
i=1 (L − i)∇ log π(x(iε)) and

d(x(0)) := ε(∇f(x(0)) + ∇f(x(Lε)))/2 + ε
∑L−1
i=1 ∇f(x(iε)), where x(iε) is the i-th point of the

leapfrog integration from x = x(0).

Proof of Proposition 3

Proof. We assumed π(x) is log-concave in the tails, meaning ∃xU > 0 s.t. for x∗ > xt > xU ,
we have π(x∗)/π(xt) ≤ e−α1(‖x∗‖2−‖xt‖2) and for xt > x∗ > xU , we have π(x∗)/π(xt) ≥
e−α1(‖x∗‖2−‖xt‖2), and a similar condition holds in the negative tail. Furthermore, we assumed
fixed HMC parameters: L leapfrog steps of size ε, and wlog the identity mass matrix I . Following
[22, 30], it is sufficient to show

lim sup
‖xt‖2→∞

ˆ [
es(‖x

∗(p′)‖2−‖xt‖2) − 1
]
α(xt, x

∗(p′))µ(dp′) < 0,

for some s > 0, where µ(·) is a standard Gaussian measure. Denoting the integral I∞−∞, we split it
into

I
−xδt
−∞ + I

xδt
−xδt

+ I∞xδt
,

for some δ ∈ (0, 1). We show that the first and third terms decay to zero whilst the second remains
strictly negative as xt →∞ (a similar argument holds as xt → −∞). We detail the case∇f(x) ↑ 0

as x → ∞ here, the other is analogous. Taking I
xδt
−xδt

, we can choose an xt large enough that

xt − C − Lεxδt > xU , −γ1 < c(xt − xδt ) < 0 and −γ2 < d(xt − xδt ) < 0. So for p′ ∈ (0, xδt ) we
have

Lεp′ > x∗ − xt > Lεp′ − γ1 =⇒ e−α1(−γ1+Lεp′) ≥ e−α1(x
∗−xt) ≥ π(x∗)/π(xt),

where the last inequality comes from the log-concave tails assumption. For p′ ∈ (γ22/2, x
δ
t )

α(xt, x
∗) ≤ 1 ∧ π(x∗)

π(xt)
exp

(
p′γ2/2− γ22/2

)
≤ 1 ∧ exp

(
−α2p

′ + α1γ1 − γ22/2
)
,

7We use the open-source implementation provided at https://github.com/jcrudy/choldate

15

https://github.com/jcrudy/choldate


102 103 104

n

100

101

102

d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 101 102

d

0.0

0.2

0.4

0.6

0.8

1.0
n=2000

HMC
KMC median
KMC 25%-75%
KMC 5%-95%

102 103 104

n

0.0

0.2

0.4

0.6

0.8

1.0
d=16

Figure 5: Acceptance probability of kernel induced Hamiltonian flow for a standard Gasussian in
high dimensions for an isotropic Gaussian. Left: As a function of n = m (x-axis) and d (y-axis).
Middle: Slices through left plot with error bars for a fixed n = m and as a function in d (left), and
for a fixed d as a function of n = m (right).

where xt is large enough that α2 = α1Lε− γ2/2 > 0. Similarly for p′ ∈ (γ1/Lε, x
δ
t )

esLεp
′
− 1 ≥ es(x

∗−xt) − 1 ≥ es(Lεp
′−γ1) − 1 > 0.

Because γ1 and γ2 can be chosen to be arbitrarily small, then for large enough xt we will have

0 < I
xδt
0 ≤

ˆ xδt

γ1/Lε

[esLεp
′
− 1] exp

(
−α2p

′ + α1γ1 − γ22/2
)
µ(dp′) + I

γ1/Lε
0

= ec1
ˆ xδt

γ1/Lε

[es2p
′
− 1]e−α2p

′
µ(dp′) + I

γ1/Lε
0 , (14)

where c1 = α1γ1 − γ22/2 > 0 for large enough xt, as γ1 and γ2 are of the same order. Now turning
to p′ ∈ (−xδt , 0), we can use an exact rearrangement of the same argument (noting that c1 can be
made arbitrarily small) to get

I0−xδt
≤ ec1

ˆ xδt

γ1/Lε

[e−s2p
′
− 1]µ(dp′) < 0. (15)

Combining (14) and (15) and rearranging as in [30, Theorem 3.2] shows that Ix
δ
t

−xδt
is strictly negative

in the limit if s2 = sLε is chosen small enough, as Iγ2/Lε0 can also be made arbitrarily small.

