
Supplementary material for
“Fast Convergence of Regularized Learning in Games”

A Proof of Proposition 2

Proposition 2. In a (�, µ)-smooth game, if each player i suffers regret at most ri(T), then:

1

T

T
X

t=1

W (wt
) � �

1 + µ
OPT � 1

1 + µ

1

T

X

i2N

ri(T) =
1

⇢
OPT � 1

1 + µ

1

T

X

i2N

ri(T),

where the factor ⇢ = (1 + µ)/� is called the price of total anarchy (POA).

Proof. Since each player i has regret ri(T), we have that:

T
X

t=1

⌦

wt
i ,u

t
i

↵

�
T
X

t=1

ut
i,s⇤i

� ri(T) (6)

Summing over all players and using the smoothness property:

T
X

t=1

W (wt
) =

T
X

t=1

X

i2N

⌦

wt
i ,u

t
i

↵

�
T
X

t=1

X

i2N

ut
i,s⇤i

�
X

i2N

ri(T)

=

T
X

t=1

Es⇠wt

"

X

i2N

ui(s
⇤
i , s�i)

#

�
X

i2N

ri(T)

�
T
X

t=1

(�OPT � µEs⇠wt
[W (s)])�

X

i2N

ri(T)

=

T
X

t=1

�

�OPT � µW (wt
)

�

�
X

i2N

ri(T)

By re-arranging we get the result.

B Proof of Proposition 5

Proposition 5. The OMD algorithm using stepsize ⌘ and Mt
i = ut�1

i satisfies the RVU property
with constants ↵ = R/⌘, � = ⌘, � = 1/(8⌘), where R = maxi supf DR(f,g0

i).

We will use the following theorem of [17].
Theorem 17 (Raklin and Sridharan [17]). The regret of a player under optimistic mirror descent
and with respect to any w⇤

i 2 �(Si) is upper bounded by:

T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+

T
X

t=1

kut
i �Mt

ik⇤kwt
i � gt

ik �
1

2⌘

T
X

t=1

�

kwt
i � gt

ik2 + kwt
i � gt�1

i k2
�

(7)
where R = supf DR(f, g

0

).

We show that if the players use optimistic mirror descent with Mt
i = ut�1

i , then the regret of each
player satisfies the sufficient condition presented in the previous section. Some of the key facts
(Equations (9) and (10)) that we use in the following proof appear in [17]. However, the formulation
of the regret that we present in the following theorem is not immediately clear in their proof, so we
present it here for clarity and completeness.

1

Theorem 18. The regret of a player under optimistic mirror descent with Mt
i = ut�1

i and with
respect to any w⇤

i 2 �(Si) is upper bounded by:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘

T
X

t=1

kut
i � ut�1

i k2⇤ �
1

8⌘

T
X

t=1

kwt
i �wt�1

i k2 (8)

Proof. By Theorem 17, instantiated for Mt
i = ut�1

i , we get:

T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+

T
X

t=1

kut
i � ut�1

i k⇤kwt
i � gt

ik

� 1

2⌘

T
X

t=1

�

kwt
i � gt

ik2 + kwt
i � gt�1

i k2
�

Using the fact that for any ⇢ > 0:

kut
i �Mt

ik⇤kwt
i � gt

ik  ⇢

2

kut
i �Mt

ik2⇤ +
1

2⇢
kwt

i � gt
ik2 (9)

We get:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+

⇢

2

T
X

t=1

kut
i�ut�1

i k2⇤�
✓

1

2⌘
� 1

2⇢

◆ T
X

t=1

kwt
i�gt

ik2�
1

2⌘

T
X

t=1

kwt
i�gt�1

i k2

For ⇢ = 2⌘, the latter simplifies to:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘

T
X

t=1

kut
i � ut�1

i k2⇤ �
1

4⌘

T
X

t=1

kwt
i � gt

ik2 �
1

2⌘

T
X

t=1

kwt
i � gt�1

i k2

 R

⌘
+ ⌘

T
X

t=1

kut
i � ut�1

i k2⇤ �
1

4⌘

T
X

t=1

kwt
i � gt

ik2 �
1

4⌘

T
X

t=1

kwt
i � gt�1

i k2

Last we use the fact that:

kwt
i �wt�1

i k2  2kwt
i � gt�1

i k2 + 2kwt�1

i � gt�1

i k2 (10)

