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Abstract

We introduce principal differences analysis (PDA) for analyzing differences be-
tween high-dimensional distributions. The method operates by finding the pro-
jection that maximizes the Wasserstein divergence between the resulting univari-
ate populations. Relying on the Cramer-Wold device, it requires no assumptions
about the form of the underlying distributions, nor the nature of their inter-class
differences. A sparse variant of the method is introduced to identify features re-
sponsible for the differences. We provide algorithms for both the original minimax
formulation as well as its semidefinite relaxation. In addition to deriving some
convergence results, we illustrate how the approach may be applied to identify dif-
ferences between cell populations in the somatosensory cortex and hippocampus
as manifested by single cell RNA-seq. Our broader framework extends beyond
the specific choice of Wasserstein divergence.

1 Introduction

Understanding differences between populations is a common task across disciplines, from biomed-
ical data analysis to demographic or textual analysis. For example, in biomedical analysis, a set of
variables (features) such as genes may be profiled under different conditions (e.g. cell types, disease
variants), resulting in two or more populations to compare. The hope of this analysis is to answer
whether or not the populations differ and, if so, which variables or relationships contribute most to
this difference. In many cases of interest, the comparison may be challenging primarily for three
reasons: 1) the number of variables profiled may be large, 2) populations are represented by finite,
unpaired, high-dimensional sets of samples, and 3) information may be lacking about the nature of
possible differences (exploratory analysis).

We will focus on the comparison of two high dimensional populations. Therefore, given two un-
paired i.i.d. sets of samples Xpnq “ xp1q, . . . , xpnq „ PX and Ypmq “ yp1q, . . . , ypmq „ PY , the
goal is to answer the following two questions about the underlying multivariate random variables
X,Y P Rd: (Q1) Is PX “ PY ? (Q2) If not, what is the minimal subset of features S Ñ t1, . . . , du
such that the marginal distributions differ PXS ‰ PYS while PXSC « PYSC for the complement? A
finer version of (Q2) may additionally be posed which asks how much each feature contributes to
the overall difference between the two probability distributions (with respect to the given scale on
which the variables are measured).

Many two-sample analyses have focused on characterizing limited differences such as mean shifts
[1, 2]. More general differences beyond the mean of each feature remain of interest, however, includ-
ing variance/covariance of demographic statistics such as income. It is also undesirable to restrict
the analysis to specific parametric differences, especially in exploratory analysis where the nature
of the underlying distributions may be unknown. In the univariate case, a number of nonparametric
tests of equality of distributions are available with accompanying concentration results [3]. Popu-
lar examples of such divergences (also referred to as probability metrics) include: f -divergences
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(Kullback-Leibler, Hellinger, total-variation, etc.), the Kolmogorov distance, or the Wasserstein
metric [4]. Unfortunately, this simplicity vanishes as the dimensionality d grows, and complex
test-statistics have been designed to address some of the difficulties that appear in high-dimensional
settings [5, 6, 7, 8].

In this work, we propose the principal differences analysis (PDA) framework which circumvents the
curse of dimensionality through explicit reduction back to the univariate case. Given a pre-specified
statistical divergence D which measures the difference between univariate probability distributions,
PDA seeks to find a projection � which maximizes Dp�TX,�TY q subject to the constraints ||�||2 §
1,�1 • 0 (to avoid underspecification). This reduction is justified by the Cramer-Wold device,
which ensures that PX ‰ PY if and only if there exists a direction along which the univariate linearly
projected distributions differ [9, 10, 11]. Assuming D is a positive definite divergence (meaning it is
nonzero between any two distinct univariate distributions), the projection vector produced by PDA
can thus capture arbitrary types of differences between high-dimensional PX and PY . Furthermore,
the approach can be straightforwardly modified to address (Q2) by introducing a sparsity penalty on
� and examining the features with nonzero weight in the resulting optimal projection. The resulting
comparison pertains to marginal distributions up to the sparsity level. We refer to this approach as
sparse differences analysis or SPARDA.

2 Related Work

The problem of characterizing differences between populations, including feature selection, has re-
ceived a great deal of study [2, 12, 13, 5, 1]. We limit our discussion to projection-based methods
which, as a family of methods, are closest to our approach. For multivariate two-class data, the most
widely adopted methods include (sparse) linear discriminant analysis (LDA) [2] and the logistic
lasso [12]. While interpretable, these methods seek specific differences (e.g., covariance-rescaled
average differences) or operate under stringent assumptions (e.g., log-linear model). In contrast,
SPARDA (with a positive-definite divergence) aims to find features that characterize a priori un-
specified differences between general multivariate distributions.