For I−x
δ
t

−∞ it suffices to note that the Gaussian tails of µ(·) will dominate the exponential growth of
es(‖x

∗(p′)‖2−‖xt‖2) meaning the integral can be made arbitrarily small by choosing large enough xt,
and the same argument holds for I∞

xδt
.

D Additional Experimental Details

This section contains additional details for the experiments in Section 6.

D.1 Stability in High Dimensions

We reproduce the experiment in Figure 2 on an isotropic Gaussian in increasing dimension. As
length-scales across all principal components are equal, this is a significantly less challenging target
to estimate gradients for; though still useful as a benchmark representing very smooth targets. We
use a standard Gaussian kernel and the same experimental protocol as for Figure 2. The estimator
works slightly better than on the target considered in Figure 2, and performs well up to d ≈ 100, see
Figure 5.

D.2 Banana target

Following [12, 10], let X ∼ N (0,Σ) be a multivariate normal in d ≥ 2 dimensions, with Σ =
diag(v, 1, . . . , 1), which undergoes the transformation X → Y , where Y2 = X2 + b(X2

1 − v), and
Yi = Xi for i 6= 2. We will write Y ∼ B(b, v). It is clear that EY = 0, and that

16



B(y; b, v) = N (y1; 0, v)N (y2; b(y21 − v), 1)

d∏
j=3

N (yj ; 0, 1).

We choose d = 8, V = 100 and b = 0.03, which corresponds to the ‘strongly twisted’ 8-dimensional
Banana in [12, 10]. The target is challenging due to the nonlinear dependence of the first two
dimensions and the highly position dependent scaling within these dimensions.

D.3 Pseudo-Marginal MCMC for GP Classification

Model Closely following [12], we consider a joint distribution of GP-latent variables f , labels y
(with covariate matrix X), and hyperparameters θ, given by

p(f ,y, θ) = p(θ)p(f |θ)p(y|f),
where f |θ ∼ N (0,Kθ), with Kθ modeling the covariance between latent variables evaluated at the

input covariates: (Kθ)ij = κ(xi,x
′
j |θ) = exp

(
− 1

2

∑D
d=1

(xi,d−x′j,d)
2

`2d

)
and θd = log `2d. This

covariance parametrisation allows to perform Automatic Relevance Determination. We here restrict
our attention to the binary logistic classifier, i.e. the likelihood is given by

p(yi|fi) =
1

1− exp(−yifi)
,

where yi ∈ {−1, 1}. Aiming for a fully Bayesian treatment, we wish to estimate the marginal
posterior of the hyperparameters θ, motivated in [4]. The marginal likelihood p(y|θ) is intractable
for non-Gaussian likelihoods p(y|f), but can be replaced with an unbiased estimate

p̂(y|θ) :=
1

nimp

nimp∑
i=1

p(y|f (i))p(f
(i)|θ)

q(f (i)|θ)
, (16)

where
{
f (i)
}nimp

i=1
∼ q(f |θ) are nimp importance samples. In [4], the importance distribution q(f |θ)

is chosen as the Laplacian or as the Expectation Propagation (EP) approximation of p(f |y, θ) ∝
p(y|f)p(f |θ), leading to state-of-the-art results.

Experimental details We here use a Laplace approximation and nimp = 100. We consider clas-
sification of window against non-window glass in the UCI Glass dataset, which induces a posterior
that has a nonlinear shape [12, Figure 3]. Since the ground truth for the hyperparameter posterior is
not available, we initially run multiple hand-tuned standard Metropolis-Hastings chains for 500,000
iterations (with a 100,000 burn-in), keep every 1000-th sample in each of the chains, and combine
them. The resulting samples are used as a benchmark, to evaluate the performance all algorithms.
We use the MMD between each sampler output and the benchmark sample is computed, using the
polynomial kernel (1 + 〈θ, θ′〉)3. This corresponds to the estimation error of all mixed moments of
order up to 3.

Cross-validation Kernel parameters are tuned using a black box Bayesian optimisation pack-
age8 and the median heuristic for KMC and KAMH repsectively. The Bayesian optimisation uses
standard parameters and is stopped after 15 iterations, where each trial is done via a 5-fold cross-
validation of the score matching objective (5). We learn parameters after MCMC 500 iterations, and
then re-learn after 2000. We tried re-learning parameters after more iterations, but this did not lead
to significant changes. The costs for this are neglectable in the context of PM-MCMC as estimating
the marginal likelihood takes significantly more time than generating the KMC proposal.

