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Abstract

Space-time is a profound concept in physics. This concept was shown to be
useful for dimensionality reduction. We present basic definitions with interest-
ing counter-intuitions. We give theoretical propositions to show that space-time
is a more powerful representation than Euclidean space. We apply this concept
to manifold learning for preserving local information. Empirical results on non-
metric datasets show that more information can be preserved in space-time.

1 Introduction

As a simple and intuitive representation, the Euclidean space <d has been widely used in various
learning tasks. In dimensionality reduction, n given high-dimensional points in <D, or their pair-
wise (dis-)similarities, are usually represented as a corresponding set of points in <d (d < D).

The representation power of <d is limited. Some of its limitations are listed next. À The maximum
number of points which can share a common nearest neighbor is limited (2 for <; 5 for <2) [1, 2],
while such centralized structures do exist in real data. Á <d can at most embed (d + 1) points
with uniform pair-wise similarities. It is hard to model pair-wise relationships with less variance. Â
Even if d is large enough, <d as a metric space must satisfy the triangle inequality, and therefore
must admit transitive similarities [2], meaning that a neighbor’s neighbor should also be nearby.
Such relationships can be violated on real data, e.g. social networks. Ã The Gram matrix of n
real vectors must be positive semi-definite (p. s. d.). Therefore <d cannot faithfully represent the
negative eigen-spectrum of input similarities, which was discovered to be meaningful [3].

To tackle the above limitations of Euclidean embeddings, a commonly-used method is to impose a
statistical mixture model. Each embedding point is a random point on several candidate locations
w. r. t. some mixture weights. These candidate locations can be in the same <d [4]. This allows an
embedding point to jump across a long distance through a “statistical worm-hole”. Or, they can be
in m independent <d’s [2, 5], resulting in m different views of the input data.

Another approach beyond Euclidean embeddings is to change the embedding destination to a curved
spaceMd. ThisMd can be a Riemannian manifold [6] with a positive definite metric, or equiva-
lently, a curved surface embedded in a Euclidean space [7, 8]. To learn such an embedding requires
a closed-form expression of the distance measure. ThisMd can also be semi-Riemannian [9] with
an indefinite metric. This semi-Riemannian representation, under the names “pseudo-Euclidean
space”, “Minkowski space”, or more conveniently, “space-time”, was shown [3, 7, 10–12] to be a
powerful representation for non-metric datasets. In these works, an embedding is obtained through
a spectral decomposition of a “pseudo-Gram” matrix, which is computed based on some input data.

On the other hand, manifold learning methods [4, 13, 14] are capable of learning a p. s. d. ker-
nel Gram matrix, that encapsulates useful information into a narrow band of its eigen-spectrum.
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Usually, local neighborhood information is more strongly preserved as compared to non-local in-
formation [4, 15], so that the input information is unfolded in a non-linear manner to achieve the
desired compactness.

The present work advocates the space-time representation. Section 2 introduces the basic concepts.
Section 3 gives several simple propositions that describe the representation power of space-time. As
novel contributions, section 4 applies the space-time representation to manifold learning. Section 5
shows that using the same number of parameters, more information can be preserved by such em-
beddings as compared to Euclidean embeddings. This leads to new data visualization techniques.
Section 6 concludes and discusses possible extensions.

2 Space-time

The fundamental measurements in geometry are established by the concept of a metric [6]. Intu-
itively, it is a locally- or globally-defined inner product. The metric of a Euclidean space <d is
everywhere identity. The inner product between any two vectors y1 and y2 is 〈y1,y2〉 = yT

1 Idy2,
where Id is the d × d identity matrix. A space-time <ds,dt is a (ds + dt)-dimensional real vector
space, where ds ≥ 0, dt ≥ 0, and the metric is

M =

[
Ids 0
0 −Idt

]
. (1)

This metric is not trivial. It is semi-Riemannian with a background in physics [9]. A point in <ds,dt

is called an event, denoted by y = (y1, . . . , yds , yds+1, . . . , yds+dt)T . The first ds dimensions
are space-like, where the measurements are exactly the same as in a Euclidean space. The last dt
dimensions are time-like, which cause counter-intuitions. In accordance to the metric M in eq. (1),

∀y1,y2 ∈ <ds,dt , 〈y1, y2〉 =

ds∑
l=1

yl1y
l
2 −

ds+dt∑
l=ds+1

yl1y
l
2. (2)

In analogy to using inner products to define distances, the following definition gives a dissimilarity
measure between two events in <ds,dt .

