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Here we reproduce Schur’s lemma [1] and prove two new lemmas that will be central to

our analysis in the coming sections.

Lemma (Schur’s lemma). Let A\; > ... > A, and D a p x p dimensional doubly stochastic



matrix, i.e. a non-negative matriz whose rows and columns separately add to one. Then
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Lemma 1. Let A = diag(\1,...,)\,), where \y > ... > A\, are real numbers, and let
A= diag <;\1, e 5\p> , where N> > j\p are real numbers. Then,
max Tr <A0A0T> — Ty (AA) , (S.3)
0€0(p)

where O(p) is the set of p X p orthogonal matrices.

Proof. To prove the lemma, it is convenient to express the cost in terms of matrix elements:

Tr (AOAOT) =Y A0 (S.4)
i,J



Now consider a matrix D, whose elements are given by D;; = ij Because O is orthog-
. . . . _ T _ o o
onal, D is doubly stochastic: Y-, D;; = >, 0% = [O O}jj =land ), Dy = 3.0} =
[OOTLi = 1. For any doubly stochastic matrix D, and decreasingly ordered {)\;} and {5\1}
according to Schur’s lemma:
p

D> ANAD; <> A (S.5)
i3

Using (S.4) and (S.5), we can conclude that

P
Tv (AOAOT) <3 N (S.6)

i=1
The bound is saturated when O = I,,, which proves the Lemma 1. O
Lemma 2. Let A = diag(\1,...,Ay), where \y > ... > A\, are real numbers, and let

A= diag (;\1, e 5\p> , where M> > ;\p are real numbers. Then,
arg min HA OAOTH = argmax Ir (AOAOT> : (S.7)
0€eO(p) 0€O0(p)

where O(p) is the set of p X p orthogonal matrices. Furthermore, an orthogonal matriz is

optimal if and only if it can be written as a product of two orthogonal matrices
0" = 0,04, (S.8)
which commute with A and A respectively:
[A,04] =0, [A, 0 A] — 0. (S.9)

Proof. The first equality in (S.7) follows from the definition of the Frobenius norm and
orthogonality of O:

arg min HA OAOTH = argmin T [(A OAOT (A _ OAOT>]

0€0(p) 0€0(p

= arg mm Tr [AZ —20A0TA + A2]
0€O0(p

= arg max Tr (AOAOT> : (S.10)
0€O0(p)

It is easy to see that any matrix of the form (S.8) optimizes (S.10):

Tr (AOAO4A0{0]) = Tr (OAAAO, 001 ) = Tr (AAT), (S.11)



which optimizes (S.10) according to Lemma 1.
To prove that all optimal orthogonal matrices are of the form (S.8), we take the following

steps:

1. Recall that any orthogonal matrix O must have det O = 4+1. Orthogonal matrices
with det O = 1 are proper rotations which we denote by R. Orthogonal matrices with

det O = —1 are improper rotations which we denote by R.

Without loss of generality it suffices to prove our claim for proper rotations only. As
we show now, if all optimal proper rotations are of the form (S.8), then all optimal

improper rotations are also of the form (S.8).

Consider an optimal improper rotation R*:
Tv (AR*AR*T> = Tr (AA) . (S.12)

Next, we define a one-to-one mapping between each improper rotation R and a proper

rotation by multiplying R on the right by the matrix diag (—1,1,...,1)
R =diag(—1,1,...,1)R. (S.13)
Then,
Tr (AR*AR*T> =Ty (AR*AR*T) ~Tr (AA) , (S.14)
and therefore R* is also optimal. If R* is of the form (S.8)
R" = 0,04, (S.15)
then corresponding R*,

R* =diag(—1,1,...,1) OA04 (S.16)

is also of the form (S.8), since diag (—1,1,...,1) Op commutes with A.

Hence, we only consider proper rotation matrices without loss of generality.

