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Abstract

In this supplementary file, we will first present the definition of covering numbers.
Then, we provide the proof of the symmetrization lemma and correctness of CC-
DP appeared in the main paper. After that, we present the details of the CC-Greedy
algorithm and conduct the running time complexity analysis for all the methods
used in the main paper. Finally, we present the statistics on the data sets used in
the paper and some results.

1 Covering numbers

Definition 1 (Covering Numbers). Let (X, d) be a (pseudo-) metric space, A be a subset of X and
ϵ > 0. A set B ⊆ X is an ϵ-cover for A, if for every a ∈ A, there exists b ∈ B such that d(a, b) < ϵ.
The ϵ-covering number of A, Nd(ϵ, A), is the minimal cardinality of an ϵ-cover for A (if there is no
such finite cover then it is defined to be ∞).

In the main paper, suppose N (ϵ,H, s) be the ϵ-covering number of H with respect to the l∞ pseudo-
metric measuring the maximum discrepancy on the sample s, that is, with respect to the distance
d(f, g) = max1≤t≤m |f(xt)− g(xt)|, for f, g ∈ H.

2 Proof of Lemma 2

Lemma 2 (Symmetrization). Let H be the real valued function class. s and s̄ are m samples both
drawn independently according to the unknown distribution D. If mϵ2 ≥ 2, then

Ps(sup
h∈H

|erD[h]− ers[h]| ≥ ϵ) ≤ 2Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ϵ/2) (1)

Proof. (of Lemma 2). For each s, let h̄s be a function for which |erD[h̄s] − ers[h̄s]| ≥ ϵ if such a
function exists, and any fixed function in H otherwise. Then

Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ϵ/2) ≥Ps̄s(|ers̄[h̄s]− ers[h̄s]| ≥ ϵ/2)

≥Ps̄s({|erD[h̄s]− ers[h̄s]| ≥ ϵ}
∩

{|ers̄[h̄s]− erD[h̄s]| ≤ ϵ/2})

=Es[[(|erD[h̄s]− ers[h̄s]| ≥ ϵ)]Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ϵ/2)]
(2)

Now the conditional probability inside can be bounded using Chebyshev’s inequality:

Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ϵ/2) ≥ 1− Vars̄[ers̄[h̄s]]

ϵ2/4
(3)
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Since s̄ ∼ Dm and ers̄[h̄s] is 1/m times a Binomial random variable with parameters (m, erD[h̄s]),
we have Vars̄[ers̄[h̄s]] =

erD[h̄s](1−erD[h̄s])
m ≤ 1

4m . This gives

Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ϵ/2) ≥ 1− 1

mϵ2
≥ 1

2
(4)

whenever mϵ2 ≥ 2. Thus we get

Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ϵ/2) ≥1

2
Ps(|erD[h̄s]− ers[h̄s]| ≥ ϵ)

=
1

2
Ps(sup

h∈H
|erD[h]− ers[h]| ≥ ϵ)

(5)

where the last step of Eq. (5) is by definition of h̄s.

3 Proof of Theorem 3

Recall that in the main paper, given label set M = {λ1, λ2, · · · , λq}, suppose a GCC model contains
q classifiers. Let oi(1 ≤ oi ≤ q) denote the order of λi is the GCC model, γoii represent the margin
for label λi, with previous oi − 1 labels as the augmented input. If oi = 1, then γ1i represent the
margin for label λi, without augmented input. ThenQ′ is defined asQ′ =

∑q
i=1

1
(γ

oi
i )2

. We propose

CC-DP algorithm in the main paper to find the globally optimal label order, which can minimizeQ′.
Assume i ∈ {1, · · · , q}. Let V (i, η) be the optimal Q′ over a subset of M with the length of
η(1 ≤ η ≤ q), where the label order is ending by label λi. SupposeMη

i represent the corresponding
label set for V (i, η). When η = q, V (i, q) be the optimalQ′ over M, where the label order is ending
by label λi. The DP Equation can be written as:

