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I. OPTIMAL ORTHOGONAL TRANSFORMATIONS FOR DIAGONAL

MATRIX ALIGNMENT

Here we reproduce Schur’s lemma [1] and prove two new lemmas that will be central to

our analysis in the coming sections.

Lemma (Schur’s lemma). Let λ1 ≥ . . . ≥ λp and D a p × p dimensional doubly stochastic
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matrix, i.e. a non-negative matrix whose rows and columns separately add to one. Then∑
ij

λiλ̂jDij ≤
p∑
j=1

λ̂jλj. (S.1)

Proof.∑
ij

λiλ̂jDij =

p∑
j=1

λ̂j

(
p∑
i=1

λiDij

)

=

p∑
j=1

(
λ̂j − λ̂j+1

) j∑
k=1

(
p∑
i=1

λiDik

)
(λ̂p+1 := 0)

=

p∑
j=1

(
λ̂j − λ̂j+1

) p∑
i=1

λi

j∑
k=1

Dik

=

p∑
j=1

(
λ̂j − λ̂j+1

)( p∑
i=1

(λi − λj)
j∑

k=1

Dik + λjj

)
(using

∑p
i=1Dik = 1)

≤
p∑
j=1

(
λ̂j − λ̂j+1

)( j∑
i=1

(λi − λj)
j∑

k=1

Dik + λjj

)
(using λi>j − λj ≤ 0)

=

p∑
j=1

(
λ̂j − λ̂j+1

)( j∑
i=1

λi

j∑
k=1

Dik + λj

j∑
i=1

(
1−

j∑
k=1

Dik

))

≤
p∑
j=1

(
λ̂j − λ̂j+1

)( j∑
i=1

λi

j∑
k=1

Dik +

j∑
i=1

λi

(
1−

j∑
k=1

Dik

))
(using λi≤j − λj ≥ 0 and 1−

∑j
k=1Dik ≥ 0)

=

p∑
j=1

(
λ̂j − λ̂j+1

) j∑
i=1

λi

=

p∑
j=1

λ̂jλj. (S.2)

Lemma 1. Let Λ = diag (λ1, . . . , λp), where λ1 ≥ . . . ≥ λp are real numbers, and let

Λ̂ = diag
(
λ̂1, . . . , λ̂p

)
, where λ̂1 ≥ . . . ≥ λ̂p are real numbers. Then,

max
O∈O(p)

Tr
(
ΛOΛ̂O>

)
= Tr

(
ΛΛ̂
)
, (S.3)

where O(p) is the set of p× p orthogonal matrices.

Proof. To prove the lemma, it is convenient to express the cost in terms of matrix elements:

Tr
(
ΛOΛ̂O>

)
=
∑
i,j

λiλ̂jO
2
ij (S.4)
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Now consider a matrix D, whose elements are given by Dij = O2
ij. Because O is orthog-

onal, D is doubly stochastic:
∑

iDij =
∑

iO
2
ij =

[
O>O

]
jj

= 1 and
∑

j Dij =
∑

j O
2
ij =[

OO>
]
ii

= 1. For any doubly stochastic matrix D, and decreasingly ordered {λi} and {λ̂i}

according to Schur’s lemma: ∑
i,j

λiλ̂jDij ≤
p∑
j=1

λ̂jλj. (S.5)

Using (S.4) and (S.5), we can conclude that

Tr
(
ΛOΛ̂O>

)
≤

p∑
i=1

λiλ̂i. (S.6)

The bound is saturated when O = Ip, which proves the Lemma 1.

Lemma 2. Let Λ = diag (λ1, . . . , λp), where λ1 ≥ . . . ≥ λp are real numbers, and let

Λ̂ = diag
(
λ̂1, . . . , λ̂p

)
, where λ̂1 ≥ . . . ≥ λ̂p are real numbers. Then,

arg min
O∈O(p)

∥∥∥Λ−OΛ̂O>
∥∥∥2

F
= arg max

O∈O(p)

Tr
(
ΛOΛ̂O>

)
, (S.7)

where O(p) is the set of p × p orthogonal matrices. Furthermore, an orthogonal matrix is

optimal if and only if it can be written as a product of two orthogonal matrices

O∗ = OΛOΛ̂, (S.8)

which commute with Λ and Λ̂ respectively:

[Λ,OΛ] = 0,
[
Λ̂,OΛ̂

]
= 0. (S.9)

Proof. The first equality in (S.7) follows from the definition of the Frobenius norm and

orthogonality of O:

arg min
O∈O(p)

∥∥∥Λ−OΛ̂O>
∥∥∥2

F
= arg min

O∈O(p)

Tr

[(
Λ−OΛ̂O>

)> (
Λ−OΛ̂O>

)]
= arg min

O∈O(p)

Tr
[
Λ2 − 2OΛ̂O>Λ + Λ̂2

]
= arg max

O∈O(p)

Tr
(
ΛOΛ̂O>

)
. (S.10)

It is easy to see that any matrix of the form (S.8) optimizes (S.10):

Tr
(
ΛOΛOΛ̂Λ̂O>

Λ̂
O>Λ

)
= Tr

(
OΛΛΛ̂OΛ̂O>

Λ̂
O>Λ

)
= Tr

(
ΛΛ̂>

)
, (S.11)
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which optimizes (S.10) according to Lemma 1.

