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Figure 5: Comparison of complete graph Stein discrepancy convergence for P = Unif(0, 1).

A Proof of Proposition 1

Our integrability assumption together with the boundedness of g and Vg imply that Ep[(V, g(2))]
and Ep[(g(Z),V1ogp(Z))] exist. Define the ¢ ball of radius r, B, = {z € R? : ||z]| <
r}. Since X is convex, the intersection X N B, is compact and convex with Lipschitz boundary
d(X NB,.). Thus, the divergence theorem (integration by parts) implies that

Ep[(Trg)(2)] = Ep[{V,9(2)) + (9(2), Viogp(Z))] = /){(V,p(Z)g(Z»dZ

= lim (V,p(2)9(2)) dz = lim (9(2), nr(2))p(2) dz

T JxnB, T Jo(XMB,.)

for n,- the outward unit normal vector to (X N B,.). The final quantity in this expression equates to
zero, as (g(x),n(x)) = 0 for all 2 on the boundary 9.X, g is bounded, and lim,,, o, p(2,,) = 0 for
any (z,)pe— with z,,, € X for all m and ||z, || ., — oco.

B Proof of Theorem 2: Stein Discrepancy Lower Bound for Strongly
Log-concave Densities

We let Ck(X ) denote the set of real-valued functions on X with k continuous derivatives and d M.
denote the smooth function distance, the IPM generated by
*’ | *) <1 }

My 2 {h € 03(X) ( SUP, e max(||Vh(x)H*, V3h(z)
We additionally define the operator norms |[v]|,, = [vll, for vectors v € R, [|M],, =

|V2h(x)

SUPy R |||, —1 || M V]|, for matrices M € R4*4 | and 171, = SUPyepa:(jof|,—1 I7[]ll,, for ten-
sors T’ € RAxdxd,

The following result, proved in the companion paper [35], establishes the existence of explicit con-
stants (Stein factors) c1, co, c3 > 0, such that, for any test function h € M |I-I» the Stein equation

hz) —Ep[h(Z)] = (Tpgn)(x)
has a solution g, = %Vuh belonging to the non-uniform Stein set G ﬁ’}f.

Theorem 7 (Stein Factors for Strongly Log-concave Densities [35, Theorem 2.1]). Suppose that
X = R% and that log p € C*(X) is k-strongly concave with

= op =

supHV?’logp(z)HOp<L3 and supHV‘llogp(z)H < Ly.
zEX z€X

For each v € X, let (Z;,)i>0 represent the overdamped Langevin diffusion with infinitestimal
generator

(Au)(z) = 3 (Vu(w), ¥ logp(e) + 1 (V, V() ©
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and initial state Zy, = x. Then, for each h € C3(X ) with bounded first, second, and third
derivatives, the function

up(z) 2 / Eplh(Z)] — E[h(Z: 5)] dt
0
solves the the Stein equation

hz) —Ep[h(Z)] = (Aun)(z) (10)

and satisfies

2
sup|[Vun(2)ll5 <  sup[[VA(2)ll,,
zeX zeEX

) 2L 1 2
sup [ V2un(2) |, < 55° SupIVA(:) l + - sup][V2A(2)|,,» and
||V2uh(z) - VZUh(Z/)HOp 6L3 Ly
W S SR g sVl
3L 2
+ 5 sV, + g s,

Hence, by the equivalence of non-uniform Stein discrepancies (Proposition 4), da4 (u, P) <
S(u, Tp, gﬁ}f) < max(cy, €2, ¢3)S(u, Tp, Gj.| ) for any probability measure .

The desired result now follows from Lemma 8, which implies that the Wasserstein distance
dw. (m, P) — 0 whenever d g, (ftm, P) — 0 for a sequence of probability measures (i )m>1-

Lemma 8 (Smooth-Wasserstein Inequality). If i and v are probability measures on R%, and ||v|| >
||, for all v € RY, then

Aoy (1,v) < dwyy () < 3max<dM v \/dMn ) (s v v)V2E[|G]? )

for G a standard normal random vector in R,

Lemma 2.2 of the companion paper [35] establishes this result for the case ||| = ||-
proof of the generalization which closely mirrors that of the Euclidean norm case.