Summing over all timesteps:
T
X

t=1

kwt
i �wt�1

i k2  2

T
X

t=1

kwt
i � gt�1

i k2 + 2

T
X

t=1

kwt�1

i � gt�1

i k2

 2

T
X

t=1

kwt
i � gt�1

i k2 + 2

T
X

t=1

kwt
i � gtik2

Dividing over by 1

8⌘ and applying it in the previous upper bound on the regret, we get:

T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘

T
X

t=1

kut
i � ut�1

i k2⇤ �
1

8⌘

T
X

t=1

kwt
i �wt�1

i k2

C Proof of Proposition 7

Proposition 7. The OFTRL algorithm using stepsize ⌘ and Mt
i = ut�1

i satisfies the RVU property
with constants ↵ = R/⌘, � = ⌘ and � = 1/(4⌘).

We first show that these algorithms achieve the same regret bounds as optimistic mirror descent.
This result does not appear in previous work in any form.

2

Even though the algorithms do not make use of a secondary sequence, we will still use in the analysis
the notation:

gT
i = argmax

g2�(Si)

*

g,
T
X

t=1

ut
i

+

� R(g)

⌘
.

These secondary variables are often called be the leader sequence as they can see one step in the
future.
Theorem 19. The regret of a player under optimistic FTRL and with respect to any w⇤

i 2 �(Si) is
upper bounded by:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+

T
X

t=1

kut
i �Mt

ik⇤kwt
i � gt

ik �
1

2⌘

T
X

t=1

�

kwt
i � gt

ik2 + kwt
i � gt�1

i k2
�

(11)
where R = supf R(f)� inff R(f).

Proof. First observe that:
⌦

w⇤
i �wt

i ,u
t
i

↵

=

⌦

gt
i �wt

i ,u
t
i �Mt

i

↵

+

⌦

gt
i �wt

i ,M
t
i

↵

+

⌦

w⇤
i � gt

i ,u
t
i

↵

(12)
Without loss of generality we will assume that inff R(f) = 0. Since hgt

i �wt
i ,u

t
i �Mt

ii  kgt
i �

wt
ikkut

i �Mt
ik⇤, it suffices to show that for any w⇤

i 2 �(Si):
T
X

t=1

�⌦

gt
i �wt

i ,M
t
i

↵

+

⌦

w⇤
i � gt

i ,u
t
i

↵�

 R(w⇤
i)

⌘
� 1

2⌘

T
X

t=1

�

kwt
i � gt

ik2 + kwt
i � gt�1

i k2
�

(13)

For shorthand notation let: IT =

1

2⌘

PT
t=1

�

kwt
i � gt

ik2 + kwt
i � gt�1

i k2
�

. By induction assume
that for all w⇤

i :
T�1

X

t=1

�⌦

gt
i �wt

i ,M
t
i

↵

�
⌦

gt
i ,u

t
i

↵�

 �
T�1

X

t=1

⌦

w⇤
i ,u

t
i

↵

+

R(w⇤
i)

⌘
� IT�1

= �
*

w⇤
i ,

T�1

X

t=1

ut
i

+

+

R(w⇤
i)

⌘
� IT�1

Apply the above for w⇤
i = gT�1

i and add
⌦

gT
i �wT

i ,M
T
i

↵

�
⌦

gT
i ,u

T
i

↵

on both sides:
T
X

t=1

�⌦

gt
i �wt

i ,M
t
i

↵

�
⌦

gt
i ,u

t
i

↵�

 �
*

gT�1

i ,
T�1

X

t=1

ut
i

+

+

R(gT�1

i)

⌘
� IT�1

+

⌦

gT
i �wT

i ,M
T
i

↵

�
⌦

gT
i ,u

T
i

↵

 �
*

wT
i ,

T�1

X

t=1

ut
i

+

+

R(wT
i)

⌘
� IT�1

+

⌦

gT
i �wT

i ,M
T
i

↵

�
⌦

gT
i ,u

T
i

↵

� 1

2⌘
kwT

i � gT�1

i k2

= �
*

wT
i ,

T�1

X

t=1

ut
i +MT

i

+

+

R(wT
i)

⌘
� IT�1

+

⌦

gT
i ,M

T
i

↵

�
⌦

gT
i ,u

T
i

↵

� 1

2⌘
kwT

i � gT�1

i k2

 �
*

gT
i ,

T�1

X

t=1

ut
i +MT

i

+

+

R(gT
i)