2. Consider an optimal proper rotation matrix R*:

Tr (AR*AR*T> — T (AA) . (S.17)



Proper rotations form a connected set, and can be parametrized by e®, where A is an

antisymmetric matrix. Suppose we rotate R* by an infinitesimal amount, i.e. eAR*:

Tr (Ae5AR*AR*Te‘5A> _ (A (I+JA)RART (I— 5A)) + O
_ (AR*]\R*T)

4T (5A (R*AR*TA - AR*AR*T)> +O?) (S.18)
Since R* is maximal, the change in left had side must vanish to first order in JA:

N

0= Tr (5A <R*AR*TA _ AR*[\R”)) _ Z SA; [R*AR*TA — AR*IA\R*T}
ij

J

— 23" 54, [R*AR*TA . AR*AR*T} , (.19)

ij<i
where we used the antisymmetry of JA and of (R*AR*TA — AR*AR*T>. Since
dA; j<; are independent perturbations, their coefficients (R*AR*TA — AR*AR*T>

i
must each be zero. From here we conclude that for maximal R*

AR*ART - R*ARTA = [A, R*AR*T] —0. (S.20)

. We will use (S.20) to prove our claim that all optimal proper rotation matrices are of
the form (S.8). We remind that if a matrix commutes with a diagonal matrix, it must
be block-diagonal. There is a separate block for each distinct diagonal element of the
diagonal matrix, and the size of the block is given by the degeneracy of the diagonal

element. Then,
Ba = R*'AR*" (S.21)

is block diagonal with with blocks defined by the degenerate diagonal elements of A.

Further, singular values of B, are given by diagonals of A.

Ba can be diagonalized by another orthogonal matrix., which is block diagonal with
the same blocks as in B,. However, such a block diagonal matrix would also commute

with A. Then, with notation from (S.8),

Ba = 0,A0]. (S.22)



(S.21) and (S.22) imply
[A, OXR*] —0. (S.23)

O R is block diagonal with blocks defined by the degenerate diagonal elements of
A. With notation from (S.8),

O,R* =04, (S.24)
and hence

R* = 0,0;. (S.25)

Therefore we can conclude that all rotation matrices that optimize (S.3) are of the

form (S.8).
0
II. PROOF OF THEOREM 1 - SOFT-THRESHOLDING OF COVARIANCE
EIGENVALUES
We reproduce the offline objective function (3) for ease of referencing.
. T T 2
min [X'X - Y'Y — oTTr |, (S.26)

where o« > 0, X € R™7 and Y € R**T. Define m to be the number of eigenvalues of

1

C= TXXT greater than or equal to «

Now, we present the main result of this subsection and its proof.
Theorem 1. Suppose an eigen-decomposition of X'X = VXAXVXT, where AX =
diag (AY, ..., AY) with AY > ... > A{. Note that AX has at most n nonzero eigenval-

ues coinciding with those of TC. Then,
Y* = U, ST,(AY, aT) /2 VT, (8.27)

are optima of (S.26), where STy(AX,aT) = diag (ST ()\{(,ozT) ..., ST (/\i(,ozT)), ST is
the soft-thresholding function, ST(a,b) = max(a — b,0), Vi consists of the columns of VX
corresponding to the top k eigenvalues, i.e. Vi = [vf,...,vﬂ and Uy is any k X k
orthogonal matriz, i.e. Uy € O(k). The form (S.27) uniquely defines all optima of (S.26),

except when k < m, A\ > oT and A\ = A\,



Proof. Here we assume that if & < m and Ay > oT, then Ay # Ay, and prove that the
form (S.27) uniquely defines all optima of (S.26). The exceptional case of k < m, \X > T
and A\ = Ay, is treated in a remark below.

Since the cost (S.26) depends on Y only through the similarity matrix Y'Y, we first
optimize (S.26) with respect to Y'Y and then reconstruct the optimal Y. In turn we
optimize with respect to Y'Y considering eigendecomposition of YTY = V¥YAYVY ' and
finding optimal V¥ and AY separately.