;> we omit the

C Proof of Proposition 3: Stein Discrepancy Upper Bound

Fix any g in G).;|. By Proposition 1, E[(Tpg)(Z)] = 0. The Lipschitz and boundedness contraints
on g and Vg now yield

]EQ[(TPQ)(X)] = E[(Trg)(X) — (Trg)(2)]

E[(9(X), Vlogp(X)) — (9(2), Viegp(Z)) + (V, 9(X) — g(2))]
E[{g(X), Vlogp(X) = Vlogp(2)) + (9(X) — g(2), Vg p(Z))]
[< 9(X) —9(2))]

|V log p(X) — V log p(Z) ] + E[[|V log p(2) (X — 2)||] + E[|X — Z]]].

To derive the second advertised inequality, we use the definition of the matrix norm, the Fenchel-
Young inequality for dual norms, the definition of the matrix dual norm, and the Cauchy-Schwarz
inequality in turn:
E[||VIogp(Z)(X — Z)TH] =E Hsulll) (Viegp(2),M(X — Z))
M:|M|*=1

<E| sup [[Viegp(Z)|[M(X - Z)|"

M:||M|*=1

< B[V 1ogp(2)[|.X — Z]] < mwogp(znﬂlﬂ[nx - z7).

Since our bounds hold uniformly for all g in G)., the proof is complete.
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D Proof of Proposition 4: Equivalence of Non-uniform Stein Discrepancies

Fix any ¢y, ¢c2,c3 > 0, and let ¢pax = max(cq, ¢a,¢3) and cpmin = min(cy, c2, ¢3). Since the Stein
discrepancy objective is linear in g, we have a S(Q, Tp,G).|) = S(Q,Tp,ag).) for any a > 0.
The result now follows from the observation that cming”.” - gﬁ}l’f’ - Cmaxg\l‘\l .

E Proof of Proposition 5: Equivalence of Classical and Complete Graph
Stein Discrepancies

The first inequality follows from the fact that G.; € Gj.|,.c, - By the Whitney-Glaeser extension
theorem [16, Thm. 1.4] of Glaeser [15], for every function g € QH I,Q,G.» there exists a function

g € ka G, with g(x;) = g(x;) and Vg(z;) = Vg(z;) for all z; in the support of Q. Here 4 is a
constant, independent of (@, P), depending only on the dimension d and norm ||-||. Since the Stein

discrepancy objective is linear in g and depends on g only through the values g(z;) and Vg(z;), we
have S(Q, Tp, G).1.@.c,) < S(Q, Tp,kag).) = ka S(Q, Tp, G)))-

F Proof of Proposition 6: Equivalence of Spanner and Complete Graph
Stein Discrepancies

The first inequality follows from the fact that G| 0.¢, € 9).|,0,6,- Fixany g € G| q,¢, and any
pair of points z, 2’ € supp(Q). By the definition of G| .0,c,» we have max ([ g(2)||", [[Vg(2)[") <
1. By the t-spanner property, there exists a sequence of points zg, 21, 22, - - ., 2,—1, 21, € supp(Q@)
with 29 = z and 2, = 2’ for which (2;_1,2/) € Eforall1 <[ < L and ZIL:1||ZI—1 -z <

lg(zi—)—g(=DI" [IVg(zi—1)=Vg(z)|l”
lzi—i—zll 2 lzi—1—=l

t||zo — zr||- Since max( ) < 1 for each [, the triangle inequal-
ity implies that
L

IVg(z0) = Vg(z)II” < ZHV!J 2-1) = V()" < D llair — 21l < tllzo — 2.
=1

Identical reasoning establishes that ||g(z0) — g(21.)||" < t[|z0 — 2L ||.

Furthermore, since ||g(z1—1) — g(z1) — Vg(z1)(zi-1 — 2)||" < &]lz21-1 — z||? for each I, the trian-
gle inequality and the definition of the tensor norm ||-||* imply that

lg(z0) — g(z1) — Vg(z)(20 — 21"

l9(z1-1) — g(z1) = Vg(z)(zi-1 — 20) " + 1(Vg(z1) = Vg(zr)) (211 — 21)|I”

M-

Il
-

i1 = 20 + Vg (1) = Vo(z) " llz1-1 — |

INA
M=
N | =

Il
-

L1
2 *
i1 = 20 + D IVg(zr) = Vglare)| llzir — 2]
=l

L-1 L 2
l21-1 Zl|<||Zl L=l + Y e Zl/+1||> (Zﬂzll Zl||> < #%1z0 — 2],
=1

U=l

IN
] =
N | =

I
-

Mh

l

1
Since z, 2’ were arbitrary, and the Stein discrepancy objective is linear in g, we conclude that

S(Q.Tp, Gy .0.c.) < S(Q,Tp,26%G) 0.6,) = 2t* S(Q, Tp. G @.¢0)-

G Finite-dimensional Classical Stein Program

Theorem 9 (Finite-dimensional Classical Stein Program). If X = (a, ) for —oo < a < 8 < oo,
and x(1y < -+ < T(y) represent the sorted values of {1, ..., Ty, a, B} NR, then the non-uniform