⌘
� IT�1

+

⌦

gT
i ,M

T
i

↵

�
⌦

gT
i ,u

T
i

↵

� 1

2⌘
kwT

i � gT�1

i k2 � 1

2⌘
kwT

i � gT
i k2

= �
*

gT
i ,

T
X

t=1

ut
i

+

+

R(gT
i)

⌘
� IT

 �
*

q⇤
i ,

T
X

t=1

ut
i

+

+

R(q⇤
i)

⌘
� IT

3

The inequalities follow by the optimality of the corresponding variable that was changed and by
the strong convexity of R(·). The final vector q⇤

i is an arbitrary vector in �(Si). The base case of
T = 0 follows trivially by R(f) � 0 for all f . This concludes the inductive proof.

Thus optimistic FTRL achieves the exact same form of regret presented in Theorem 17 for optimistic
mirror descent. Hence, the equivalent versions of Theorem 18 and Corollary 6 hold also for the
optimistic FTRL algorithm. In fact we are able to show slightly stronger bounds for optimistic
FTRL, based on the following lemmas.
Lemma 20 (Stability). For the optimistic FTRL algorithm:

kwt
i � gt

ik  ⌘ · kMt
i � ut

ik⇤ (14)

kgt
i �wt+1

i k  ⌘ · kMt+1

i k⇤ (15)

Proof. Let FT (f) =

D

f ,
PT�1

t=1

ut
i +MT

i

E

� ⌘�1R(f) and GT (f) =

D

f ,
PT

t=1

ut
i

E

� ⌘�1R(f).

Observe that: FT (f)�GT (f) =
⌦

f ,MT
i � uT

i

↵

and FT+1

(f)�GT (f) =
⌦

f ,MT+1

i

↵

.

Part 1 By the optimality of wT
i and gT

i and the strong convexity of R(·):

FT (w
T
i) � FT (g

T
i) +

1

2⌘
kwT

i � gT
i k2

GT (g
T
i) � GT (w

T
i) +

1

2⌘
kwT

i � gT
i k2

Adding both inequalities and using the previous observations:

1

⌘
kwT

i � gT
i k2 

⌦

wT
i � gT

i ,M
T
i � uT

i

↵

 kwT
i � gT

i k · kMT
i � uT

i k⇤

Dividing over by kwT
i � gT

i k gives the first inequality of the lemma.

Part 2 By the optimality of gT
i and wT+1

i and strong convexity:

FT+1

(wT+1

i) � FT+1

(gT
i) +

1

2⌘
kwT+1

i � gT
i k2

GT (g
T
i) � GT (w

T+1

i) +

1

2⌘
kwT+1

i � gT
i k2

Adding the inequalities:

1

⌘
kwT+1

i � gT
i k2 

⌦

wT+1

i � gT
i ,M

T+1

i

↵

 kwT+1

i � gT
i k · kMT+1

i k⇤

Dividing over by kwT+1

i � gT
i k, yields second inequality of the lemma.

Given Theorem 19 and Lemma 20, the proposition immediately follows since
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘

T
X

t=1

kut
i �Mt

ik2⇤ �
1

2⌘

T
X

t=1

�

kwt
i � gt

ik2 + kwt
i � gt�1

i k2
�

.

Replacing Mt
i with ut�1

i and using Inequality (10), yields the result.

D Proof of Proposition 9

Proposition 9. The OFTRL algorithm using stepsize ⌘ and Mt
i =

Pt�1

⌧=t�H u⌧
i /H satisfies the

RVU property with constants ↵ = R/⌘, � = ⌘H2 and � = 1/(4⌘).

The proposition is equivalent to the following lemma, which we will state and prove in this appendix.

4

Lemma 21. For the optimistic FTRL algorithm with Mt
i =

1

H

Pt�1

⌧=t�H u⌧
i , the regret is upper

bounded by:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘H2

T
X

t=1

kut
i � ut�1

i k2⇤ �
1

4⌘

T
X

t=1

kwt
i �wt�1

i k2 (16)

where R = supf R(f)�inff R(f). Thus we get
P

i ri(T) 
nR
⌘ = 2n(n�1)HR for ⌘ =

1

2H(n�1)

.