D.4 ABC MCMC

In this section, we give a brief background on Approximate Bayesian Computation, and how KMC
can be used within the framework. We then give details of the competing approach in the final
experiment in Section 6, including experimental details and an analytic counterexample.

8We use the open-source package pybo, available under https://github.com/mwhoffman/pybo

17

https://github.com/mwhoffman/pybo


Likelihood-free Models Approximate Bayesian Computation is a method for inference in the
scenario where conditional on some parameter of interest θ, we can easily simulate data x ∼ f(·|θ),
but for which the likelihood function f is unavailable [6]. We however have data y which assume
to be from the model, and we have a prior π0(θ). A simple ABC algorithm is to sample θi ∼ π0(·)
(or any other suitable distribution), simulate data xi ∼ f(·|θi), and ‘accept’ xi as a sample from
the approximate posterior πε(θ|y) if d(y, x) ≤ ε. This procedure can be formalised by defining the
approximate likelihood as

fε(y|θ) ∝
ˆ
gε(y|x, θ)f(x|θ)dx, (17)

where gε(y|x, θ) is an appropriate kernel that gives more importance to points for which d(y, x) is
smaller. In the simple case above gε(y|x, θ) = 1{d(y,x)≤ε}. The ABC posterior is then found using
πε(θ|y) ∝ fε(y|θ)π0(θ). Often gε is based on some low-dimensional summary statistics, which can
have both advantages and disadvantages.

Likelihood-free MCMC There are many different way to do ABC, and clearly not all involve
Markov chain Monte Carlo. If the posterior however is not similar to the prior, and if θ is more
than three or four dimensional, MCMC is a sensible option. Since the likelihood (17) is intractable,
typically algorithms are considered for which an approximation to either the likelihood, or the ABC
posterior are used either in constructing proposals, defining Metropolis-Hastings acceptance rates,
or both. We focus here on samplers which target πε(θ|y) directly, c.f. [5].

Pseudo-Marginal Metropolis-Hastings Similar to the approach taken in Section D.3, we here
accept proposals θ′ ∼ Q(θ, ·) where Q is some proposal mechanism (i.e. KMC), via replacing the
likelihood with an unbiased estimate. We accept according to the ratio

α̃(θ, θ′) =
π̃ε(θ

′|y)Q(θ|θ′)
π̃ε(θ|y)Q(θ′|θ)

, (18)

where π̃ε(θ|y) = π0(θ)g̃ε(y|θ), and

g̃ε(y|θ) =
1

nlik

∑
i

gε(y|xi, θ), {xi}nlik
i=1 ∼ f(·|θi)

is a simple Monte Carlo estimator for the intractable likelihood (17). Since it is easy to simulate from
f then g̃ε(y|θ) is typically easy to compute. As with other general Pseudo-Marginal schemes, and as
mentioned below the KMC acceptance (3), it is crucial that if θ′ is accepted, the same estimate for
π̃(θ′|y) is used on the denominator of the Hastings ratio in future iterations until the next proposal
is accepted for the scheme, c.f. [3, Table 1].

We can directly adapt KMC to the ABC case via plugging in the estimated likelihood g̃ε in the KMC
acceptance ratio (3).

Synthetic Likelihood Metropolis-Hastings Following [26], one idea to approximate the in-
tractable likelihood is to draw nlik samples xi ∼ f(·|θi), and fit a Gaussian approximation to f ,
producing estimates µ̂ and Σ̂ for the mean and covariance using {xi}nlik

i=1. If the error functon gε is
also chosen to be a Gaussian (with mean y and variance ε), then the marginal likelihood fε(y|θ) can
be approximated as

y|θ ∼ N
(
µ̂, Σ̂ + ε2I

)
The likelihood is essentially approximated by a Gaussian fG, producing a synthetic posterior πs(·),
which is then used in the accept-reject step. Clearly some approximation error is introduced by the
Gaussian likelihood approximation step, but as shown in [26], it can be a reasonable choice for some
models.