12



classical Stein discrepancy S(Q, Tp, gﬁ_l"f) is the optimal value of the convex program

max S ia(zy) 2 log plzy) () + a(z @) g (@) (11a)

st Vie{l,....,n =1}, |g'(z)| < e2, [9(2(i41) — 9(z@)| < c2(T1) — @), (11b)

1 2 T(i41) — T
9(x@y) — g(xgn)) + 4763@/(35(1‘)) — g (xusn)) + %(Ql(l‘(i)) + ¢ (Z(i41)))
1 c
+ (L)} < e —20)% (11¢)
cs
1 2 T(i41) — (i
9(z(it1)) — 9(T@)) + 473(9'(33(1‘)) — g (z641))) — %(9’(%)) + 9 (xay1))
1 2 e3 2
+ *(Lu)+ < f(l‘(zqu) - l‘(i)) , and (11d)
C3 4
. 1
Vie{l,....,n'} g(z@)| < I <z < Bl(er — =—7' (21)?) (11e)

203

Ly = §(2r1) —2@) — 5(9'(@@) + 9/ (2a41)) — 2, and
5(9' (@) + 9 (x(i41))) — ca-

We say the program (11) is finite-dimensional, because it suffices to optimize over vectors v, [ €
R™ representing the function values (y; = g(z(;))) and derivative values (I'; = g¢(z(;))) at each
sample or boundary point z(;). Indeed, by introducing slack variables, this program is representable
as a convex quadratically constrained quadratic program with O(n) constraints, O(n) variables, and
a linear objective. Moreover, the pairwise constraints in this program are only enforced between
neighboring points in the sequence of ordered locations z ;). Hence the resulting constraint matrix
is sparse and banded, making the problem particularly amenable to efficient optimization.

Proof Throughout, we say that g is an extension of g if §(z ;) = g(z(;)) and §'(z(;)) = ¢'(x())
for each z(;) € supp(Q). Since the Stein objective only depends on g and ¢’ through their values at
sample points, g and any extension g have identical objective values.

We will establish our result by showing that every g € gﬁ}l‘ﬁ is feasible for the program (11), so
that S(Q, Tp, ﬁ}lf) lower bounds the optimum of (11), and that every feasible g for (11) has an

extension in § € ﬁ_l‘:li‘, so that S(Q, Tp, ﬁ?l"a) also upper bounds the optimum of (11).
G.1 Feasibility of G ﬁs
Fix any g € Qﬁ}f. Also, since ¢’ is ca-bounded and c3-Lipschitz, the constraints (11b) must be

satisfied. Consider now the co-bounded and c3-Lipschitz extensions of ¢’

A _ / ) _ .

B(t) £ max(—ca, nax, (9 () — eslt — z(5]]) and
A . . !/ . _ .

U(t) £ min(ca, élzugrib/ [g (z()) + cslt x(z)” ).

We know that B(t) < g'(t) < U(t) for all ¢, for, if not, there would be a point ¢y and a point z(;
such that |g'(z(;)) — ¢’ (to)| > c3|z(;) — to], which combined with the c3-Lipschitz property would
be a contradiction. Thus, for each sample T3 the fundamental theorem of calculus gives

T(i+1) , T(i41)
sagrn) = gtaw) = [ g@arz [ B
T (i) T(i)

The right-hand side of this inequality evaluates precisely to the right-hand side of the constraint
(11c). An analogous upper bound using U () yields (11d).

Finally, consider any point z(;). If 2(;y € {«, 3}, then (11e) is satisfied as g(z) = 0 for any point
z on the boundary. Suppose instead that o < z(;y < 3. Without loss of generality, we may assume
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that g’ (z(;) > 0. Since g’ is c3-Lipschitz, we have ¢'(t) > ¢'(x(;)) —cs|t—x ;| for all ¢. Integrating
both sides of this inequality from z ;) to x,, = x(;) + ¢'(2(;))/c3, we obtain
0)

g(xy) — glze) = /I

Since g(z,) < c1, we have 5—¢/(x(;))* + g(x(;)) < c1. Similarly, by integrating the inequality

2(;3
from zy, = ;) — ¢'(x(;))/c3 o 2(;), we have g(x1,) — g(x(;)) > ¢'(2(;))?/(2¢3), which combined
with g(xp) < ¢; yields (11e).