Proof. Similar to Proposition 7, by Theorem 19, Lemma 20 and Inequality (10) we get:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘

T
X

t=1

kut
i �Mt

ik2⇤ �
1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

=

R

⌘
+ ⌘

T
X

t=1

�

�

�

�

�

ut
i �

1

H

t�1

X

⌧=t�H

u⌧
i

�

�

�

�

�

2

⇤

� 1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

=

R

⌘
+ ⌘

T
X

t=1

1

H

t�1

X

⌧=t�H

�

�ut
i � u⌧

i

�

�

⇤

!

2

� 1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

By triangle inequality:

1

H

t�1

X

⌧=t�H

�

�ut
i � u⌧

i

�

�

⇤  1

H

t�1

X

⌧=t�H

t�1

X

q=⌧

�

�

�

uq+1

i � uq
i

�

�

�

⇤

=

t�1

X

⌧=t�H

t� ⌧

H

�

�u⌧+1

i � u⌧
i

�

�

⇤ 
t�1

X

⌧=t�H

�

�u⌧+1

i � u⌧
i

�

�

⇤

By Cauchy-Schwarz:

t�1

X

⌧=t�H

�

�u⌧+1

i � u⌧
i

�

�

⇤

!

2

 H
t�1

X

⌧=t�H

�

�u⌧+1

i � u⌧
i

�

�

2

⇤

Thus we can derive that:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘H

T
X

t=1

t�1

X

⌧=t�H

�

�u⌧+1

i � u⌧
i

�

�

2

⇤ �
1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

 R

⌘
+ ⌘H2

T
X

t=1

�

�ut
i � ut�1

i

�

�

2

⇤ �
1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

E Proof of Proposition 10

Proposition 10. The OFTRL algorithm using stepsize ⌘ and Mt
i =

1Pt�1
⌧=0 ��⌧

Pt�1

⌧=0

��⌧u⌧
i

satisfies the RVU property with constants ↵ = R/⌘, � = ⌘/(1� �)3 and � = 1/(8⌘).

The proposition is equivalent to the following lemma which we will prove in this appendix.

Lemma 22. For the optimistic FTRL algorithm with Mt
i =

1Pt
⌧=0 ��⌧

Pt�1

⌧=0

��⌧u⌧
i for some dis-

count rate � 2 (0, 1), the regret is upper bounded by:
T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+

⌘

(1� �)3

T
X

t=1

kut
i � ut�1

i k2⇤ �
1

8⌘

T
X

t=1

kwt
i �wt�1

i k2 (17)

5

where R = supf R(f) � inff R(f). Thus we get
P

i ri(T)  nR
⌘ = 2n(n � 1)

1

(1��)3/2
R for

⌘ =

(1��)3/2

2(n�1)

.

Proof. We show the theorem for the case of optimistic FTRL. The OMD case follows analogously.
Similar to Lemma 21 the regret is upper bounded by:

T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 R

⌘
+ ⌘

T
X

t=1

kut
i �Mt

ik2⇤ �
1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

=

R

⌘
+ ⌘

T
X

t=1

�

�

�

�

�

ut
i �

1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧u⌧
i

�

�

�

�

�

2

⇤

� 1

4⌘

T
X

t=1

kwt
i �wt�1

i k2

We will now show that:

T
X

t=1

�

�

�

�

�

ut
i �

1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧u⌧
i

�

�

�

�

�

2

⇤

 1

(1� �)3

T
X

t=1

kut
i � ut�1

i k2⇤

which will conclude the proof.

First observe by triangle inequality:
�

�

�

�

�

ut
i �

1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧u⌧
i

�

�

�

�

�

⇤

=

1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧kut
i � u⌧

i k⇤

 1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧
t�1

X

q=⌧

�

�

�

uq+1

i � uq
i

�

�

�

⇤

=

1

Pt�1

⌧=0

��⌧

t�1

X

q=0

�

�

�

uq+1

i � uq
i

�

�

�

⇤

q
X

⌧=0

��⌧

=

1

Pt�1

⌧=0

��⌧

t�1

X

q=0

�

�

�

uq+1

i � uq
i

�

�

�

⇤
��q 1� �q+1

1� �

 1

1� �

1

Pt�1

⌧=0

��⌧

t�1

X

q=0

��q
�

�

�

uq+1

i � uq
i

�

�

�

⇤

By Cauchy-Schwarz:

1

1� �

1

Pt�1

⌧=0

��⌧

t�1

X

q=0

��q
�

�

�

uq+1

i � uq
i

�

�

�

⇤

!