Definition 1. The space-time interval, or shortly interval, between any two events y1 and y2 is

c(y1,y2) = 〈y1, y1〉+ 〈y2, y2〉 − 2〈y1, y2〉 =

ds∑
l=1

(yl1 − yl2)2 −
ds+dt∑
l=ds+1

(yl1 − yl2)2. (3)

The space-time interval c(y1,y2) can be positive, zero or negative. With respect to a reference point
y0 ∈ <ds,dt , the set {y : c(y,y0) = 0} is called a light cone. Figure 1a shows a light cone in
<2,1. Within the light cone, c(y,y0) < 0, i. e., negative interval occurs; outside the light cone,
c(y,y0) > 0. The following counter-intuitions help to establish the concept of space-time.

A low-dimensional <ds,dt can accommodate an arbitrarily large number of events sharing a com-
mon nearest neighbor. In <2,1, let A = (0, 0, 1), and put {B1,B2, . . . , } evenly on the circle
{(y1, y2, 0) : (y1)2 + (y2)2 = 1} at time 0. Then, A is the unique nearest neighbor of B1,B2, . . . .

A low-dimensional <ds,dt can represent uniform pair-wise similarities between an arbitrarily large
number of points. In <1,1, the similarities within {Ai : Ai = (i, i)}ni=1 are uniform.

In <ds,dt , the triangle inequality is not necessarily satisfied. In <2,1, let A = (−1, 0, 0), B =
(0, 0, 1), C = (1, 0, 0). Then c(A,C) > c(A,B) + c(B,C). The trick is that, as B’s absolute
time value increases, its intervals with all events at time 0 are shrinking. Correspondingly, similarity
measures in <ds,dt can be non-transitive. The fact that B is similar to A and C independently does
not necessarily mean that A and C are similar.

A neighborhood of y0 ∈ <2,1 is {(y1, y2, y3) : (y1−y10)2+(y2−y20)2−(y3−y30)2 ≤ ε}, where ε ∈
<. This hyperboloid has infinite “volume”, no matter how small ε is. Comparatively, a neighborhood
in <d is much narrower, with an exponentially shrinking volume as its radius decreases.
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Figure 1: (a) A space-time; (b) A space-time “compass” in <1,1. The colored lines show equal-
interval contours with respect to the origin; (c) All possible embeddings in <2,1 (resp. <3) are
mapped to a sub-manifold of ∆n, as shown by the red (resp. blue) line. Dimensionality reduction
projects the input p? onto these sub-manifolds, e. g. by minimizing the KL divergence.

3 The representation capability of space-time

This section formally discusses some basic properties of <ds,dt in relation to dimensionality reduc-
tion. We first build a tool to shift between two different representations of an embedding: a matrix
of c(yi,yj) and a matrix of 〈yi,yj〉. From straightforward derivations, we have

Lemma 1. Cn = {Cn×n : ∀i,Cii = 0; ∀i 6= j,Cij = Cji} and Kn = {Kn×n :
∀i,∑n

j=1 Kij = 0; ∀i 6= j,Kij = Kji} are two families of real symmetric matrices. dim(Cn) =

dim(Kn) = n(n− 1)/2. A linear mapping from Cn to Kn and its inverse are given by

K(C) = −1

2
(In −

1

n
eeT )C(In −

1

n
eeT ), C(K) = diag(K)eT + ediag(K)T − 2K, (4)

where e = (1, · · · , 1)T , and diag(K) means the diagonal entries of K as a column vector.

Cn and Kn are the sets of interval matrices and “pseudo-Gram” matrices, respectively [3, 12]. In
particular, a p. s. d. K ∈ Kn means a Gram matrix, and the corresponding C(K) means a square
distance matrix. The double centering mapping K(C) is widely used to generate a (pseudo-)Gram
matrix from a dissimilarity matrix.

Proposition 2. ∀C? ∈ Cn, ∃ n events in <ds,dt , s. t. ds + dt ≤ n− 1 and their intervals are C?.

Proof. ∀C? ∈ Cn, K? = K(C?) has the eigen-decomposition K? =
∑rank(K?)

l=1 λ?l v
?
l (v?

l )T

where rank(K?) ≤ n− 1 and {v?
l } are orthonormal. For each l = 1, · · · , rank(K?),

√
|λ?l |v?

l
gives the coordinates in one dimension, which is space-like if λ?l > 0 or time-like if λ?l < 0.