V (i, η + 1) = min
j ̸=i,λi ̸∈Mη

j

{ 1

(γη+1
i )2

+ V (j, η)} (6)

where γη+1
i is the margin for label λi, with Mη

j as the augmented input. The initial condition of
DP is: V (i, 1) = 1

(γ1
i )

2 and M1
i = {λi}. Then, the optimal Q′ over M can be obtained by solving

mini∈{1,··· ,q} V (i, q). Assume that the training of linear SVM takes O(nd) time complexity, we
iteratively solve this DP Equation to get the optimal solution, which requires at most O(q3nd) time
complexity and we have the following theorem:

Theorem 3 (Correctness of CC-DP). Q′ can be minimized by CC-DP, which means this Algorithm
can find the globally optimal CC.

Proof. (of Theorem 3). We proof the theorem using the mathematical induction. For i ∈ {1, · · · , q},

Case 1: V (i, 1) = 1
(γ1

i )
2 , where γ1i is the margin for label λi, without augmented input and M1

i =

{λi}.

Case 2: V (i, 2) = minj ̸=i,λi ̸∈M1
j
{( 1

(γ2
i )

2 + V (j, 1)}, where γ2i is the margin for label λi, with

M1
j as the augmented input. As in case 1, we already calculated V (i, 1), so we can easily find the

solution of V (i, 2). Assume V (j, 1) is the optimal value for computing V (i, 2), then we can get
M2

i =M1
j ∪ {λi}.

Case 3: Assume V (i, k − 1), k ≤ q is the optimal Q′ over a subset of M with the length of
k − 1, where the label order is ending by label λi and Mk−1

i denote the corresponding label set for
V (i, k − 1).

Case 4: V (i, k) = minj ̸=i,λi ̸∈Mk−1
j

{ 1
(γk

i )
2 + V (j, k − 1)}, where γki is the margin for label λi,

with Mk−1
j as the augmented input. Based on the assumption in case 3, we can obtain V (i, k), i ∈

{1, · · · , q}. Thus, we can find the optimal Q′ over M by using CC-DP algorithm.

2



Table 1: Time complexity.

Method Training time complexity Testing time complexity

BR,CC,ECC O(ndq) O(dq)
CCA O(ψ3 + n(d2 + q2 + dq)) O(q3)
MMOC O(nq3 + nq2d+ n4) O(q3)
CC-Greedy O(q2nd) O(dq)
CC-DP O(q3nd) O(dq)

4 CC-Greedy algorithm

To speed up the CC-DP algorithm, we propose a CC-Greedy algorithm to find a locally optimal CC.

Based on the training instances, we select the label from {λ1, λ2, · · · , λq} as the first label, the
maximum margin can be achieved over this label, without augmented input. The first label is denoted
by ζ1. Then, we select the label from the remainder as the second label, if the maximum margin can
be achieved over this label with ζ1 as the augmented input. We continue in this way until the last
label is selected. Finally, this algorithm will converge to the locally optimal CC, which requires at
most O(q2nd) time complexity. This section present the details of CC-Greedy algorithm:

Algorithm 1 Greedy algorithm for locally optimal CC (CC-Greedy)
Input: training data {xt, yt}nt=1 with size n and label set {λ1, λ2, · · · , λq}.
Set M = {λ1, λ2, · · · , λq}.
for λj ∈ M do

Calculate [wj , b] = SVM({xt}nt=1, {yt(λj)}nt=1).
Calculate γ1j using Eq. (1) in the main paper.

end for
Calculate ν = argλj∈M min 1

(γ1
j )

2 .