2

=

1

(1� �)2
1

⇣

Pt�1

⌧=0

��⌧
⌘

2

t�1

X

q=0

��q/2 · ��q/2
�

�

�

uq+1

i � uq
i

�

�

�

⇤

!

2

 1

(1� �)2
1

⇣

Pt�1

⌧=0

��⌧
⌘

2

t�1

X

q=0

��q ·
t�1

X

q=0

��q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

=

1

(1� �)2
1

Pt�1

⌧=0

��⌧

t�1

X

q=0

��q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

=

1

(1� �)2
1

Pt�1

⌧=0

�t�⌧

t�1

X

q=0

�t�q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

 1

�(1� �)2

t�1

X

q=0

�t�q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

6

Combining we get:
�

�

�

�

�

ut
i �

1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧u⌧
i

�

�

�

�

�

2

⇤

 1

�(1� �)2

t�1

X

q=0

�t�q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

Summing over all t and re-arranging we get:
T
X

t=1

�

�

�

�

�

ut
i �

1

Pt�1

⌧=0

��⌧

t�1

X

⌧=0

��⌧u⌧
i

�

�

�

�

�

2

⇤

 1

�(1� �)2

T
X

t=1

t�1

X

q=0

�t�q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

=

1

�(1� �)2

T�1

X

q=0

��q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

T
X

t=q+1

�t

=

1

�(1� �)2

T�1

X

q=0

��q
�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

�(�q � �T)

1� �

=

1

(1� �)3

T�1

X

q=0

�

�

�

uq+1

i � uq
i

�

�

�

2

⇤
(1� �T�q

)

 1

(1� �)3

T�1

X

q=0

�

�

�

uq+1

i � uq
i

�

�

�

2

⇤

F Proof of Theorem 14

Theorem 14. Algorithm A0 achieves regret at most the minimum of the following two terms:
TX

t=1

⌦
w⇤

i �wt
i ,u

t
i

↵
 log(T)

2 +

↵
⌘⇤

+ (2 + ⌘⇤ · �)
TX

t=1

kut
i � ut�1

i k2⇤

!
� �

⌘⇤

TX

t=1

kwt
i �wt�1

i k2;

TX

t=1

⌦
w⇤

i �wt
i ,u

t
i

↵
 log(T)

0

@
1 +

↵
⌘⇤

+ (1 + ↵ · �) ·

vuut
2

TX

t=1

kut
i � ut�1

i k2⇤

1

A

Proof. We break the proof in the two corresponding parts.

First part. Consider a round r and let Tr be its final iteration. Also let Ir =

PTr

t=1

kut
i � ut�1

i k2⇤.
First observe that by the definition of Br:

1

2

Ir  Br  2 · Ir + 1 (18)

By the definition of ⌘, we know that
1

⌘⇤
 1

⌘
<

1

⌘⇤
+

p
Br

↵
. (19)

By the regret guarantee of algorithm A(⌘r), we have that:
Tr
X

t=Tr�1+1

⌦

w⇤
i �wt

i ,u
t
i

↵

 ↵

⌘
+ ⌘ · �

Tr
X

t=Tr�1+1

kut
i � ut�1

i k2⇤ �
�

⌘

Tr
X

t=Tr�1+1

kwt
i �wt�1

i k2

 ↵

⌘⇤
+

p

Br + ⌘⇤ · �
Tr
X

t=Tr�1+1

kut
i � ut�1

i k2⇤ �
�

⌘⇤

Tr
X

t=Tr�1+1

kwt
i �wt�1

i k2

 ↵

⌘⇤
+

p

Br + ⌘⇤ · �
T
X

t=1

kut
i � ut�1

i k2⇤ �
�

⌘⇤

Tr
X

t=Tr�1+1

kwt
i �wt�1

i k2

7

Since
p
Br  Br + 1  2 · Ir + 2:

Tr
X

t=Tr�1+1

⌦

w⇤
i �wt

i ,u
t
i

↵

 ↵

⌘⇤
+ 2 + (2 + ⌘⇤ · �)

T
X

t=1

kut
i � ut�1

i k2⇤ �
�

⌘⇤

Tr
X

t=Tr�1+1

kwt
i �wt�1

i k2

Since at each round we are doubling the bound Br and since
PT

t=1

kut
i � ut�1

i k2⇤  T , there are at
most log(T) rounds. Summing up the above inequality for each of the at most log(T) rounds, yields
the claimed bound in Equation (4).