Remark 2.1. <ds,dt (ds+dt ≤ n− 1) can represent any interval matrix C? ∈ Cn, or equivalently,
any K? ∈ Kn. Comparatively, <d (d ≤ n− 1) can only represent {K ∈ Kn : K � 0}.

A pair-wise distance matrix in <d is invariant to rotations. In other words, the direction information
of a point cloud is completely discarded. In <ds,dt , some direction information is kept to distinguish
between space-like and time-like dimensions. As shown in fig. 1b, one can tell the direction in <1,1

by moving a point along the curve {(y1)2 + (y2)2 = 1} and measuring its interval w. r. t. the origin.

Local embedding techniques often use similarity measures in a statistical simplex ∆n ={
p = (pij) : 1 ≤ i ≤ n; 1 ≤ j ≤ n; i < j; ∀i, ∀j, pij > 0;

∑
i,j:i<j pij = 1

}
. This ∆n has one

less dimension than Cn and Kn so that dim(∆n) = n(n− 1)/2− 1. A mapping from Kn (Cn) to
∆n is given by

pij ∝ f (Cij(K)), (5)

where f(·) is a positive-valued strictly monotonically decreasing function, so that a large probability
mass is assigned to a pair of events with a small interval. Proposition 2 trivially extends to

Proposition 3. ∀p? ∈ ∆n, ∃ n events in <ds,dt , s. t. ds + dt ≤ n− 1 and their similarities are p?.

Remark 3.1. <ds,dt (ds + dt ≤ n− 1) can represent any n× n symmetric positive similarities.

3



Typically in eq. (5) we have f(x) = exp (−x). The pre-image in Cn of any given p? ∈ ∆n is
the curve

{
C? + 2δ

(
eeT − In

)
: ∀i 6= j,C?

ij = − ln p?ij ; δ ∈ <
}

, where 2δ
(
eeT − In

)
means

a uniform increment on the off-diagonal entries of C?. By eq. (4), the corresponding curve in
Kn is

{
K?(δ) = K? + δ

(
In − 1

nee
T
)

: δ ∈ <
}

, where K?(0) = K? = K(C?). Because(
In − 1

nee
T
)

shares with K? a common eigenvector e with zero eigenvalue, and the rest eigen-
values are all 1, there exist orthonormal vectors {v?

l }n−1l=1 and real numbers {λ?l }
rank(K?)
l=1 , s. t.

K? =
∑rank(K?)

l=1 λ?l v
?
l (v?

l )T , and
(
In − 1

nee
T
)

=
∑n−1

l=1 v?
l (v?

l )T . Therefore

K?(δ) =

rank(K?)∑
l=1

(λ?l + δ)v?
l (v?

l )T +

n−1∑
l=rank(K?)+1

δv?
l (v?

l )T . (6)

Depending on δ, K?(δ) can be negative definite, positive definite, or somewhere in between. This
is summarized in the following theorem.
Theorem 4. If f(x) = exp(−x) in eq. (5), the pre-image in Kn of ∀p? ∈ ∆n is a continuous curve
{K?(δ) : δ ∈ <}. ∃δ0, δ1 ∈ <, s. t. ∀δ < δ0, K?(δ) ≺ 0, ∀δ > δ1, K?(δ) � 0, and the number
of positive eigenvalues of K?(δ) increases monotonically with δ.

With enough dimensions, any p? ∈ ∆n can be perfectly represented in a space-only, or time-
only, or space-time-mixed <ds,dt . There is no particular reason to favor a space-only model,
because the objective of dimensionality reduction is to get a compact model with a small num-
ber of dimensions, regardless of whether they are space-like or time-like. Formally, K ds,dt

n =
{K+ −K− : rank(K+) ≤ ds; rank(K−) ≤ dt; K+ � 0; K− � 0} is a low-rank subset of
Kn. In the domain Kn, dimensionality reduction based on the input p? finds some K̂ds,dt ∈
K ds,dt

n , which is close to the curve K?(δ).