To prove that all optimal orthogonal matrices are of the form (S.8), we take the following

steps:

1. Recall that any orthogonal matrix O must have det O = ±1. Orthogonal matrices

with det O = 1 are proper rotations which we denote by R. Orthogonal matrices with

det O = −1 are improper rotations which we denote by R̄.

Without loss of generality it suffices to prove our claim for proper rotations only. As

we show now, if all optimal proper rotations are of the form (S.8), then all optimal

improper rotations are also of the form (S.8).

Consider an optimal improper rotation R̄∗:

Tr
(
ΛR̄∗Λ̂R̄∗>

)
= Tr

(
ΛΛ̂
)
. (S.12)

Next, we define a one-to-one mapping between each improper rotation R̄ and a proper

rotation by multiplying R̄ on the right by the matrix diag (−1, 1, . . . , 1)

R ≡ diag (−1, 1, . . . , 1) R̄. (S.13)

Then,

Tr
(
ΛR∗Λ̂R∗>

)
= Tr

(
ΛR̄∗Λ̂R̄∗>

)
= Tr

(
ΛΛ̂
)
, (S.14)

and therefore R∗ is also optimal. If R∗ is of the form (S.8)

R∗ = OΛOΛ̂, (S.15)

then corresponding R̄∗,

R̄∗ = diag (−1, 1, . . . , 1) OΛOΛ̂ (S.16)

is also of the form (S.8), since diag (−1, 1, . . . , 1) OΛ commutes with Λ.

Hence, we only consider proper rotation matrices without loss of generality.

2. Consider an optimal proper rotation matrix R∗:

Tr
(
ΛR∗Λ̂R∗>

)
= Tr

(
ΛΛ̂
)
. (S.17)
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Proper rotations form a connected set, and can be parametrized by eA, where A is an

antisymmetric matrix. Suppose we rotate R∗ by an infinitesimal amount, i.e. eδAR∗:

Tr
(
ΛeδAR∗Λ̂R∗>e−δA

)
= Tr

(
Λ (I + δA) R∗Λ̂R∗> (I− δA)

)
+O(δ2)

= Tr
(
ΛR∗Λ̂R∗>

)
+ Tr

(
δA
(
R∗Λ̂R∗>Λ−ΛR∗Λ̂R∗>

))
+O(δ2) (S.18)

Since R∗ is maximal, the change in left had side must vanish to first order in δA:

0 = Tr
(
δA
(
R∗Λ̂R∗>Λ−ΛR∗Λ̂R∗>

))
=
∑

ij

δAij

[
R∗Λ̂R∗>Λ−ΛR∗Λ̂R∗>

]
ji

= 2
∑
i,j<i

δAij

[
R∗Λ̂R∗>Λ−ΛR∗Λ̂R∗>

]
ji
, (S.19)

where we used the antisymmetry of δA and of
(
R∗Λ̂R∗>Λ−ΛR∗Λ̂R∗>

)
. Since

δAi,j<i are independent perturbations, their coefficients
(
R∗Λ̂R∗>Λ−ΛR∗Λ̂R∗>

)
ji

must each be zero. From here we conclude that for maximal R∗

ΛR∗Λ̂R∗> −R∗Λ̂R∗>Λ =
[
Λ,R∗Λ̂R∗>

]
= 0. (S.20)

3. We will use (S.20) to prove our claim that all optimal proper rotation matrices are of

the form (S.8). We remind that if a matrix commutes with a diagonal matrix, it must

be block-diagonal. There is a separate block for each distinct diagonal element of the

diagonal matrix, and the size of the block is given by the degeneracy of the diagonal

element. Then,

BΛ ≡ R∗Λ̂R∗> (S.21)

is block diagonal with with blocks defined by the degenerate diagonal elements of Λ.

Further, singular values of BΛ are given by diagonals of Λ̂.

BΛ can be diagonalized by another orthogonal matrix., which is block diagonal with

the same blocks as in BΛ. However, such a block diagonal matrix would also commute

with Λ. Then, with notation from (S.8),

BΛ = OΛΛ̂O>Λ. (S.22)
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(S.21) and (S.22) imply [
Λ̂,O>ΛR∗

]
= 0. (S.23)

O>ΛR∗ is block diagonal with blocks defined by the degenerate diagonal elements of

Λ̂. With notation from (S.8),

O>ΛR∗ = OΛ̂, (S.24)

and hence

R∗ = OΛOΛ̂. (S.25)

Therefore we can conclude that all rotation matrices that optimize (S.3) are of the

form (S.8).

II. PROOF OF THEOREM 1 - SOFT-THRESHOLDING OF COVARIANCE

EIGENVALUES

We reproduce the offline objective function (3) for ease of referencing.

min
Y

∥∥X>X−Y>Y − αT IT
∥∥2

F
, (S.26)

where α ≥ 0, X ∈ Rn×T and Y ∈ Rk×T . Define m to be the number of eigenvalues of

C = 1
T
XX> greater than or equal to α

Now, we present the main result of this subsection and its proof.