We first optimize (S.26) with respect to V¥ € O(T) for fixed AY. Because the Frobenius
norm is invariant to orthogonal rotations, for any Y'Y, the objective (S.26) can be rewritten

as
IXTX - YTY — aTL; | = |[A¥ — OAYO" — oT T, |5, (S.28)

where O = VX'VY ¢ O(T). The minimization with respect to VY is equivalent to a
minimization over O from which VY can be recovered uniquely by VXO. According to
Lemma 2, each orthogonal matrix O = V¥ VY that is a product of two orthogonal matrices
O = 04x0,v with [A* — aTIy,Opx] =0 and [AY,04v] =0, is optimal. Then, optimal
VY is given by

VY* = VXO,xO0,v. (S.29)

and the optimal value of (S.28) is:

ST =N —ar)” (S.30)

=1

It remains to find optimal AY, which minimizes (S.30):

T
min (A=A = aT)2 , (S5.31)

A N
where {\Y, ..., A} are non-negative and at most k of them are non-zero. Consider a term

(N =AY —aT )2 in the sum. If \X¥ < T, choosing a positive A} will only increase the
term, hence optimal A} = 0 for such terms. If \¥ > T, then choosing A} = A\ — oT will
set the term to 0, i.e. its minimum. On the other hand, at most k of {\',...  AX} can be

non-zero. These k eigenvalues should be allocated to largest non-negative values of \X¥ —aT.



Therefore, optimal {\}, ..., A\¥} are

ST (AY,aT), i<k

AN = :
' 0, 1>k

(S.32)
To reconstruct Y*, using (S.29) and (S.32) we rewrite the eigenvalue decomposition of
Y*TY*. Using AY* to denote optimal singular values defined by (S.32), and O v+ to denote

an orthogonal matrix that commutes with AY*, we get:

YY" = V¥0,x0,- A" 0L, O VX'
= VX0, A0 VX (S.33)

Since if diagonal elements of AX are degenerate, the corresponding diagonal elements of AY*

must be degenerate
[AY*, OAx] =0. (S.34)
Hence,
YY" = VYAV VY (S.35)

These Y matrices can be constructed as in (S.27): its columns are coordinates in the arbi-
trarily rotated orthogonal basis spanning the k-dimensional principal subspace of XX .

]

Remark 1. In the case k < m, Ay > oT and Ay = A\Y,, (S.34) is not generally true
anymore, because while \¥ = AY;, Al # Al ;. Y matrices constructed as in (S.27) are
still minima, as can be seen by choosing O,x = Iy for which (S.34) holds, but there are
other solutions which cannot be put in the form (S.27). We observe that blocks of Ojx
that do not correspond to Ay still commute with AY*. Thus, when k < m, A\{ > oT and

A = A\iy1, we can write the most general solution as

1

Y = U AL P 05V (S.36)

where Uy, is a k x k orthogonal matrix, A}, is a k x T diagonal matrix with its k& diagonals
set to first k diagonals of A¥*, and O Ax isa T x T orthogonal matrix that is diagonal except

one block that corresponds to diagonal elements of AX that are degenerate with \;X.



III. PROOF OF THEOREM 2 - HARD-THRESHOLDING OF COVARIANCE
EIGENVALUES

We reproduce the offline objective (6) for ease of referencing.
: T TV |? T T 2
minmax [ X'X - Y'Y[[, - [Y'Y - Z'Z — oT Tz, (S.37)

where a > 0, X € R™7T Y € R*™*7 and Z € R*T. Let m be the number of eigenvalues C

greater than or equal to a.

Theorem 2. Suppose an eigen-decomposition of XX = VXAXVXT, where AX =

diag (AF, ..., ) with AX > ... > A\ > 0. Assume | > min(k,m). Then,
Y* = U, HT (A, o) 2 VY, 2" = U ST mingem (AY, aT)2VET (S.38)

are optima of (S.37), where HTR(AX,aT) = diag (HT ()\{(, aT) ,...,HT ()\i(, aT)),
HT(a,b) = a©(a—>b) with ©() being the step function: O(a—b) =1 ifa > b and O(a—b) =0
if @< b, STopmingim) (A, 0T) = diag(ST (W, aT) . .., ST (X 0T) 0., 0), VE =

min(k,m)’
l—min(k,m)

[v¥,....vX] and U, € O(p). The form (S.38) uniquely defines all optima (S.37) except

' Vp
when either 1) o is an eigenvalue of C or 2) k < m and N\ = A\,

Proof. Here we assume 1) [ > min(k,m), 2) « is not an eigenvalue of C and 3) if & < m,
then Ay # Ay,,. We prove that with these assumptions, the form (S.38) uniquely defines
all optima (S.37). Violations of these assumptions are treated in three remarks below.