Perhaps most similar to our general approach is Direction-Projection-Permutation (DiProPerm) pro-
cedure of Wei et al. [5], in which the data is first projected along the normal to the separating hyper-
plane (found using linear SVM, distance weighted discrimination, or the centroid method) followed
by a univariate two-sample test on the projected data. The projections could also be chosen at
random [1]. In contrast to our approach, the choice of the projection in such methods is not opti-
mized for the test statistics. We note that by restricting the divergence measure in our technique,
methods such as the (sparse) linear support vector machine [13] could be viewed as special cases.
The divergence in this case would measure the margin between projected univariate distributions.
While suitable for finding well-separated projected populations, it may fail to uncover more general
differences between possibly multi-modal projected populations.

3 General Framework for Principal Differences Analysis

For a given divergence measure D between two univariate random variables, we find the projection
p� that solves

max

�PB,||�||0§k

 
Dp�T pXpnq,�T pY pmqq

(
(1)

where B :“ t� P Rd
: ||�||2 § 1,�1 • 0u is the feasible set, ||�||0 § k is the sparsity constraint,

and �T pXpnq denotes the observed random variable that follows the empirical distribution of n sam-
ples of �TX . Instead of imposing a hard cardinality constraint ||�||0 § k, we may instead penalize
by adding a penalty term1 ´�||�||0 or its natural relaxation, the `1 shrinkage used in Lasso [12],
sparse LDA [2], and sparse PCA [14, 15]. Sparsity in our setting explicitly restricts the comparison
to the marginal distributions over features with non-zero coefficients. We can evaluate the null hy-
pothesis PX “ PY (or its sparse variant over marginals) using permutation testing (cf. [5, 16]) with
statistic Dpp�T pXpnq, p�T pY pmqq.

1In practice, shrinkage parameter � (or explicit cardinality constraint k) may be chosen via cross-validation
by maximizing the divergence between held-out samples.
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The divergence D plays a key role in our analysis. If D is defined in terms of density functions as in
f -divergence, one can use univariate kernel density estimation to approximate projected pdfs with
additional tuning of the bandwidth hyperparameter. For a suitably chosen kernel (e.g. Gaussian), the
unregularized PDA objective (without shrinkage) is a smooth function of �, and thus amenable to the
projected gradient method (or its accelerated variants [17, 18]). In contrast, when D is defined over
the cdfs along the projected direction – e.g. the Kolmogorov or Wasserstein distance that we focus
on in this paper – the objective is nondifferentiable due to the discrete jumps in the empirical cdf.
We specifically address the combinatorial problem implied by the Wasserstein distance. Moreover,
since the divergence assesses general differences between distributions, Equation (1) is typically
a non-concave optimization. To this end, we develop a semi-definite relaxation for use with the
Wasserstein distance.

4 PDA using the Wasserstein Distance

In the remainder of the paper, we focus on the squared L2 Wasserstein distance (a.k.a. Kantorovich,
Mallows, Dudley, or earth-mover distance), defined as

DpX,Y q “ min

PXY

EPXY ||X ´ Y ||2 s.t. pX,Y q „ PXY , X „ PX , Y „ PY (2)

where the minimization is over all joint distributions over pX,Y q with given marginals PX and PY .
Intuitively interpreted as the amount of work required to transform one distribution into the other,
D provides a natural dissimilarity measure between populations that integrates both the fraction of
individuals which are different and the magnitude of these differences. While component analysis
based on the Wasserstein distance has been limited to [19], this divergence has been successfully
used in many other applications [20]. In the univariate case, (2) may be analytically expressed as
the L2 distance between quantile functions. We can thus efficiently compute empirical projected
Wasserstein distances by sorting X and Y samples along the projection direction to obtain quantile
estimates.

Using the Wasserstein distance, the empirical objective in Equation (1) between unpaired sampled
populations txp1q, . . . , xpnqu and typ1q, . . . , ypmqu can be shown to be

max

�PB
||�||0§k

"
min

MPM,

nÿ

i“1

mÿ

j“1

p�Txpiq ´ �T ypjqq2Mij

*
“ max

�PB
||�||0§k

"
min

MPM
�TWM�

*
(3)

where M is the set of all n ˆ m nonnegative matching matrices with fixed row sums “ 1{n and
column sums “ 1{m (see [20] for details), WM :“ ∞

i,jrZij b ZijsMij , and Zij :“ xpiq ´ ypjq.
If we omitted (fixed) the inner minimization over the matching matrices and set � “ 0, the solution
of (3) would be simply the largest eigenvector of WM . Similarly, for the sparse variant without
minizing over M , the problem would be solvable as sparse PCA [14, 15, 21]. The actual max-
min problem in (3) is more complex and non-concave with respect to �. We propose a two-step
procedure similar to “tighten after relax” framework used to attain minimax-optimal rates in sparse
PCA [21]. First, we first solve a convex relaxation of the problem and subsequently run a steepest
ascent method (initialized at the global optimum of the relaxation) to greedily improve the current
solution with respect to the original nonconvex problem whenever the relaxation is not tight.