Theorem 1. Suppose an eigen-decomposition of X>X = VXΛXVX>, where ΛX =

diag
(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT . Note that ΛX has at most n nonzero eigenval-

ues coinciding with those of TC. Then,

Y∗ = Uk STk(Λ
X , αT )1/2 VX

k

>
, (S.27)

are optima of (S.26), where STk(Λ
X , αT ) = diag

(
ST
(
λX1 , αT

)
, . . . , ST

(
λXk , αT

))
, ST is

the soft-thresholding function, ST(a, b) = max(a− b, 0), VX
k consists of the columns of VX

corresponding to the top k eigenvalues, i.e. VX
k =

[
vX1 , . . . ,v

X
k

]
and Uk is any k × k

orthogonal matrix, i.e. Uk ∈ O(k). The form (S.27) uniquely defines all optima of (S.26),

except when k < m, λXk > αT and λXk = λXk+1.
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Proof. Here we assume that if k < m and λXk > αT , then λXk 6= λXk+1, and prove that the

form (S.27) uniquely defines all optima of (S.26). The exceptional case of k < m, λXk > αT

and λXk = λXk+1 is treated in a remark below.

Since the cost (S.26) depends on Y only through the similarity matrix Y>Y, we first

optimize (S.26) with respect to Y>Y and then reconstruct the optimal Y. In turn we

optimize with respect to Y>Y considering eigendecomposition of Y>Y = VY ΛY VY >, and

finding optimal VY and ΛY separately.

We first optimize (S.26) with respect to VY ∈ O(T ) for fixed ΛY . Because the Frobenius

norm is invariant to orthogonal rotations, for any Y>Y, the objective (S.26) can be rewritten

as

∥∥X>X−Y>Y − αT IT
∥∥2

F
=
∥∥ΛX −OΛY O> − αT IT

∥∥2

F
, (S.28)

where O = VX>VY ∈ O(T ). The minimization with respect to VY is equivalent to a

minimization over O from which VY can be recovered uniquely by VXO. According to

Lemma 2, each orthogonal matrix O = VX>VY that is a product of two orthogonal matrices

O = OΛXOΛY with
[
ΛX − αT IT ,OΛX

]
= 0 and

[
ΛY ,OΛY

]
= 0, is optimal. Then, optimal

VY is given by

VY ∗ = VXOΛXOΛY . (S.29)

and the optimal value of (S.28) is:

T∑
i=1

(
λXi − λYi − αT

)2
. (S.30)

It remains to find optimal ΛY , which minimizes (S.30):

min
λY1 ,...,λ

Y
T

T∑
i=1

(
λXi − λYi − αT

)2
, (S.31)

where {λY1 , . . . , λYT } are non-negative and at most k of them are non-zero. Consider a term(
λXi − λYi − αT

)2
in the sum. If λXi ≤ αT , choosing a positive λYi will only increase the

term, hence optimal λYi = 0 for such terms. If λXi > αT , then choosing λYi = λXi − αT will

set the term to 0, i.e. its minimum. On the other hand, at most k of {λY1 , . . . , λYT } can be

non-zero. These k eigenvalues should be allocated to largest non-negative values of λXi −αT .
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Therefore, optimal {λY1 , . . . , λYT } are

λY ∗i =

 ST
(
λXi , αT

)
, i ≤ k

0, i > k
. (S.32)

To reconstruct Y∗, using (S.29) and (S.32) we rewrite the eigenvalue decomposition of

Y∗>Y∗. Using ΛY ∗ to denote optimal singular values defined by (S.32), and OΛY ∗ to denote

an orthogonal matrix that commutes with ΛY ∗, we get:

Y∗>Y∗ = VXOΛXOΛY ∗ΛY ∗O>ΛY ∗O>ΛXVX>

= VXOΛXΛY ∗O>ΛXVX>. (S.33)

Since if diagonal elements of ΛX are degenerate, the corresponding diagonal elements of ΛY ∗

must be degenerate

[
ΛY ∗,OΛX

]
= 0. (S.34)

Hence,

Y∗>Y∗ = VXΛY ∗VX>. (S.35)

These Y matrices can be constructed as in (S.27): its columns are coordinates in the arbi-

trarily rotated orthogonal basis spanning the k-dimensional principal subspace of XX>.

Remark 1. In the case k < m, λXk > αT and λXk = λXk+1, (S.34) is not generally true

anymore, because while λXk = λXk+1, λYk 6= λYk+1. Y matrices constructed as in (S.27) are

still minima, as can be seen by choosing OΛX = IT for which (S.34) holds, but there are

other solutions which cannot be put in the form (S.27). We observe that blocks of OΛX

that do not correspond to λXk still commute with ΛY ∗. Thus, when k < m, λXk > αT and

λXk = λXk+1, we can write the most general solution as

Y∗ = Uk ΛY ∗
k×T

1/2
O>ΛX

k
VX>, (S.36)

where Uk is a k×k orthogonal matrix, ΛY ∗
k×T is a k×T diagonal matrix with its k diagonals

set to first k diagonals of ΛY ∗, and OΛX
k

is a T ×T orthogonal matrix that is diagonal except

one block that corresponds to diagonal elements of ΛX that are degenerate with λXk .
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III. PROOF OF THEOREM 2 - HARD-THRESHOLDING OF COVARIANCE

EIGENVALUES

We reproduce the offline objective (6) for ease of referencing.

min
Y

max
Z

∥∥X>X−Y>Y
∥∥2

F
−
∥∥Y>Y − Z>Z− αT IT

∥∥2

F
, (S.37)

where α ≥ 0, X ∈ Rn×T , Y ∈ Rk×T and Z ∈ Rl×T . Let m be the number of eigenvalues C

greater than or equal to α.