The proof is similar to that of Theorem 1. Since the objective (S.37) depends on Y only
through the similarity matrix Y'Y and on Z through Z'Z, we first find optimal Y'Y and
Z'Z from which we reconstruct Y and Z. Our strategy is to start with eigendecompositions
of YTY = VYAYVY " and ZTZ = VZA?VZ'  and find optimal V¥, AY, VZ and AZ.

We first optimize (S.37) with respect to V¥ € RT™*T and VZ € RT*T for fixed AY
and AZ. Because Frobenius norm is invariant under rotations, the terms in (S.37) can be

rewritten as
IX"X -Y'Y[[. = [|[AY —0AYOT|[}., (S-39)
and

Y'Y -Z7Z - aTL; |}, = - [|[AY — QA?QT — oT1y ||, (S.40)
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where O = VX'VY € O(T) and where Q = V¥ VZ € O(T). First, we maximize (S.37)
with respect to VZ, which enters via Q in (S.40). According to Lemma 2, any orthogonal
matrix Q = VY V7 that is a product of two orthogonal matrices Q = QarQaz with
[AY — aTIp, Qav] =0 and [A%,Qpz] =0, is optimal. Then, optimal VZ is given by

VZ* = VYQur Qaz. (S.41)

and subsituting this expression into (S.40),
ST (W =M —ar)’. (S.42)
i=1
Because the optimality of VZ* (S.41) holds for any VY the minimization of (S.41) with
respect to VY is reduced to (S.39). According to Lemma 2, any orthogonal matrix O =
VX VY that is a product of two orthogonal matrices O = OpxO,y with [AX ,O Ax} =0
and [AY,0,v| =0, is optimal. Then, optimal VY is given by

VY = VX¥0px0,y. (S.43)

For these choices of V¥* and VZ* the full objective (S.37) reduces to:

T

min_ max [()\;X - )\3-/)2 — (AN —aT - )\iz)ﬂ , (S.44)

AL AYX N LN =
where {\?,... M2} are constrained to be non-negative and at most [ of them are non-zero,
and {\Y,..., M} are also constrained to be non-negative and at most k of them are non-zero.

We analyze the terms in the sum separately:

1. Consider the ¢ > m terms in the sum for which A\;* < oT. For such terms, choosing
A = \Z = ( gives the optimal cost, \:X ? — a2T? < 0. To see this, let’s calculate costs
associated with other choices of A} and A?. Suppose A\ > aT. Then, maximization
with respect to AZ would set (A} — a1 — A? )2 = 0 and therefore the cost would be
(A = )\iY)Z > 0. Suppose A\]" < aT. Then, maximization with respect to A¥ would
set AZ = 0, and the cost would be AX? — o272 + 2\ (T — X¥). This is minimized

for \Y = 0. Hence, our claim holds.

2. Consider the ¢ < m terms in the sum for which ¥ > oT. Since A\, = A2, =0,
z

and we assumed [ > m, we can assign all A7 to non-zero values if needed. On the

other hand, k can be less than m and we might be forced to set some A, to zero.
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(a) Suppose A} > 0. For these terms, choosing A} = A\¥ and A\ = \X — aT gives
the optimal cost, 0. To see this, let’s calculate costs associated with other choices
of A and MZ. If \Y > \X, or o7 < A < A\ maximization with respect to \?
would set (A} — aT — )\Z-Z)Q = 0 and therefore the cost would be (A\;* — /\}/)2 > 0.
If \Y < oT, maximization with respect to A? would set A\ = 0, and the cost

would be AX* — a?T? — 2)\Y (AX —aT). This cost is greater than its value at

AV = aT, which is (A¥ — T )2 > 0. Hence, our claim holds.

(b) Suppose A\ = 0. For these terms, choosing A = 0 gives the optimal cost,

A% — a2T2 > 0.