Second part. Again consider any round r. By Equations (18), (19), the fact that ⌘  ↵p
Br

 ↵
p
2p

Ir
and by the regret of algorithm A(⌘r):

Tr
X

t=Tr�1+1

⌦

w⇤
i �wt

i ,u
t
i

↵

 ↵

⌘⇤
+

p

Br + ⌘ · �
Tr
X

t=Tr�1+1

kut
i � ut�1

i k2⇤

 ↵

⌘⇤
+

p

Br + ⌘ · � · Ir

 ↵

⌘⇤
+

p

Br + ↵ · � ·
p

2Ir

 ↵

⌘⇤
+

p

2Ir + 1 + ↵ · � ·
p

2Ir

 ↵

⌘⇤
+ 1 +

p

2Ir + ↵ · � ·
p

2Ir

 ↵

⌘⇤
+ 1 + (1 + ↵ · �)

v

u

u

t

2

T
X

t=1

kut
i � ut�1

i k2⇤

Again since the number of rounds is at most log(T), by summing up the above bound for each round
r, we get the second part of the theorem.

G Proof of Corollary 16

Corollary 16. If A satisfies the RVU(⇢) property, and also kwt
i � wt�1

i k  ⇢, then A0 with
⌘⇤ = T�1/4 achieves regret ˜O(T 1/4

) if played against itself, and ˜O(

p
T) against any opponent.

Proof. Observe that at any round of A0, algorithm A is run with ⌘r  ⌘⇤. Thus by the property of
algorithm A, we have that at every iteration: kwt

i � wt�1

i k  ⌘⇤ = T�1/4. If all players use
algorithm A0, then by similar reasoning as in Theorem 4 we know that:

kut
i � ut�1

i k2⇤  (n� 1)

X

j 6=i

kwt
j �wt�1

j k2  (n� 1)

2�2⌘2⇤ = (n� 1)

22T�1/2

Hence, by Equation 5, the regret of each player is bounded by:

T
X

t=1

⌦

w⇤
i �wt

i ,u
t
i

↵

 log(T)

0

@

↵

⌘⇤
+ (1 + ↵ · �) ·

v

u

u

t

T
X

t=1

kut
i � ut�1

i k2⇤

1

A

 log(T)

✓

↵T 1/4
+ (1 + ↵ · �) ·

q

T · (n� 1)

22T�1/2

◆

= log(T)
⇣

↵T 1/4
+ (1 + ↵ · �) · (n� 1)T 1/4

⌘

=

˜O(T 1/4
)

8

H Fast convergence via a first order regret bound for cost-minimization

In this section, we show how a different regret bound can also lead to a fast convergence rate for
a smooth game. For some technical reasons we consider cost instead of utility throughout this
section. We use ci : S1

⇥ . . . ⇥ Sn ! [0, 1] to denote the cost function, and similarly to previous
sections C(s) =

P

i2N ci(s), C(w) = Es⇠w[C(s)], OPT0
= mins2S1⇥...⇥Sn C(s). A game is

(�, µ)-smooth if there exists a strategy profile s⇤, such that for any strategy profile s:
X

i2N

ci(s
⇤
i , s�i)  �OPT0

+ µC(s). (20)

Now suppose each player i uses a no-regret algorithm to produce wt
i on each round and receives

cost cti,s = Es�i⇠wt
�i
[ci(s, s�i)] for each strategy s 2 Si. Moreover, for any fixed strategy s, the

no-regret algorithm ensures
T
X

t=1

⌦

wt
i , c

t
i

↵

�
T
X

t=1

cti,s  A
1

v

u

u

t

log d

T
X

t=1

cti,s

!

+A
2

log d (21)

for some absolute constants A
1

and A
2

. Note that this form of first order bound can be achieved by
a variety of algorithms such as Hedge with appropriate learning rate tuning. Under this setup, we
prove the following:
Theorem 23. If a game is (�, µ)-smooth and each player uses a no-regret algorithm with a regret
satisfying Eq. (21), then we have

1

T

T
X

t=1

C(wt
)  �(1 + µ)

µ(1� µ)
OPT0

+

An log d

T

where A =

A2
1µ

(1�µ)2 +

2A2
1�µ .