Theorem 2. Suppose an eigen-decomposition of X>X = VXΛXVX>, where ΛX =

diag
(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT ≥ 0. Assume l ≥ min(k,m). Then,

Y∗ = Uk HTk(Λ
X , αT )1/2 VX

k

>
, Z∗ = Ul STl,min(k,m)(Λ

X , αT )1/2 VX
l

>
, (S.38)

are optima of (S.37), where HTk(Λ
X , αT ) = diag

(
HT

(
λX1 , αT

)
, . . . ,HT

(
λXk , αT

))
,

HT(a, b) = aΘ(a−b) with Θ() being the step function: Θ(a−b) = 1 if a ≥ b and Θ(a−b) = 0

if a < b, STl,min(k,m)(Λ
X , αT ) = diag

(
ST
(
λX1 , αT

)
, . . . , ST

(
λXmin(k,m), αT

)
, 0, . . . , 0︸ ︷︷ ︸
l−min(k,m)

)
,VX

p =

[
vX1 , . . . ,v

X
p

]
and Up ∈ O(p). The form (S.38) uniquely defines all optima (S.37) except

when either 1) α is an eigenvalue of C or 2) k < m and λXk = λXk+1.

Proof. Here we assume 1) l ≥ min(k,m), 2) α is not an eigenvalue of C and 3) if k < m,

then λXk 6= λXk+1. We prove that with these assumptions, the form (S.38) uniquely defines

all optima (S.37). Violations of these assumptions are treated in three remarks below.

The proof is similar to that of Theorem 1. Since the objective (S.37) depends on Y only

through the similarity matrix Y>Y and on Z through Z>Z, we first find optimal Y>Y and

Z>Z from which we reconstruct Y and Z. Our strategy is to start with eigendecompositions

of Y>Y = VY ΛY VY > and Z>Z = VZΛZVZ>, and find optimal VY , ΛY , VZ and ΛZ .

We first optimize (S.37) with respect to VY ∈ RT×T and VZ ∈ RT×T for fixed ΛY

and ΛZ . Because Frobenius norm is invariant under rotations, the terms in (S.37) can be

rewritten as ∥∥X>X−Y>Y
∥∥2

F
=
∥∥ΛX −OΛY O>

∥∥2

F
, (S.39)

and

−
∥∥Y>Y − Z>Z− αT IT

∥∥2

F
= −

∥∥ΛY −QΛZQ> − αT IT
∥∥2

F
, (S.40)
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where O = VX>VY ∈ O(T ) and where Q = VY >VZ ∈ O(T ). First, we maximize (S.37)

with respect to VZ , which enters via Q in (S.40). According to Lemma 2, any orthogonal

matrix Q = VY >VZ that is a product of two orthogonal matrices Q = QΛY QΛZ with[
ΛY − αT IT ,QΛY

]
= 0 and

[
ΛZ ,QΛZ

]
= 0, is optimal. Then, optimal VZ is given by

VZ∗ = VY QΛY QΛZ . (S.41)

and subsituting this expression into (S.40),

−
T∑
i=1

(
λYi − λZi − αT

)2
. (S.42)

Because the optimality of VZ∗ (S.41) holds for any VY the minimization of (S.41) with

respect to VY is reduced to (S.39). According to Lemma 2, any orthogonal matrix O =

VX>VY that is a product of two orthogonal matrices O = OΛXOΛY with
[
ΛX ,OΛX

]
= 0

and
[
ΛY ,OΛY

]
= 0, is optimal. Then, optimal VY is given by

VY ∗ = VXOΛXOΛY . (S.43)

For these choices of VY ∗ and VZ∗, the full objective (S.37) reduces to:

min
λY1 ,...,λ

Y
T

max
λZ1 ,...,λ

Z
T

T∑
i=1

[(
λXi − λYi

)2 −
(
λYi − αT − λZi

)2
]
, (S.44)

where {λZ1 , . . . , λZT } are constrained to be non-negative and at most l of them are non-zero,

and {λY1 , . . . , λYT } are also constrained to be non-negative and at most k of them are non-zero.

We analyze the terms in the sum separately:

1. Consider the i > m terms in the sum for which λXi < αT . For such terms, choosing

λYi = λZi = 0 gives the optimal cost, λXi
2 − α2T 2 < 0. To see this, let’s calculate costs

associated with other choices of λYi and λZi . Suppose λYi ≥ αT . Then, maximization

with respect to λZi would set
(
λYi − αT − λZi

)2
= 0 and therefore the cost would be(

λXi − λYi
)2 ≥ 0. Suppose λYi ≤ αT . Then, maximization with respect to λZi would

set λZi = 0, and the cost would be λXi
2 − α2T 2 + 2λYi

(
αT − λXi

)
. This is minimized

for λYi = 0. Hence, our claim holds.