Therefore, one assigns non-zero A to the the first min(k, m) terms in the sum. For

such terms A} = A and \Z = \¥ —aT. A} = A7 = 0 otherwise.
Summarizing this argument, we can state that:

N HT (AY,aT) , i < min(k,m) e _

0, otherwise 0, otherwise

(S.45)

ST (XY, aT), i < min(k,m)

optimizes the cost (S.44).
To reconstruct Y*, using (S.43) and (S.45) we rewrite the eigenvalue decomposition of
Y*TY*. Using AY* to denote optimal singular values defined by (S.45), and O v+ to denote

an orthogonal matrix that commutes with AY*, we get:

YY" = V¥0,x0,-A "0 ],. 05 VX'
= VX0 A0 VX (S.46)

But,
[AY*, OAX] =0. (S.47)

since if diagonal elements of A are degenerate, corresponding diagonal elements of AY* are

degenerate. Hence,
YY" = VXAV VYT (S.48)

These Y* matrices can be constructed as in (S.38): its columns are coordinates in the

arbitrarily rotated orthogonal basis spanning the k-dimensional principal subspace of XX .
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To reconstruct Z*, using (S.41) and (S.45) we rewrite the eigenvalue decomposition of
Z*T7Z*. Using AZ* to denote optimal singular values defined by (S.45), and Q42+ to denote

an orthogonal matrix that commutes with A%*, we get:

Z*TZ>|< - VY*QAY* QAZ* AZ* Q/TXZ* QXY* VY*T
=V Quar- A7 QL V7 (S.49)

But,
[A7*,Qpv] = 0. (S.50)

since if diagonal elements of AY* are degenerate, corresponding diagonal elements of A%*

are degenerate . Hence,

727 = VYAV (8.51)
Plugging in for V¥, one gets
777" = V¥0px0,v-AZ*0],. 04 VY. (S.52)
But,
[A7*,0pv<] =0 (S.53)
and
[A7*,0px] = 0. (S.54)

since if diagonal elements of AY* are degenerate, corresponding diagonal elements of A%* are
degenerate and if diagonal elements of AX are degenerate, corresponding diagonal elements

A%* are degenerate. Then,
777" = VEAZ VY (S.55)
These Z* matrices can be constructed as in (S.38). O

Remark 2A. Here we comment on the case | < min(k,m). In the eigenvalue cost (S.44),
among the terms for which \:X¥ > T, there will be cases where \Z is forced to be zero, while
AY > 0. The cost for such terms are \X* — a2T2 — 2)Y (AX — oT'), which minimizes when
A — co. We found through numerical simulations that the corresponding online algorithm

is unstable in this regime.
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Remark 2B. Here we comment on the case where « is an eigenvalue of C. Here we need
to consider optimization of terms for which \;¥ = oT in the eigenvalue cost (S.44). The
cost for such terms are 207 (A} — aT') — N/ ? which is optimized for any N < aT and
A? = 0 with a 0 value for the cost. To see this, consider the other case A} > aT. Then
the optimization with respect to A would give A\ = A} — oT and the cost of the term
would be ()\Z/ — OéT)2 > (0, which would be suboptimal. Hence, if & > m, or £k < m and
M =aT, Y € R¥T and Z € R™T constructed as in (S.38) are still optimal, however there
are other optimal solutions. Non-zero {\Y'} corresponding to « eigenvalue of C can take

values 0 < )\ZY < aT.

Remark 2C. Here we comment on the case k < m and Ay = AY,. We first discuss how
optimal Y change. In this case, (S.47) is not generally true anymore, because while A\ =
A, AL # Al1. Y matrices constructed as in (S.38) are still minima, as can be seen by
choosing Opx = Ip for which (S.47) holds, but there are other solutions which cannot be
put in the form (S.38). We observe that blocks of Oax that do not correspond to Ay still
commute with A¥*. Thus, when k& < m and Ay = A,;, we can write the most general

solution as
Y = U AL PO v (S.56)

where Uy, is a k x k orthogonal matrix, A}, is a k x T' diagonal matrix with its & diagonals
set to first k diagonals of AY*, and O Ax s a T x T orthogonal matrix that is diagonal
except one block that corresponds to diagonal elements of AX that are degenerate with \;X.
Next we discuss how optimal Z change. In this case, while (S.53) is still true, (S.54) is not
generally true anymore, because while Ay = A, A7 # A2, . Z matrices constructed as in
(S.38) are still minima, as can be seen by choosing Opx = Iy for which (S.54) holds, but
there are other solutions which cannot be put in the form (S.38). We observe that blocks
of Oax that do not correspond to A still commute with AZ*. Thus, when k& < m and