Ty Ty

§(t) dt > / 0@ ) — es(t — 2gy) dt = g'(20))2/ (205)
T (i)

G.2 Extending Feasible Solutions

Suppose now that g is any function feasible for the program (11). We will construct an extension
g € gﬁ_l‘f by first working independently over each interval (z(;), (;41)). Fix an index i < n’. Our
strategy is to identify a pair of co-bounded, c3-Lipschitz functions m,; and M; defined on the interval
[T (3), T (i41)] which satisfy m;(z) < M;(z) for all @ € [x(;), 2(i11)], mi(x) = M;(z) = ¢'(z) for
z € {Z(),T(i+1)}» and f;((;H) mi(t)dt < g(z(i1)) — 9(z@) < f;((,ifl) M;(t)dt. For any such
(my, M;) pair, there exists ¢; € [0, 1] satisfying
T(i+1)
9(xitn)) — 9(x@)) = / Gimi(t) + (1 — G)M;(t)dt,

Z(i)

and hence we will define the extension

g(x) = g(z)) + CGimy(t) + (1 — ¢)M;(¢)dt.
Z(i)
By convexity, the extension derivative ¢’ is co-bounded and c3-Lipschitz, so we will only need to
check that sup,.c y |g()| < ¢;. The maximum magnitude values of § occur either at the interval
endpoints, which are ¢;-bounded by (11e), or at critical points z satisfying §'(x) = 0, so it suffices
to ensure that g is ¢;-bounded at all critical points.

We will use the co-bounded, c3-Lipschitz functions B and U as building blocks for our extension,
since they satisfy B(t) = U(t) = ¢'(t) for t € {z¢;y,x(41)} and B(t) < ¢'(t) < U(t),

B(t) = max(—ca, ¢ (x(;)) — c3(t — z(3)), 9" (¥ (i41)) — e3(z41) — ), and

U(t) = min(cz, ¢'(z ;) + c3(t — 2@3)), 9" (@ @i41)) + c3(41) — 1)),
for ¢t € [x(;y, 2(i+1)]. We need only consider three cases.

Case 1: B and U are never negative or never positive on [x(;), z(;11)]. For this case, we will
choose m; = Band M; = U. By (11¢) and (11d) we know f;((_i)“’ m;(t)dt < g(x(i11))—9(2@)) <

f;(:'“’ M;(t)dt. Since B and U never change signs, § will be monotonic and hence ¢;-bounded for
any choice of (;.

Case 2: Exactly one of B and U changes sign on [x(;), z(;11)]. Without loss of generality, we
may assume that ¢'(z(;)), ¢'(#(i+1)) = 0 and that B changes sign. Consider the quantity ¢ =
f;((_i)“) max{B(t),0}dt. If g(x ;1)) — g(z(;)) < ¢, we let m; = B and M; = max{B,0}.

Since, on the interval [x(i), x(iﬂ)], B is piecewise linear with at most two pieces that can take on the
value 0, B has at most two roots within this interval. However, since B(x) is continuous, negative
for some value of x, and nonnegative at x € {x(i), T(i41) }, we know B has at least two roots. Thus
let 71 < ro be the roots of B(x). For any choice of (;, the convex combination (;m; + (1 — ;) M;
will be exactly B outside (r1, r2). Moreover, if ; # 0, then this combination will be less than 0 on
(r1,72), and if {; = 0, the combination will be 0 on the whole interval. Hence it suffices to only
check the critical points 7y and ro. By (11e), m;(r) = M;(r) = B(r) € [—c1,¢1] forr € {ry,72},
and so g will be ¢;-bounded.

If instead g((;41)) — g(2(;)) > ¢, we can recycle the argument from Case 1 with m; = max{B, 0}
and M; = U and conclude that g is c;-bounded.
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Case 3: Both B and U change sign on [:c(i)7 CE(¢+1)]- Without loss of generality, we may assume
that g’ (z(;y) > 0, ¢'(x(;4+1)) < 0. Since B continuously interpolates between ¢’ (x(;)) and g’ (2 (;41))
on [ (;), Z(i41)], it must have a root r. Let w; € [(;), Z(;4+1)] be the point where B changes from
one linear portion to another. Then because B is monotonic on each linear portion, the fact that
B(w;) < B(z(+1)) < 0 means that B cannot have a root between [w;, 7(;+1)] and hence has at
most one root on [x(i), J;(iﬂ)]. Hence r is the unique root of B.