2. Consider the i ≤ m terms in the sum for which λXi > αT . Since λYi>m = λZi>m = 0,

and we assumed l ≥ m, we can assign all λZi≤m to non-zero values if needed. On the

other hand, k can be less than m and we might be forced to set some λYi≤m to zero.
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(a) Suppose λYi > 0. For these terms, choosing λYi = λXi and λZi = λXi − αT gives

the optimal cost, 0. To see this, let’s calculate costs associated with other choices

of λYi and λZi . If λYi > λXi , or αT ≤ λYi < λXi maximization with respect to λZi

would set
(
λYi − αT − λZi

)2
= 0 and therefore the cost would be

(
λXi − λYi

)2
> 0.

If λYi < αT , maximization with respect to λZi would set λZi = 0, and the cost

would be λXi
2 − α2T 2 − 2λYi

(
λXi − αT

)
. This cost is greater than its value at

λYi = αT , which is
(
λXi − αT

)2
> 0. Hence, our claim holds.

(b) Suppose λYi = 0. For these terms, choosing λZi = 0 gives the optimal cost,

λXi
2 − α2T 2 > 0.

Therefore, one assigns non-zero λYi to the the first min(k,m) terms in the sum. For

such terms λYi = λXi and λZi = λXi − αT . λYi = λZi = 0 otherwise.

Summarizing this argument, we can state that:

λY ∗i =

 HT
(
λXi , αT

)
, i ≤ min(k,m)

0, otherwise
, λZ∗i =

 ST
(
λXi , αT

)
, i ≤ min(k,m)

0, otherwise

(S.45)

optimizes the cost (S.44).

To reconstruct Y∗, using (S.43) and (S.45) we rewrite the eigenvalue decomposition of

Y∗>Y∗. Using ΛY ∗ to denote optimal singular values defined by (S.45), and OΛY ∗ to denote

an orthogonal matrix that commutes with ΛY ∗, we get:

Y∗>Y∗ = VXOΛXOΛY ∗ΛY ∗O>ΛY ∗O>ΛXVX>

= VXOΛXΛY ∗O>ΛXVX>. (S.46)

But, [
ΛY ∗,OΛX

]
= 0. (S.47)

since if diagonal elements of ΛX are degenerate, corresponding diagonal elements of ΛY ∗ are

degenerate. Hence,

Y∗>Y∗ = VXΛY ∗VX>. (S.48)

These Y∗ matrices can be constructed as in (S.38): its columns are coordinates in the

arbitrarily rotated orthogonal basis spanning the k-dimensional principal subspace of XX>.
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To reconstruct Z∗, using (S.41) and (S.45) we rewrite the eigenvalue decomposition of

Z∗>Z∗. Using ΛZ∗ to denote optimal singular values defined by (S.45), and QΛZ∗ to denote

an orthogonal matrix that commutes with ΛZ∗, we get:

Z∗>Z∗ = VY ∗QΛY ∗QΛZ∗ΛZ∗Q>ΛZ∗Q>ΛY ∗VY ∗>

= VY ∗QΛY ∗ΛZ∗Q>ΛY ∗VY ∗>. (S.49)

But, [
ΛZ∗,QΛY ∗

]
= 0. (S.50)

since if diagonal elements of ΛY ∗ are degenerate, corresponding diagonal elements of ΛZ∗

are degenerate . Hence,

Z∗>Z∗ = VY ∗
ΛZ∗VY ∗>

. (S.51)

Plugging in for VY ∗
, one gets

Z∗>Z∗ = VXOΛXOΛY ∗ΛZ∗O>ΛY ∗O>ΛXVX>. (S.52)

But, [
ΛZ∗,OΛY ∗

]
= 0 (S.53)

and [
ΛZ∗,OΛX

]
= 0. (S.54)

since if diagonal elements of ΛY ∗ are degenerate, corresponding diagonal elements of ΛZ∗ are

degenerate and if diagonal elements of ΛX are degenerate, corresponding diagonal elements

ΛZ∗ are degenerate. Then,

Z∗>Z∗ = VXΛZ∗VX>. (S.55)

These Z∗ matrices can be constructed as in (S.38).

Remark 2A. Here we comment on the case l < min(k,m). In the eigenvalue cost (S.44),

among the terms for which λXi > αT , there will be cases where λZi is forced to be zero, while

λYi ≥ 0. The cost for such terms are λXi
2 − α2T 2 − 2λYi

(
λXi − αT

)
, which minimizes when

λYi →∞. We found through numerical simulations that the corresponding online algorithm

is unstable in this regime.
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Remark 2B. Here we comment on the case where α is an eigenvalue of C. Here we need

to consider optimization of terms for which λXi = αT in the eigenvalue cost (S.44). The

cost for such terms are 2λZi
(
λYi − αT

)
− λZi

2
, which is optimized for any λYi ≤ αT and

λZi = 0 with a 0 value for the cost. To see this, consider the other case λYi > αT . Then

the optimization with respect to λZi would give λZi = λYi − αT and the cost of the term

would be
(
λYi − αT

)2
> 0, which would be suboptimal. Hence, if k ≥ m, or k < m and

λXk = αT , Y ∈ Rk×T and Z ∈ Rl×T constructed as in (S.38) are still optimal, however there

are other optimal solutions. Non-zero {λYi } corresponding to α eigenvalue of C can take

values 0 ≤ λYi ≤ αT .