AiX = Apy1, we can write the most general solution as

1

Z = U AL PO v (S.57)

where Uj is an [ x [ orthogonal matrix, AZ% is a | x T diagonal matrix with its [ diagonals
set to first [ diagonals of AZ*, and O ax isaTxT orthogonal matrix that is diagonal except

one block that corresponds to diagonal elements of AX that are degenerate with \;X.
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IV. PROOF OF THEOREM 3 - THRESHOLDING AND EQUALIZATION OF
COVARIANCE EIGENVALUES

We reproduce the offline objective (8) for ease of referencing:

minmax Tr [-X'XY 'Y +Y'YZ'Z +aTY'Y - STZ'Z], (S.58)

where a > 0 and 8 > 0. Let m be the number of eigenvalues C greater than «.

Theorem 3. Suppose an eigen-decomposition of XX is XX = VXAXVXT, where AX =
diag (A, ..., AY) with A > ... > Ay > 0. Assume | > min(k,m). Then,

Y* = Uy /BT Ox(AX,aT) 2 VY, Z' =U; 870, VX', (S.59)

are optima of (S.58), where OK(AX,aT) = diag (O (A —aT),...,0 A\ —aT)), Sir
is an | x T rectangular diagonal matriz with top min(k, m) diagonals are set to arbitrary
nonnegative constants and the rest are zero, Oy« is a block-diagonal orthogonal matriz that
has two blocks: the top block is min(k, m) dimensional and the bottom block is T — min(k, m)

dimensional, V, = [v{,...,vX], and U, € O(p). The form (S.59) uniquely defines all

’op

optima of (S.58) except when either 1) o is an eigenvalue of C or 2) k < m and Xy = N<;.

Proof. Here we assume 1) [ > min(k,m), 2) « is not an eigenvalue of C and 3) if & < m,
then Ay # Ay,;. We prove that with these assumptions, the form (S.59) uniquely defines
all optima (S.58). Violations of these assumptions are treated in three remarks below.

The proof is similar to that of Theorem 1. Since the cost (S.58) depends on Y only
through the similarity matrix Y'Y and Z through Z'Z, we find optimizing Y'Y and Z'Z
from which we reconstruct Y and Z. Our strategy is to start with eigendecompositions of
Y'Y = VYAYVY " and ZTZ = VZAZVZ' | and find optimal VY, AY, VZ and AZ.

We first optimize for VY € RT*T and VZ € RT*T for fixed AY and A?. Because
Frobenius norm is invariant under rotations, the terms in objective (S.59) can be rewritten

as
Tr [- (AY = aT17) OAYOT + (AY — BT1;) QAZQT], (S.60)

where O = VX'VY ¢ O(T) and where Q = VY 'VZ ¢ O(T). First, we do the maximiza-

tion over VZ which entails the second term of (S.60). According to Lemma 2, all orthogonal
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matrices Q = VY VZ that are a product of two orthogonal matrices Q = Qv Qz with

[AY — BTy, QAy} =0 and [AZ, QAz} = 0, are optimal. Then, optimal VZ are given by
V% = VYQur Qaz. (S.61)

For this choice of VZ, the second term in (S.60) is Tr ((AY — BTIT) A? ) and therefore
the minimization over VY only entails the first term in (S.60). According to Lemma 2,
all orthogonal matrices O = V¥ VY that are a product of two orthogonal matrices O =
O,x0,v with [A¥,Opx] = 0 and [AY,0,v] = 0, are optimal. Then, optimal VY are

given by
VY = VXOpxO0,y. (S.62)

For these choices of VY* and VZ*, the full objective (S.58) reduces to:

T
- X % Y z
Jnin - max, [— (A —aT) A + (N = BT) N/], (5.63)
1omn2ip 21T 5
where {\Z ... M4} are constrained to be non-negative and at most [ of them are non-zero,
and {\}, ..., M} are also constrained to be non-negative and at most & of them are non-zero.