Proof. Using the regret bound and Cauchy-Schwarz inequality, we have
T
X

t=1

C(wt
) =

T
X

t=1

X

i2N

⌦

wt
i , c

t
i

↵


T
X

t=1

X

i2N

cti,s⇤i +A
1

p

log d
X

i2N

v

u

u

t

T
X

t=1

cti,s⇤i +A
2

n log d


T
X

t=1

X

i2N

cti,s⇤i +A
1

p

n log d

v

u

u

t

T
X

T=1

X

i2N

cti,s⇤i +A
2

n log d. (22)

By the smoothness assumption, we have
X

i2N

cti,s⇤i = Es⇠wt

"

X

i2N

ci(s
⇤
i , s�i)

#

 �OPT0
+ µEs⇠wt

[C(s)] = �OPT0
+ µC(wt

),

and therefore
PT

t=1

P

i2N cti,s⇤i  x2 where we define x =

q

�TOPT0
+ µ

PT
t=1

C(wt
). Now

applying this bound in Eq. (22), we continue with
1

µ

�

x2 � �TOPT0�  x2

+ (A
1

p

n log d)x+A
2

n log d.

Rearranging gives a quadratic inequality ax2

+ bx+ c  0 with

a =

1� µ

µ
, b = �A

1

p
n ln d, c = ��

µ
TOPT0 �A

2

n log d,

and solving for x gives

x  µ

2(1� µ)
(�b+

p

b2 � 4ac)  µ

1� µ

p

b2 � 2ac.

Finally solving for
PT

t=1

C(wt
) (hidden in the definition of x) gives the bound stated in the theorem.

9

Note that the price of total anarchy is larger than the one achieved by previous analysis by a mul-
tiplicative factor of 1 +

1

µ , but the convergence rate is much faster (n times faster compared to
optimistic mirror descent or optimistic FTRL).

I ⌦(
p
T) Lower Bounds on Regret for other Dynamics

We consider a two-player zero-sum game which can be described by a utility matrix A. Assume the
row player uses MWU with a fixed learning rate ⌘, and the column player plays the best response,
that is, a pure strategy that minimizes the row player’s expected utility for the current round. Then
the following theorem states that no matter how ⌘ is set, there is always a game A such that the
regret of the row player is at least ⌦(

p
T).

Theorem 24. In the setting described above, let r(T) and r0(T) be the regret of the row player for

the game A =

✓

1 0

0 1

◆

and A0
=

✓

1

0

◆

respectively after T rounds. Then max{r(T), r0(T)} �

⌦(

p
T).

Proof. For game A, according to the setup, one can verify that the row player will play a uniform
distribution and receive utility 1

2

on round t where t is odd, and for the next round t+1, the row player
will put slightly more weights on one row and the column player will pick the column that has 0

utility for that row. Specifically, the expected utility of the row player is e⌘(t�1)/2

e⌘(t�1)/2
+e⌘(t+1)/2 =

1

1+e⌘ .
Therefore, the regret is (assuming T is even for simplicity)

r(T) =
T

2

� T

2

✓

1

2

+

1

1 + e⌘

◆

=

T

2

· e
⌘ � 1

e⌘ + 1

.

For game A0, the expected utility of the row player on round t is e⌘(t�1)

e⌘(t�1)
+1

, and thus the regret is

r0(T) = T �
T
X

t=1

e⌘(t�1)

e⌘(t�1)

+ 1

=

T
X

t=1

1

e⌘(t�1)

+ 1

�
T
X

t=1

1

2e⌘(t�1)

=

1� e�T⌘

2(1� e�⌘
)

.

Now if ⌘ � 1, then r(T) � T
2

· e�1

e+1

= ⌦(T). If ⌘  1

T , then r0(T) � 1�e�1

2(1�e�
1
T
)

� T (1�e�1
)

2

=

⌦(T). Finally when 1

T  ⌘  1, we have

r(T)+r0(T) � T

2

· e
⌘ � 1

e+ 1

+

1� e�1

2(1� e�⌘
)

� T

2

· e
⌘ � 1

e+ 1

+

1� e�1

2(e⌘ � 1)

�
r

T · 1� e�1

e+ 1

= ⌦(

p
T).

To sum up, we have max{r(T), r0(T)} � ⌦(

p
T).

10