In the probability domain ∆n, the image of K ds,dt
n under some mapping g : Kn → ∆n is

g(K ds,dt
n ). As shown in fig. 1c, dimensionality reduction finds some p̂ds,dt ∈ g(K ds,dt

n ), so
that p̂ds,dt is the closest point to p? w. r. t. some information theoretic measure. The proximity
of p? to p̂ds,dt , i. e. its proximity to g(K ds,dt

n ), measures the quality of the model <ds,dt as the
embedding target space, when the model scale or the number of dimensions is given.

We will investigate the latter approach, which depends on the choice of ds, dt, the mapping g, and
some proximity measure on ∆n. We will show that, with the same number of dimensions ds + dt,
the region g(K ds,dt

n ) with space-time-mixed dimensions is naturally close to certain input p?.

4 Space-time local embeddings

We project a given similarity matrix p? ∈ ∆n to some K̂ ∈ K ds,dt
n , or equivalently, to a set of

events Y = {yi}ni=1 ⊂ <ds,dt , so that ∀i, ∀j, 〈yi,yj〉 = K̂ij as in eq. (2), and the similarities
among these events resemble p?. As discussed in section 3, a mapping g : Kn → ∆n helps transfer
K ds,dt

n into a sub-manifold of ∆n, so that the projection can be done inside ∆n. This mapping
expressed in the event coordinates is given by

pij(Y ) ∝
exp

(
‖yt

i − yt
j‖2
)

1 + ‖ys
i − ys

j‖2
, (7)

where ys = (y1, . . . , yds)T , yt = (yds+1, . . . , yds+dt)T , and ‖ · ‖ denotes the 2-norm. For any pair
of events yi and yj , pij(Y ) increases when their space coordinates move close, and/or when their
time coordinates move away. This agrees with the basic intuitions of space-time. For time-like di-
mensions, the heat kernel is used to make pij(Y ) sensitive to time variations. This helps to suppress
events with large absolute time values, which make the embedding less interpretable. For space-like
dimensions, the Student-t kernel, as suggested by t-SNE [13], is used, so that there could be more
“volume” to accommodate the often high-dimensional input data. Based on our experience, this
hybrid parametrization of pij(Y ) can better model real data as compared to alternative parametriza-
tions. Similar to SNE [4] and t-SNE [13], an optimal embedding can be obtained by minimizing the
Kullback-Leibler (KL) divergence from the input p? to the output p(Y ), given by

KL(Y ) =
∑

i,j:i<j

p?ij ln
p?ij

pij(Y )
. (8)
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According to some straightforward derivations, its gradients are

∂KL

∂yt
i

= −2
∑
j:j 6=i

(
p?ij − pij(Y )

) (
yt
i − yt

j

)
, (9)

∂KL

∂ys
i

= 2
∑
j:j 6=i

1

1 + ‖ys
i − ys

j‖2
(
p?ij − pij(Y )

) (
ys
i − ys

j

)
, (10)

where ∀i, ∀j, p?ij = p?ji and pij(Y ) = pji(Y ). As an intuitive interpretation of a gradient descent
process w. r. t. eqs. (9) and (10), we have that if pij(Y ) < p?ij , i. e. yi and yj are put too far
from each other, then ys

i and ys
j are attracting, and yt

i and yt
j are repelling, so that their space-time

interval becomes shorter; if pij(Y ) > p?ij , then yi and yj are repelling in space and attracting in
time.

During gradient descent, {ys
i } are updated by the delta-bar-delta scheme as used in t-SNE [13],

where each scalar parameter has its own adaptive learning rate initialized to γs > 0; {yt
i} are

updated based on one global adaptive learning rate initialized to γt > 0. The learning of time
should be more cautious, because pij(Y ) is more sensitive to time variations by eq. (7). Therefore,
the ratio γt/γs should be very small, e.g. 1/100.

5 Empirical results

Aiming at potential applications in data visualization and social network analysis, we compare
SNE [4], t-SNE [13], and the method proposed in section 4 denoted as SNEST . They are based
on the same optimizer but correspond to different sub-manifolds of ∆n, as presented by the curves
in fig. 1c. Given different embeddings of the same dataset using the same number of dimensions,
we perform model selection based on the KL divergence as explained in the end of section 3.

We generated a toy dataset SCHOOL, representing a school with two classes. Each class has 20
students standing evenly on a circle, where each student is communicating with his (her) 4 nearest
neighbours, and one teacher, who is communicating with all the students in the same class and the
teacher in the other class. The input p? is distributed evenly on the pairs (i, j) who are socially
connected.