We analyze the terms in the sum separately:

1. Consider the i > m terms in the sum for which \X < oT. For such terms, choosing
A = \? = ( gives the optimal cost, 0. To see this, let’s calculate costs associated with
other choices of A} and 7. Suppose A} > ST. Then, maximization with respect to
AZ would set the cost to co. Suppose A} = ST. Then, the coefficient in front of \Z is
0, and the cost is — (AX — aT') BT > 0. Suppose A} < BT. Then, maximization with
respect to AZ would set AZ = 0 and the cost is — (A\¥ — aT") A}, which is minimal at

AY = 0. Hence, our claim holds.

2. Consider the i < m terms in the sum for which A > aT. Note that we assumed « is
Y — )\ =9

not an eigenvalue of C, therefore we omit the equality case. Since A\, ~m

Z

i<m to non-zero values if needed. On the

and we assumed [ > m, we can assign all A

Y

other hand, k can be less than m and we might be forced to set some A\;,, to zero.

(a) Suppose A > 0. For these terms, choosing \) = BT and any A\? gives the

optimal cost, — ()\;X —aT ) BT < 0. To see this, let’s calculate costs associated
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with other choices of A} and A\Z. If A} > ST, maximization with respect to A7

would set the cost to co. If \Y' < BT, maximization with respect to AZ would set

A =0, and the cost would be — (A —aT) AY

7

at \Y = BT, given by — ()\ZX — aT) BT. Hence, our claim holds.

which is greater than its value

(b) Suppose A} = 0. For these terms, choosing A = 0 gives the optimal cost, 0.

Therefore, one assigns non-zero A to the the first min(k, m) terms in the sum. For

such terms \Y = BT and \? can take any value.

Summarizing this argument, we can state that:

AT, i < min(k, m) any non-negative value, i < min(k,m)

Y Z*
)‘i - ) )\7, -

0, otherwise 0, otherwise

(S.64)

optimizes the cost (S.63).
To reconstruct Y*, using (S.62) and (S.64) we rewrite the eigenvalue decomposition of
Y*TY*. Using AY* to denote optimal singular values defined by (S.64), and O pv+ to denote

an orthogonal matrix that commutes with AY*, we get:

YY" = V¥0,x0,-AY "0, 0L VX'
= VX0 AV O VY (S.65)

But,
[AY*,0px] =0. (S.66)

since if diagonal elements of A are degenerate, corresponding diagonal elements of AY* are

degenerate. Hence,
YY" = VEAY VYT (S.67)

These Y* matrices can be constructed as in (S.59): its columns are coordinates in the
arbitrarily rotated orthogonal basis spanning the k-dimensional principal subspace of XX
To reconstruct Z*, using (S.61) and (S.64) we rewrite the eigenvalue decomposition of

Z*"Z*. Using A?* to denote optimal singular values defined by (S.64), and Q,z+ to denote
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an orthogonal matrix that commutes with A%*, we get:

* * * * *T
27" =V Qpr- Qaz- AT Q2 Qv VY
= V7 Qur A7 QL VY (S.68)

Unlike before, [AZ*, Qav-] # 0 in general. Plugging in for V¥*, we get:
ZTZ* = V¥0prx0 v+ Qpv AZ*QXWOXWOIXVXT. (S.69)

This expression can be simplified further. Remembering that [AY*, Ox] = 0 from (S.66),
we can absorb the product OpaxOpy+Qpy+ into Opy+, a single orthogonal matrix that

commutes with AY",
77" = VX0, AZ*0,. VX, (S.70)

What is the structure of O,y+? Since AY" has top min(k, m) diagonals T and rest zero,
(S.64), O v+ has two blocks, first is min(k, m) dimensional and the second is T'— min(k, m)
dimensional. These Z* matrices can be constructed as in (S.38).

]

Remark 3A. Here we comment on the case [ < min(k,m). In the eigenvalue cost (S.63),
among the terms for which \;¥ > T, there will be cases where A7 is forced to be zero, while
Ay > 0. The cost for such terms are — (A¥ — aT') A, which minimizes when A} — co. We
found through numerical simulations that the corresponding online algorithm is unstable in

this regime.