Remark 2C. Here we comment on the case k < m and λXk = λXk+1. We first discuss how

optimal Y change. In this case, (S.47) is not generally true anymore, because while λXk =

λXk+1, λYk 6= λYk+1. Y matrices constructed as in (S.38) are still minima, as can be seen by

choosing OΛX = IT for which (S.47) holds, but there are other solutions which cannot be

put in the form (S.38). We observe that blocks of OΛX that do not correspond to λXk still

commute with ΛY ∗. Thus, when k < m and λXk = λXk+1, we can write the most general

solution as

Y∗ = Uk ΛY ∗
k×T

1/2
O>ΛX

k
VX>, (S.56)

where Uk is a k×k orthogonal matrix, ΛY ∗
k×T is a k×T diagonal matrix with its k diagonals

set to first k diagonals of ΛY ∗, and OΛX
k

is a T × T orthogonal matrix that is diagonal

except one block that corresponds to diagonal elements of ΛX that are degenerate with λXk .

Next we discuss how optimal Z change. In this case, while (S.53) is still true, (S.54) is not

generally true anymore, because while λXk = λXk+1, λZk 6= λZk+1. Z matrices constructed as in

(S.38) are still minima, as can be seen by choosing OΛX = IT for which (S.54) holds, but

there are other solutions which cannot be put in the form (S.38). We observe that blocks

of OΛX that do not correspond to λXk still commute with ΛZ∗. Thus, when k < m and

λXk = λXk+1, we can write the most general solution as

Z∗ = Ul Λ
Z∗
l×T

1/2
O>ΛX

k
VX>, (S.57)

where Ul is an l× l orthogonal matrix, ΛZ∗
l×T is a l× T diagonal matrix with its l diagonals

set to first l diagonals of ΛZ∗, and OΛX
l

is a T ×T orthogonal matrix that is diagonal except

one block that corresponds to diagonal elements of ΛX that are degenerate with λXk .
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IV. PROOF OF THEOREM 3 - THRESHOLDING AND EQUALIZATION OF

COVARIANCE EIGENVALUES

We reproduce the offline objective (8) for ease of referencing:

min
Y

max
Z

Tr
[
−X>XY>Y + Y>YZ>Z + αTY>Y − βTZ>Z

]
, (S.58)

where α ≥ 0 and β ≥ 0. Let m be the number of eigenvalues C greater than α.

Theorem 3. Suppose an eigen-decomposition of X>X is X>X = VXΛXVX>, where ΛX =

diag
(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT ≥ 0. Assume l ≥ min(k,m). Then,

Y∗ = Uk

√
βT Θk(Λ

X , αT )1/2 VX
k

>
, Z∗ = Ul Σl×TOΛY ∗VX>, (S.59)

are optima of (S.58), where Θk(Λ
X , αT ) = diag

(
Θ
(
λX1 − αT

)
, . . . ,Θ

(
λXk − αT

))
, Σl×T

is an l × T rectangular diagonal matrix with top min(k,m) diagonals are set to arbitrary

nonnegative constants and the rest are zero, OΛY ∗ is a block-diagonal orthogonal matrix that

has two blocks: the top block is min(k,m) dimensional and the bottom block is T −min(k,m)

dimensional, Vp =
[
vX1 , . . . ,v

X
p

]
, and Up ∈ O(p). The form (S.59) uniquely defines all

optima of (S.58) except when either 1) α is an eigenvalue of C or 2) k < m and λXk = λXk+1.

Proof. Here we assume 1) l ≥ min(k,m), 2) α is not an eigenvalue of C and 3) if k < m,

then λXk 6= λXk+1. We prove that with these assumptions, the form (S.59) uniquely defines

all optima (S.58). Violations of these assumptions are treated in three remarks below.

The proof is similar to that of Theorem 1. Since the cost (S.58) depends on Y only

through the similarity matrix Y>Y and Z through Z>Z, we find optimizing Y>Y and Z>Z

from which we reconstruct Y and Z. Our strategy is to start with eigendecompositions of

Y>Y = VY ΛY VY > and Z>Z = VZΛZVZ>, and find optimal VY , ΛY , VZ and ΛZ .

We first optimize for VY ∈ RT×T and VZ ∈ RT×T for fixed ΛY and ΛZ . Because

Frobenius norm is invariant under rotations, the terms in objective (S.59) can be rewritten

as

Tr
[
−
(
ΛX − αT IT

)
OΛY O> +

(
ΛY − βT IT

)
QΛZQ>

]
, (S.60)

where O = VX>VY ∈ O(T ) and where Q = VY >VZ ∈ O(T ). First, we do the maximiza-

tion over VZ , which entails the second term of (S.60). According to Lemma 2, all orthogonal
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matrices Q = VY >VZ that are a product of two orthogonal matrices Q = QΛY QΛZ with[
ΛY − βT IT ,QΛY

]
= 0 and

[
ΛZ ,QΛZ

]
= 0, are optimal. Then, optimal VZ are given by

VZ∗ = VY QΛY QΛZ . (S.61)

For this choice of VZ , the second term in (S.60) is Tr
((

ΛY − βT IT
)