Hamiltonian ABC Introduced in [8], the synthetic likelihood formulation is used to construct a
proposal, with the accept-reject step removed altogether. Hamiltonian dynamics use the gradient
∇ log π(θ) to suggest candidate values for the next state of a Markov chain which are far from the
current point, thus increasing the chances that the chain mixes quickly. Here the gradient of the
log-likelihood is unavailable, so is approximated with that of a Gaussian (since the map θ → (µ,Σ)

18



is not always clear this is done numerically, using a stochastic finite differences estimate of the
gradient, SPAS [8, Sec. 4.3, 4.4]), giving

∇ log π(θ) ≈
nlik∑
i=1

∇ log fG(yi|µ̂, Σ̂) +∇ log π0(θ).

Since there is no accept-reject step, the synthetic posterior is also the target of this scheme (although
there is also further bias introduced by discretisation error), but the introduction of gradient-based
dynamics is hoped to improve mixing and hence efficiency of inferences compared to random-walk
type schemes.

A Counter-example We give a very simple toy model to highlight the bias introduced by the
Hamiltonian ABC sampler. Consider posterior inference for the mean parameter in a log-Normal
model. Specfically, the true model is

µ ∼ N (µ0, τ0),

y|µ, τ ∼ logN (µ, τ),

where the precision τ and hyperparameters µ0, τ0 are known. The model is in fact conjugate, giving
a Gaussian posterior

µ|y ∼ N
(
τ0µ0 + τ

∑
i log xi

τ0 + nτ
, τ0 + nτ

)
.

If we introduce a Gaussian approximation to the likelihood, then the mean and precision of this
approximation fG are (empirical estimates for)

µG = eµ+1/2τ , τG = 1/Var[Yi] =
e−2µ−1/τ

e1/τ − 1
,

which depend on the current value for µ in the chain. The resulting synthetic posterior is no longer
tractable, but since it is one dimensional we can approximate it numerically. Using µ0 = 0, τ0 =
1/100, ε = 0.1 and τ = 1 then the true and approximate posteriors for 100 data points generated
using the truth µ = 2 are shown in Figure 6 (left). This is a proof of concept that a likelihood with a
positive skew being approximated by a Gaussian introduces an upwards bias to the posterior.

Experimental details The simulation study in Section 6 uses a slightly more complex and multi-
dimensional simulation example: a 10-dimensional multivariate skew-Normal distribution, given
by

p(y|θ) = 2N (θ, I) Φ (〈α, y〉)
with θ = α = 1 · 10. In each iteration of KMC, the likelihood is estimated via simulting nlik = 10
samples from the above likelihood. We use the mean of all samples as summary statistic, and a
Gaussian similarity kernel gε(y|x, θ) with a fixed ε = 0.55. Both KMC and HABC use a standard
Gaussian momentum, a uniformly random stepsize in [0.01, 0.1] and L = 50 leapfrog steps. HABC
is used with the suggested ‘sticky random numbers’ [8, Section 4.4], i.e. we use the same seed for
all simulations along a single porposal trajectory. Both algorithms are run for 200 + 5000 MCMC
iterations. KMC then attempts to re-learn smoothness parameters, and stops adaptation. Burn-in
samples are discarded when quantifying performance of all algorithms.

Friction, mixing, and number of simulations HABC is used in its ‘stochastic gradient’ [7] and
has a ‘friction’ parameter that we estimate using a running average of the global covariance of all
SPAS gradient evaluations, [8, Equation 21]. Note that we ran HABC with both the friction term
included and removed, where we found that adding friction has severely negative impact on mixing,
where not adding friction results in a wider posterior (with the same bias). Figure 4 (middle, right)
show the results without friction, Figure 6 shows the same plots with friction. We refer to our
implementation for further details.

Due to the gradient estimation in every of the L = 50 leap-frog steps, every MCMC proposal for
HABC requires 2L = 100 simulations to be generated. In contrast, KMC only requires a single
simulation, for evaluating the accept/reject probability (3). We leave studying the exact trade-offs of
KMC’s learning phase and its ability to mix well as compared to HABC to future work.

19



1.4 1.6 1.8 2.0 2.2 2.4

0
1

2
3

4
5

6

mu

True Posterior
Synthetic Approximation

0 20 40 60 80 100

Lag

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ut

oc
or

re
la

ti
on

KMC
RW
HABC naive
HABC friction

−10 0 10 20 30 40 50

θ1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
(θ

1
)

Figure 6: Left: Counter example showing posterior and its synthetic approximation for a simple toy
model Middle/right: The same results as in Figure 4, but here we also show performance of HABC
with added friction, which has a severely negative impact on mixing.

20