Remark 3B. Here we comment on the case where « is an eigenvalue of C. Here we need to
consider optimization of terms for which A¥ = oT in the eigenvalue cost (S.63). The cost
for such terms are ()\ZY — BT) AZ which is optimized for any A} < ST and A\? = 0 with a
0 value for the cost. To see this, consider the other case A} > ST. Then the optimization
with respect to AZ would give oo cost. Hence, if & > m, or k < m and A\ = aT,Y € R¥>T
and Z € R™T constructed as in (S.59) are still optimal, however there are other optimal

solutions. Non-zero {\}'} corresponding to a eigenvalue of C can take values 0 < A} < oT.

Remark 3C. Here we comment on the case k < m and Ay = A\Y,. We first discuss how
optimal Y change. In this case, (S.66) is not generally true anymore, because while \¥ =

A, AL # Alq. Y matrices constructed as in (S.59) are still minima, as can be seen by
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choosing Opx = Ir for which (S.66) holds, but there are other solutions which cannot be
put in the form (S.59). We observe that blocks of O,x that do not correspond to A\;¥ still
commute with A¥*. Thus, when & < m and Ay = A,;, we can write the most general

solution as
Y= U AV O VY, (S.71)

where Uy, is a k x k orthogonal matrix, A}, is a k x T' diagonal matrix with its k diagonals
set to first k diagonals of AY*, and O ax isa T xT orthogonal matrix that is diagonal
except one block that corresponds to diagonal elements of AX that are degenerate with \;X.
Next we discuss how optimal Z change. In this case, while (S.69) is still true, (S.70) is not
generally true anymore, because (S.66) does not hold in general. Z matrices constructed as
in (S.59) are still minima, as can be seen by choosing O x = Iy for which (S.70) holds, but
there are other solutions which cannot be put in the form (S.59). We observe that blocks
of Opx that do not correspond to A still commute with AY*. Thus, when k& < m and

AX = )\§+1’ we can write the most general solution as
. . 1/2 T
zZ' = U AL 01,00, VYT, (S.72)

where Uj is an [ x [ orthogonal matrix, A7’ is a [ x T diagonal matrix with its [ diagonals
set to first [ diagonals of A%*, and O AX is a T' x T orthogonal matrix that is diagonal except

one block that corresponds to diagonal elements of AX that are degenerate with \;X.

V. FULL EXPRESSIONS FOR INPUT-TO-OUPUT MAPPING MATRICES

Here we give the full expressions for linear transformation that maps inputs, x7, to

outputs,
yr = Fr¥xr, zr = FZ2%x7. (S.73)

To do this, we find fixed points of the neural dynamics stages of the three algorithms.

A. Online soft-thresholding of eigenvalues

The neural dynamics stage of this algorithm is

yr < (1 =n)yr +n(Wr¥xe — Wilyr). (S.74)



At the fixed point of this iteration,
(Lo + W) yr = Wi¥xr,
and therefore

FIX = (I, + WQ) 7 wrx,

B. Online hard-thresholding of eigenvalues

The neural dynamics stage of this algorithm is

yr < (1=n)yr +n (Wi xe — Wi7zr),

zr < (1—n)zr +n (Wi yr — Wi7z7).
At the fixed point of this iteration,

YX YZ
Yr = WT X7 — WT Zr,

(Ik + W%Z) 7T — W%YyT,

and therefore

3 -1
Y = (Lo + WY (L + WE) T W2 ) Wi,
FZX = (I, + WZ%) WA RYX.

C. Online thresholding and equalization of eigenvalues

The neural dynamics stage of this algorithm is

yr < (L—=n)yr +1 (Wi¥xe — WiZz7),

zp — (1 —n)zr + W2 yr.
At the fixed point of this iteration,

YX YZ
Yr = WT X7 — WT Zr,

Y
Zr = WT Y1,
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(S.75)

(S.76)

(S.77)

(S.78)

(.79)

(S.80)

(S.81)



and therefore

FY = (L, + W2W2) 7 Wi,

ZX __ Y Y X
F7X = WAV FYX,

[1] R. A. Horn and C. R. Johnson, Matriz analysis (Cambridge university press, 2012).
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(S.82)