ΛZ
)

and therefore

the minimization over VY only entails the first term in (S.60). According to Lemma 2,

all orthogonal matrices O = VX>VY that are a product of two orthogonal matrices O =

OΛXOΛY with
[
ΛX ,OΛX

]
= 0 and

[
ΛY ,OΛY

]
= 0, are optimal. Then, optimal VY are

given by

VY ∗ = VXOΛXOΛY . (S.62)

For these choices of VY ∗ and VZ∗, the full objective (S.58) reduces to:

min
λY1 ,...,λ

Y
T

max
λZ1 ,...,λ

Z
T

T∑
i=1

[
−
(
λXi − αT

)
λYi +

(
λYi − βT

)
λZi
]
, (S.63)

where {λZ1 , . . . , λZT } are constrained to be non-negative and at most l of them are non-zero,

and {λY1 , . . . , λYT } are also constrained to be non-negative and at most k of them are non-zero.

We analyze the terms in the sum separately:

1. Consider the i > m terms in the sum for which λXi < αT . For such terms, choosing

λYi = λZi = 0 gives the optimal cost, 0. To see this, let’s calculate costs associated with

other choices of λYi and λZi . Suppose λYi > βT . Then, maximization with respect to

λZi would set the cost to ∞. Suppose λYi = βT . Then, the coefficient in front of λZi is

0, and the cost is −
(
λXi − αT

)
βT > 0. Suppose λYi < βT . Then, maximization with

respect to λZi would set λZi = 0 and the cost is −
(
λXi − αT

)
λYi , which is minimal at

λYi = 0. Hence, our claim holds.

2. Consider the i ≤ m terms in the sum for which λXi > αT . Note that we assumed α is

not an eigenvalue of C, therefore we omit the equality case. Since λYi>m = λZi>m = 0,

and we assumed l ≥ m, we can assign all λZi≤m to non-zero values if needed. On the

other hand, k can be less than m and we might be forced to set some λYi≤m to zero.

(a) Suppose λYi > 0. For these terms, choosing λYi = βT and any λZi gives the

optimal cost, −
(
λXi − αT

)
βT < 0. To see this, let’s calculate costs associated
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with other choices of λYi and λZi . If λYi > βT , maximization with respect to λZi

would set the cost to∞. If λYi < βT , maximization with respect to λZi would set

λZi = 0, and the cost would be −
(
λXi − αT

)
λYi , which is greater than its value

at λYi = βT , given by −
(
λXi − αT

)
βT . Hence, our claim holds.

(b) Suppose λYi = 0. For these terms, choosing λZi = 0 gives the optimal cost, 0.

Therefore, one assigns non-zero λYi to the the first min(k,m) terms in the sum. For

such terms λYi = βT and λZi can take any value.

Summarizing this argument, we can state that:

λY ∗i =

 βT, i ≤ min(k,m)

0, otherwise
, λZ∗i =

 any non-negative value, i ≤ min(k,m)

0, otherwise

(S.64)

optimizes the cost (S.63).

To reconstruct Y∗, using (S.62) and (S.64) we rewrite the eigenvalue decomposition of

Y∗>Y∗. Using ΛY ∗ to denote optimal singular values defined by (S.64), and OΛY ∗ to denote

an orthogonal matrix that commutes with ΛY ∗, we get:

Y∗>Y∗ = VXOΛXOΛY ∗ΛY ∗O>ΛY ∗O>ΛXVX>

= VXOΛXΛY ∗O>ΛXVX>. (S.65)

But,

[
ΛY ∗,OΛX

]
= 0. (S.66)

since if diagonal elements of ΛX are degenerate, corresponding diagonal elements of ΛY ∗ are

degenerate. Hence,

Y∗>Y∗ = VXΛY ∗VX>. (S.67)

These Y∗ matrices can be constructed as in (S.59): its columns are coordinates in the

arbitrarily rotated orthogonal basis spanning the k-dimensional principal subspace of XX>.

To reconstruct Z∗, using (S.61) and (S.64) we rewrite the eigenvalue decomposition of

Z∗>Z∗. Using ΛZ∗ to denote optimal singular values defined by (S.64), and QΛZ∗ to denote
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an orthogonal matrix that commutes with ΛZ∗, we get:

Z∗>Z∗ = VY ∗QΛY ∗QΛZ∗ΛZ∗Q>ΛZ∗Q>ΛY ∗VY ∗>

= VY ∗QΛY ∗ΛZ∗Q>ΛY ∗VY ∗>. (S.68)

Unlike before,
[
ΛZ∗,QΛY ∗

]
6= 0 in general. Plugging in for VY ∗, we get:

Z∗>Z∗ = VXOΛXOΛY ∗QΛY ∗ΛZ∗Q>ΛY ∗O>ΛY ∗O>ΛXVX>. (S.69)

This expression can be simplified further. Remembering that
[
ΛY ∗,OΛX

]
= 0 from (S.66),

we can absorb the product OΛXOΛY ∗QΛY ∗ into OΛY ∗ , a single orthogonal matrix that

commutes with ΛY ∗
,

Z∗>Z∗ = VXOΛY ∗ΛZ∗O>ΛY ∗VX>. (S.70)

What is the structure of OΛY ∗? Since ΛY ∗
has top min(k,m) diagonals βT and rest zero,

(S.64), OΛY ∗ has two blocks, first is min(k,m) dimensional and the second is T −min(k,m)

dimensional. These Z∗ matrices can be constructed as in (S.38).