Set M = M−{λν}
Set Q[1] = 1

(γ1
ν)

2 .
Set C[1] = λν .
for s = 2 to q do

for λk ∈ M do
Calculate [wk, b] = SVM({xt, yt(C[1]), · · · , yt(C[s− 1])}nt=1, {yt(λk)}nt=1).
Calculate γsk using Eq. (1) in the main paper.

end for
Calculate ν = argλk∈M min 1

(γs
k)

2 .
Set M = M−{λν}.
Set Q[s] = Q[s− 1] + 1

(γs
ν)

2 .
Set C[s] = λν .

end for
Output this locally optimal CC.

5 Complexity analysis

Assume that the training of linear SVM takes O(nd) time complexity. Following the running time
analysis in [1], assume q < d, CC will takes O(ndq) time complexity. Let ψ = max{n, d}. Table
1 reports the training and testing time complexity of the methods used in the main paper. From
Table 1, we can see that our proposed algorithms are much faster than CCA and MMOC in terms of
both training and testing time complexity, and achieve the same testing time complexity with BR,
CC and ECC. Through the training time for our algorithms is slower than BR, CC and ECC. Our
extensive empirical studies demonstrate that our algorithms achieve superior performance than those
baselines.
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Table 2: Data sets used in the experiments.

Data # inst. # attr. # labels Domain

yeast 2,417 103 14 biology
image 2,000 294 5 image
slashdot 3,782 1,079 22 text
enron 1,702 1,001 53 text
LLog 10 799 1,004 10 linguistics
yahoo art 10 6,849 23,146 10 art
eurlex sm 10 11,454 5,000 10 text
eurlex ed 10 6,540 5,000 10 text

6 Data sets and results

In this section, we will report the statistics on the data sets used in the main paper and some experi-
ment results.

6.1 Data sets

We conduct experiments on eight real-world data sets with various domains from three different
websites.123 Following the experimental settings in [2] and [3], we preprocess the LLog, yahoo art,
eurlex sm and eurlex ed data sets. The statistics on those data sets are presented in Table 2.

6.2 Macro-F1 and Micro-F1 results

We consider the following evaluation measurements [4] to measure the prediction performance of
all methods fairly:

• Example-F1: computes the F-1 score for all the labels of each testing sample and then takes
the average of the F-1 score.

• Macro-F1: calculates the F-1 score for each label and then takes the average of the F-1
score.

• Micro-F1: computes true positives, true negatives, false positives and false negatives over
all labels, and then calculates an overall F-1 score.

The larger the value of those measurements, the better the performance. We perform 5-fold cross-
validation on each data set and report the mean and standard error of each evaluation measurement.

The results of Macro-F1 and Micro-F1 for our method and baseline approaches in respect of the
different data sets are reported in Tables 3 and 4. From the results, we can see that:

• BR generally underperforms in terms of Macro-F1 and Micro-F1.
• CC and ECC improves the performance of BR. They outperform CCA and MMOC in terms

of Macro-F1, however, they underperform CCA and MMOC in terms of Micro-F1. This
means CC and ECC are sensitive to the measurements.

• CC-DP outperforms CCA and MMOC stably. This studies verify that optimal CC achieve
competitive results compared with state-of-the-art encoding-decoding approaches.

• CC-Greedy and CC-DP achieve more accurate performance than CC and ECC. This em-
pirical result also verifies the answers to the last two questions stated in the main paper: the
globally optimal CC exists and CC-DP can find the globally optimal CC which achieves
the best prediction performance; the CC-Greedy algorithm achieves comparable prediction
performance with CC-DP, while it requires lower time complexity than CC-DP.