NIPS22 contains a 4197 × 3624 author-document matrix from NIPS 1988 to 2009 [2]. After
discarding the authors who have only one NIPS paper, we get 1418 authors who co-authored
2121 papers. The co-authorship matrix is CA1418×1418, where CAij denotes the number of pa-
pers that author i co-authored with author j. The input similarity p? is computed so that p?ij ∝
CAij(1/

∑
j CAij + 1/

∑
i CAij), where the number of co-authored papers is normalized by each

author’s total number of papers. NIPS17 is built in the same way using only the first 17 volumes.

GrQc is an arXiv co-authorship graph [16] with 5242 nodes and 14496 edges. After removing
one isolated node, a matrix CA5241×5241 gives the numbers of co-authored papers between any two
authors who submitted to the general relativity and quantum cosmology category from January 1993
to April 2003. The input similarity p? satisfies p?ij ∝ CAij(1/

∑
j CAij + 1/

∑
i CAij).

W5000 is the semantic similarities among 5000 English words in WS5000×5000 [2, 17]. Each WSij
is an asymmetric non-negative similarity from word i to word j. The input is normalized into a
probability vector p? so that p?ij ∝ WSij/

∑
j WSij +WSji/

∑
i WSji. W1000 is built in the same way

using a subset of 1000 words.

Table 1 shows the KL divergence in eq. (8). In most cases, SNEST for a fixed number of free param-
eters has the lowest KL. On NIPS22, GrQc, W1000 and W5000, the embedding by SNEST in <2,1

is even better than SNE and t-SNE in <4, meaning that the embedding by SNEST is both compact
and faithful. This is in contrast to the mixture approach for visualization [2], which multiplies the
number of parameters to get a faithful representation.

Fixing the free parameters to two dimensions, t-SNE in <2 has the best overall performance, and
SNEST in <1,1 is worse. We also discovered that, using d dimensions, <d−1,1 usually performs
better than alternative choices such as <d−2,2, which are not shown due to space limitation. A time-
like dimension allows adaptation to non-metric data. The investigated similarities, however, are

5



Table 1: KL divergence of different embeddings. After repeated runs on different configurations for
each embedding, the minimal KL that we have achieved within 5000 epochs is shown. The bold
numbers show the winners among SNE, t-SNE and SNEST using the same number of parameters.

SCHOOL NIPS17 NIPS22 GrQc W1000 W5000
SNE→ <2 0.52 1.88 2.98 3.19 3.67 4.93
SNE→ <3 0.36 0.85 1.79 1.82 3.20 4.42
SNE→ <4 0.19 0.35 1.01 1.03 2.76 3.93

t-SNE→ <2 0.61 0.88 1.29 1.24 2.15 3.00
t-SNE→ <3 0.58 0.85 1.23 1.14 2.00 2.79
t-SNE→ <4 0.58 0.84 1.22 1.11 1.96 2.74

SNEST→ <1,1 0.43 0.91 1.62 2.34 2.59 3.64
SNEST→ <2,1 0.31 0.60 0.97 1.00 1.92 2.57
SNEST→ <3,1 0.29 0.54 0.93 0.88 1.79 2.39
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i − ys
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Figure 2: (a) The embedding of SCHOOL by SNEST in <2,1. The black (resp. colored) dots denote
the students (resp. teachers). The paper coordinates (resp. color) mean the space (resp. time)

coordinates. The links mean social connections. (b) The contour of
exp(‖yt

i−y
t
j‖

2)
1+‖ys

i−ys
j‖2

in eq. (7) as a

function of ‖ys
i − ys

j‖ (x-axis) and ‖yt
i − yt

j‖ (y-axis). The unit of the displayed levels is 10−3.

mainly space-like, in the sense that a random pair of people or words are more likely to be dissimilar
(space-like) rather than similar (time-like). According to our experience, on such datasets, good
performance is often achieved with mainly space-like dimensions mixed with a small number of
time-dimensions, e.g. <2,1 or <3,1 as suggested by table 1.

To interpret the embeddings, fig. 2a presents the embedding of SCHOOL in <2,1, where the space
and time are represented by paper coordinates and three colors levels, respectively. Each class is
embedded as a circle. The center of each class, the teacher, is lifted to a different time, so as to be
near to all students in the same class. One teacher being blue, while the other being red, creates a
“hyper-link” between the teachers, because their large time difference makes them nearby in <2,1.