Remark 3A. Here we comment on the case l < min(k,m). In the eigenvalue cost (S.63),

among the terms for which λXi > αT , there will be cases where λZi is forced to be zero, while

λYi ≥ 0. The cost for such terms are −
(
λXi − αT

)
λYi , which minimizes when λYi →∞. We

found through numerical simulations that the corresponding online algorithm is unstable in

this regime.

Remark 3B. Here we comment on the case where α is an eigenvalue of C. Here we need to

consider optimization of terms for which λXi = αT in the eigenvalue cost (S.63). The cost

for such terms are
(
λYi − βT

)
λZi , which is optimized for any λYi ≤ βT and λZi = 0 with a

0 value for the cost. To see this, consider the other case λYi > βT . Then the optimization

with respect to λZi would give ∞ cost. Hence, if k > m, or k < m and λXk = αT , Y ∈ Rk×T

and Z ∈ Rl×T constructed as in (S.59) are still optimal, however there are other optimal

solutions. Non-zero {λYi } corresponding to α eigenvalue of C can take values 0 ≤ λYi ≤ αT .

Remark 3C. Here we comment on the case k < m and λXk = λXk+1. We first discuss how

optimal Y change. In this case, (S.66) is not generally true anymore, because while λXk =

λXk+1, λYk 6= λYk+1. Y matrices constructed as in (S.59) are still minima, as can be seen by
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choosing OΛX = IT for which (S.66) holds, but there are other solutions which cannot be

put in the form (S.59). We observe that blocks of OΛX that do not correspond to λXk still

commute with ΛY ∗. Thus, when k < m and λXk = λXk+1, we can write the most general

solution as

Y∗ = Uk ΛY ∗
k×T

1/2
O>ΛX

k
VX>, (S.71)

where Uk is a k×k orthogonal matrix, ΛY ∗
k×T is a k×T diagonal matrix with its k diagonals

set to first k diagonals of ΛY ∗, and OΛX
k

is a T × T orthogonal matrix that is diagonal

except one block that corresponds to diagonal elements of ΛX that are degenerate with λXk .

Next we discuss how optimal Z change. In this case, while (S.69) is still true, (S.70) is not

generally true anymore, because (S.66) does not hold in general. Z matrices constructed as

in (S.59) are still minima, as can be seen by choosing OΛX = IT for which (S.70) holds, but

there are other solutions which cannot be put in the form (S.59). We observe that blocks

of OΛX that do not correspond to λXk still commute with ΛY ∗. Thus, when k < m and

λXk = λXk+1, we can write the most general solution as

Z∗ = Ul Λ
Z∗
l×T

1/2
O>ΛX

k
O>ΛY ∗V

X>, (S.72)

where Ul is an l× l orthogonal matrix, ΛZ∗
l×T is a l× T diagonal matrix with its l diagonals

set to first l diagonals of ΛZ∗, and OΛX
k

is a T ×T orthogonal matrix that is diagonal except

one block that corresponds to diagonal elements of ΛX that are degenerate with λXk .

V. FULL EXPRESSIONS FOR INPUT-TO-OUPUT MAPPING MATRICES

Here we give the full expressions for linear transformation that maps inputs, xT , to

outputs,

yT = FY X
T xT , zT = FZX

T xT . (S.73)

To do this, we find fixed points of the neural dynamics stages of the three algorithms.

A. Online soft-thresholding of eigenvalues

The neural dynamics stage of this algorithm is

yT ← (1− η) yT + η
(
WY X

T xT −WY Y
T yT

)
. (S.74)
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At the fixed point of this iteration,

(
Im + WY Y

T

)
yT = WY X

T xT , (S.75)

and therefore

FY X
T =

(
Im + WY Y

T

)−1
WY X

T . (S.76)

B. Online hard-thresholding of eigenvalues

The neural dynamics stage of this algorithm is

yT ← (1− η) yT + η
(
WY X

T xT −WY Z
T zT

)
,

zT ← (1− η) zT + η
(
WZY

T yT −WZZ
T zT

)
. (S.77)

At the fixed point of this iteration,

yT = WY X
T xT −WY Z

T zT ,(
Ik + WZZ

T

)
zT = WZY

T yT , (S.78)

and therefore

FY X
T =

(
Im + WY Z

(
Ik + WZZ

T

)−1
WZY

)−1

WY X
T ,

FZX
T =

(
Ik + WZZ

T

)−1
WZY

T FY X
T . (S.79)

C. Online thresholding and equalization of eigenvalues

The neural dynamics stage of this algorithm is

yT ← (1− η) yT + η
(
WY X

T xT −WY Z
T zT

)
,

zT ← (1− η) zT + ηWZY
T yT . (S.80)

At the fixed point of this iteration,

yT = WY X
T xT −WY Z

T zT ,

zT = WZY
T yT , (S.81)
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and therefore

FY X
T =

(
Im + WY ZWZY

)−1
WY X

T ,

FZX
T = WZY

T FY X
T . (S.82)
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