1http://mulan.sourceforge.net
2http://meka.sourceforge.net/#datasets
3http://cse.seu.edu.cn/people/zhangml/Resources.htm#data
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Table 3: Results of Macro-F1 on the various data sets (mean ± standard deviation). The best results
are in bold. Numbers in square brackets indicate the rank.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP

yeast 0.3543 ± 0.014[4] 0.3993± 0.027[1] 0.3763± 0.015[2] 0.3496 ± 0.017[5] 0.3431 ± 0.016[7] 0.3441± 0.016[6] 0.3596± 0.020[3]
image 0.5852 ± 0.012[7] 0.6013± 0.018[1] 0.5988± 0.010[4] 0.6010 ± 0.009[2] 0.5975 ± 0.007[6] 0.5987± 0.019[5] 0.6010± 0.014[2]
slashdot 0.3416 ± 0.014[4] 0.3485± 0.015[2] 0.3331± 0.011[7] 0.3512 ± 0.018[1] 0.3334 ± 0.009[6] 0.3431± 0.010[3] 0.3408± 0.008[5]
enron 0.2089 ± 0.024[2] 0.2066± 0.022[5] 0.2088± 0.022[3] 0.1594 ± 0.027[6] 0.1539 ± 0.017[7] 0.2090± 0.024[1] 0.2082± 0.022[4]
LLog 10 0.3452 ± 0.030[2] 0.3428± 0.033[4] 0.3425± 0.039[5] 0.3189 ± 0.035[7] 0.3303 ± 0.040[6] 0.3448± 0.032[3] 0.3471± 0.035[1]
yahoo art 10 0.4836 ± 0.014[4] 0.4816± 0.013[5] 0.4851± 0.015[3] - - 0.4876± 0.012[2] 0.4884± 0.015[1]
eurlex sm 10 0.8546 ± 0.002[5] 0.8558± 0.002[2] 0.8554± 0.002[3] - - 0.8550± 0.002[4] 0.8559± 0.003[1]
eurlex ed 10 0.7201 ± 0.008[5] 0.7202± 0.008[4] 0.7205± 0.009[3] - - 0.7208± 0.009[2] 0.7217± 0.008[1]
Average Rank 4.13 3.00 3.75 4.20 6.40 3.25 2.25

Table 4: Results of Micro-F1 on the various data sets (mean ± standard deviation). The best results
are in bold. Numbers in square brackets indicate the rank.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP

yeast 0.6320 ± 0.019[4] 0.6185± 0.029[7] 0.6306± 0.017[5] 0.6362 ± 0.025[1] 0.6361 ± 0.021[2] 0.6303± 0.022[6] 0.6328± 0.017[3]
image 0.5840 ± 0.015[7] 0.5994± 0.017[2] 0.5955± 0.012[5] 0.6003 ± 0.010[1] 0.5958± 0.011[4] 0.5946± 0.019[6] 0.5980± 0.013[3]
slashdot 0.5233 ± 0.024[6] 0.5278± 0.027[3] 0.5175± 0.025[7] 0.5844 ± 0.022[1] 0.5720 ± 0.022[2] 0.5266± 0.023[5] 0.5272± 0.023[4]
enron 0.5052 ± 0.013[6] 0.5013± 0.009[7] 0.5056± 0.010[5] 0.5335 ± 0.015[2] 0.5401 ± 0.010[1] 0.5104± 0.013[3] 0.5096± 0.012[4]
LLog 10 0.3768 ± 0.028[1] 0.3712± 0.030[6] 0.3730± 0.035[5] 0.3623 ± 0.027[7] 0.3760 ± 0.027[3] 0.3744± 0.028[4] 0.3762± 0.029[2]
yahoo art 10 0.5122 ± 0.017[5] 0.5130± 0.016[4] 0.5156± 0.018[3] - - 0.5184± 0.013[1] 0.5184± 0.017[1]
eurlex sm 10 0.8718 ± 0.001[5] 0.8727± 0.001[2] 0.8725± 0.001[3] - - 0.8722± 0.001[4] 0.8733± 0.002[1]
eurlex ed 10 0.7419 ± 0.009[5] 0.7421± 0.009[4] 0.7424± 0.010[3] - - 0.7425± 0.010[2] 0.7432± 0.010[1]
Average Rank 4.88 4.38 4.50 2.40 2.40 3.88 2.38
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