Figures 3 and 4 show the embeddings of NIPS22 and W5000 in <2,1. Similar to the (t-)SNE
visualizations [2, 4, 13], it is easy to find close authors or words embedded nearby. The learned
p(Y ), however, is not equivalent to the visual proximity, because of the counter-intuitive time di-
mension. How much does the visual proximity reflect the underlying p(Y )? From the histogram
of the time coordinates, we see that the time values are in the narrow range [−1.5, 1.5], while the
range of the space coordinates is at least 100 times larger. Figure 2b shows the similarity function
on the right-hand-side of eq. (7) over an interesting range of ‖ys

i −ys
j‖ and ‖yt

i−yt
j‖. In this range,

large similarity values are very sensitive to space variations, and their red level curves are almost
vertical, meaning that the similarity information is largely carried by space coordinates. Therefore,
the visualization of neighborhoods is relatively accurate: visually nearby points are indeed similar;
proximity in a neighborhood is informative regarding p(Y ). On the other hand, small similarity val-
ues are less sensitive to space variations, and their blue level curves span a large distance in space,
meaning that the visual distance between dissimilar points is less informative regarding p(Y ). For
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Figure 3: An embedding of NIPS22 in <2,1. “Major authors” with at least 10 NIPS papers or with
a time value in the range (−∞,−1] ∪ [1,∞) are shown by their names. Other authors are shown
by small dots. The paper coordinates are in space-like dimensions. The positions of the displayed
names are adjusted up to a tiny radius to avoid text overlap. The color of each name represents the
time dimension. The font size is proportional to the absolute time value.

example, a visual distance of 165 with a time difference of 1 has roughly the same similarity as a
visual distance of 100 with no time difference. This is a matter of embedding dissimilar samples far
or very far and does not affect much the visual perception, which naturally requires less accuracy on
such samples. However, perception errors could still occur in these plots, although they are increas-
ingly unlikely as the observation radius turns small. In viewing such visualizations, one must count
in the time represented by the colors and font sizes, and remember that a point with a large absolute
time value should be weighted higher in similarity judgment.

Consider the learning of yi by eq. (9), if the input p?ij is larger than what can be faithfully modeled
in a space-only model, then j will push i to a different time. Therefore, the absolute value of time
is a significance measurement. By fig. 2a, the connection hubs, and points with remote connections,
are more likely to be at a different time. Emphasizing the embedding points with large absolute time
values helps the user to focus on important points. One can easily identify well-known authors and
popular words in figs. 3 and 4. This type of information is not discovered by traditional embeddings.

6 Conclusions and Discussions

We advocate the use of space-time representation for non-metric data. While previous works on
such embeddings [3, 12] compute an indefinite kernel by simple transformations of the input data,
we learn a low-rank indefinite kernel by manifold learning, trying to better preserve the neigh-
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Figure 4: An embedding of W5000 in <2,1. Only a subset is shown for a clear visualization. The
position of each word represents its space coordinates up to tiny adjustments to avoid overlap. The
color of each word shows its time value. The font size represents the absolute time value.

bours [4]. We discovered that, using the same number of dimensions, certain input information is
better preserved in space-time than Euclidean space. We built a space-time visualizer of non-metric
data, which automatically discovers important points.

To enhance the proposed visualization, an interactive interface can allow the user select one ref-
erence point, and show the true similarity values, e.g., by aligning other points so that the visual
distances correspond to the similarities. Proper constraints or regularization could be proposed, so
that the time values are discrete or sparse, and the resulting embedding can be more easily inter-
preted.

The proposed learning is on a sub-manifold K ds,dt
n ⊂ Kn, or a corresponding sub-manifold of ∆n.

Another interesting sub-manifold of Kn could be
{
K − ttT : K � 0; t ∈ <n

}
, which extends the

p. s. d. cone to any matrix in Kn with a compact negative eigen-spectrum. It is possible to construct
a sub-manifold of Kn so that the embedder can learn whether a dimension is space-like or time-like.

As another axis of future investigation, given the large family of manifold learners, there can be many
ways to project the input information onto these sub-manifolds. The proposed method SNEST is
based on the KL divergence in ∆n. Some immediate extensions can be based on other dissimilarity
measures in Kn or ∆n. This could also be useful for faithful representations of graph datasets with
indefinite weights.
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