Finally, we emphasize that PDA (and SPARDA) not only computationally resembles (sparse) PCA,
but the latter is actually a special case of the former in the Gaussian, paired-sample-differences
setting. This connection is made explicit by considering the two-class problem with paired samples
pxpiq, ypiqq where X,Y follow two multivariate Gaussian distributions. Here, the largest principal
component of the (uncentered) differences xpiq ´ ypiq is in fact equivalent to the direction which
maximizes the projected Wasserstein difference between the distribution of X ´ Y and a delta
distribution at 0.

4.1 Semidefinite Relaxation

The SPARDA problem may be expressed in terms of d ˆ d symmetric matrices B as
max

B
min

MPM
tr pWMBq

subject to trpBq “ 1, B © 0, ||B||0 § k2, rankpBq “ 1 (4)
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where the correspondence between (3) and (4) comes from writing B “ �b� (note that any solution
of (3) will have unit norm). When k “ d, i.e., we impose no sparsity constraint as in PDA, we can
relax by simply dropping the rank-constraint. The objective is then a supremum of linear functions
of B and the resulting semidefinite problem is concave over a convex set and may be written as:

max

BPBr

min

MPM
tr pWMBq (5)

where Br is the convex set of positive semidefinite d ˆ d matrices with trace = 1. If B˚ P Rdˆd

denotes the global optimum of this relaxation and rankpB˚q “ 1, then the best projection for PDA
is simply the dominant eigenvector of B˚ and the relaxation is tight. Otherwise, we can truncate B˚
as in [14], treating the dominant eigenvector as an approximate solution to the original problem (3).

To obtain a relaxation for the sparse version where k † d (SPARDA), we follow [14] closely.
Because B “ �b� implies ||B||0 § k2, we obtain an equivalent cardinality constrained problem by
incorporating this nonconvex constraint into (4). Since trpBq “ 1 and ||B||F “ ||�||22 “ 1, a convex
relaxation of the squared `0 constraint is given by ||B||1 § k. By selecting � as the optimal Lagrange
multiplier for this `1 constraint, we can obtain an equivalent penalized reformulation parameterized
by � rather than k [14]. The sparse semidefinite relaxation is thus the following concave problem

max

BPBr

 
min

MPM
tr pWMBq ´ �||B||1

(
(6)

While the relaxation bears strong resemblance to DSPCA relaxation for sparse PCA, the inner max-
imization over matchings prevents direct application of general semidefinite programming solvers.
Let MpBq denote the matching that minimizes tr pWMBq for a given B. Standard projected sub-
gradient ascent could be applied to solve (6), where at the tth iterate the (matrix-valued) subgradient
is WMpBptqq. However, this approach requires solving optimal transport problems with large n ˆ m
matrices at each iteration. Instead, we turn to a dual form of (6), assuming n • m (cf. [22, 23])

max

BPBr,uPRn,vPRm

1

m

nÿ

i“1

mÿ

j“1

mint0, trprZijbZijsBq´ui´vju` 1

n

nÿ

i“1

ui`
1

m

mÿ

j“1

vj´�||B||1 (7)

(7) is simply a maximization over B P Br, u P Rn, and v P Rm which no longer requires matching
matrices nor their cumbersome row/column constraints. While dual variables u and v can be solved
in closed form for each fixed B (via sorting), we describe a simple sub-gradient approach that works
better in practice.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA (7). Returns the
largest eigenvector of the solution to (6) as the desired projection direction for SPARDA.

Input: d-dimensional data xp1q, . . . , xpnq and yp1q, . . . , ypmq (with n • m)
Parameters: � • 0 controls the amount of regularization, � ° 0 is the step-size used for B
updates, ⌘ ° 0 is the step-size used for updates of dual variables u and v, T is the maximum number
of iterations without improvement in cost after which algorithm terminates.
1: Initialize �p0q –

” ?
d
d , . . . ,

?
d
d

ı
, Bp0q – �p0q b �p0q P Br, up0q – 0nˆ1, vp0q – 0mˆ1

2: While the number of iterations since last improvement in objective function is less than T :
3: Bu – r1{n, . . . , 1{ns P Rn, Bv – r1{m, . . . , 1{ms P Rm, BB – 0dˆd

4: For i, j P t1, . . . , nu ˆ t1, . . . ,mu:

5: Zij – xpiq ´ ypjq

6: If trprZij b ZijsBptqq ´ u
ptq
i ´ v

ptq
j † 0 :

7: Bui – Bui ´ 1{m , Bvj – Bvj ´ 1{m , BB – BB ` Zij b Zij {m
8: End For
9: upt`1q – uptq ` ⌘ ¨ Bu and vpt`1q – vptq ` ⌘ ¨ Bv

10: Bpt`1q – Projection
´
Bptq ` �

||BB||F ¨ BB ; �, �{||BB||F
¯

Output: p�relax P Rd defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix Bpt˚q which attained the best objective value over all iterations.
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Projection Algorithm: Projects matrix onto positive semideÞnite cone of unit-trace matricesBr

(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: B PRdö d

Parameters:� • 0 controls the amount of regularization,� Ò �{||BB||F • 0 is the actual step-size
used in theB-update.
1: Q⇤QT – eigendecomposition ofB

2: wû – arg min
 
||w « diagp⇤q||22 : w P r0, 1sd, ||w||1 Ò 1

(
(Quadratic program)

3: rB – Q ¬diagtwû
1 , . . . , w

û
du ¬QT

4: If � ° 0: For r, s P t1, . . . , du2 : rBr,s – signprBr,sq ¬maxt 0, | rBr,s| « ��u
Output: rB PBr

The RELAX algorithm (boxed) is a projected subgradient method with supergradients computed in
Steps 3 - 8. For scaling to large samples, one may alternatively employincremental supergradient di-
rections [24] where Step 4 would be replaced by drawing randompi, jqpairs. After each subgradient
step, projection back into the feasible setBr is done via a quadratic program involving the current
solutionÕs eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal map
corresponding to thè1 penalty. The overall form of our iterations matches subgradient-proximal
updates (4.14)-(4.15) in [24]. By the convergence analysis in¤4.2 of [24], the RELAX algorithm (as
well as its incremental variant) is guaranteed to approach the optimal solution of the dual which also
solves (6), provided we employ sufÞciently largeT and small step-sizes. In practice, fast and accu-
rate convergence is attained by: (a) renormalizing theB-subgradient (Step 10) to ensure balanced
updates of the unit-norm constrainedB, (b) using diminishing learning rates which are initially set
larger for the unconstrained dual variables (or even taking multiple subgradient steps in the dual
variables per each update ofB).

4.2 Tightening after relaxation

It is unreasonable to expect that our semideÞnite relaxation is always tight. Therefore, we can
sometimes further reÞne the projectionp�relax obtained by the RELAX algorithm by using it as
a starting point in the original non-convex optimization. We introduce a sparsity constrained
tightening procedure for applying projected gradient ascent for the original nonconvex objective
Jp�q ÒminMPM �TWM� where� is now forced to lie inBX Sk andSk :Ò t� PRd : ||�||0 § ku.
The sparsity levelk is Þxed based on the relaxed solution (k Ò || p�relax||0). After initializing
�p0q Ò p�relax P Rd, the tightening procedure iterates steps in the gradient direction ofJ followed
by straightforward projections into the unit half-ballB and the setSk (accomplished by greedily
truncating all entries of� to zero besides the largestk in magnitude).

Let Mp�qagain denote the matching matrix chosen in response to�. J fails to be differentiable at
the r� whereMpr�qis not unique. This occurs, e.g., if two samples have identical projections under
r�. While this situation becomes increasingly likely asn,m „ 8 , J interestingly becomes smoother
overall (assuming the distributions admit density functions). For all other�: Mp�1q ÒMp�qwhere
�1 lies in a small neighborhood around� andJ admits a well-deÞned gradient2WMp�q�. In prac-
tice, we Þnd that the tightening always approaches a local optimum ofJ with a diminishing step-
size. We note that, for a given projection, we can efÞciently calculate gradients without recourse to
matricesMp�qor WMp�q by sorting�ptqTxp1q, . . . ,�ptqTxpnq and�ptqT yp1q, . . . ,�ptqT ypmq. The
gradient is directly derivable from expression (3) where the nonzeroMij are determined by appropri-
ately matching empirical quantiles (represented by sorted indices) since the univariate Wasserstein
distance is simply theL2 distance between quantile functions [20]. Additional computation can be
saved by employing insertion sort which runs in nearly linear time for almost sorted points (in iter-
ationt « 1, the points have been sorted along the�pt« 1q direction and their sorting in direction�ptq

is likely similar under small step-size). Thus the tightening procedure is much more efÞcient than
the RELAX algorithm (respective runtimes areOpdn lognqvs.Opd3n2qper iteration).
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