In a similar fashion, let us define s as the root of U, and since B(x) < U(xz) for all =, we have
s > r. Define

B(z) x€lzg),r)

Wi(z)£<0 x € [r, 9]

Uz) te (s,
and ¢ £ fr(”” W (t)dt. As in Case 2, we will consider two subcases. If g(z(;41)) — g(z(;)) < ¥,
we will let m; = B and M; = W. By (11e), m;(r) = M;(r) = B(r) € [—c1, c1], and since this is
the only critical point, g will be ¢;-bounded.
For the other case, in which g(x;1)) — g(z(;)) > 1, we choose m; = W and M; = U. Then
(11e) imply that m;(s) = M;(s) = U(s) € [—c1, c1], and, since this is the only critical point, the
extension is well-defined on (z(;), Z(i11))-

Defining ¢ outside of the interval [z, x,/] It only remains to define our extension § outside
of the interval [z1,x,] when either a or S is infinite. Suppose @ = —oc. We extend g to each
2 € (—o00, x1) using the construction

30 2 [ 1€ (o= I o)l fes2)(6 (1) — casign(y’ (o)) .

—0o0

This extension ensures that ¢’ is co-bounded and c3-Lipschitz. Moreover, the constraint (11e)
guarantees that |§(z)| < ¢;. Analogous reasoning establishes an extension to (z,,/, 00). O

H Equivalence of Constrained Classical and Spanner Stein Discrepancies

For P with support X = (a1, 1) X - - - X (ag, Bq) for —oo < a; < ; < o0, Algorithm 1 computes
a Stein discrepancy based on the graph Stein set

911,,Q.(v,E) £ {g t X — R? |V eV, j,ke{l,...,d} withk # j, and b; € {;,5;} NR,

maX(Hg(x)Hooa IVg(z)]| lgi (@) |Vrgi(@)| |gi(x) lngg(x)(xj—b )\) <1, and, ¥ (z,y) € E,

oo’ [z;=bs| |z;—bs| ’ 3 (z;—b;)2

max
( lz—ylly lz—ylly ’ slle—yl? ’ sllz—yl?

lg(@)—gWlle [IV9(@)=VaWlle ll9(z)—g(y)—Vg(@)(z—y)ll Hg(r)*g(y)*Vg(y)(m*y)Hoo> <1}

Our next result shows that the graph Stein discrepancy based on a ¢-spanner is strongly equivalent
to the classical Stein discrepancy.

Proposition 10 (Equivalence of Constrained Classical and Spanner Stein Discrepancies). If X =
(a1, 81) X -+ X (g, Ba), and Gy = (supp(Q), E) is a t-spanner, then

S(Q,Tp,Gy,) < S@Q. TP, G),.0.6.) < t°kaS(Q, Tp, Gy,

where kg is a constant, independent of (Q, P, Gy, t), depending only on the dimension d.

Proof

Establishing the first inequality Fix any g € G|, z € supp(Q), and j, k € {1,...,d} with
k # j, and consider any j-th coordinate boundary projection point

be {z—!—ej(aj — Zj),Z—F@j(ﬂj — Zj)}ﬂRd.
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Since b € 90X, we must have (g(b), n(b)) = (g(b),e;) = g;(b) = 0. Moreover, for each dimension
k # j, we have Vg;(z) = 0, since otherwise, (g(b + dex),n(b+ dex)) = g;(b + dex) # 0 for
some ¢ € R and b + de;, € OX by the continuity of Vg;.

The smoothness constraints of the classical Stein set G now imply that
19 (2)] = 19;(2) — g; (D) < |25 — b;],  [Vigj(z)| = |Vkg;(2) — Vig;(b)| < |25 — bjl,
and
1
195(2) = V9;(2)(2; = bj)| = 19;(b) = 9;(2) = (Vg;(2),b = 2)| < 5(2 = b;)*

so that all graph Stein set boundary compatibility constraints are satisfied. Hence, we have the
containment G € Gj|,.@,c,» which implies the first advertised inequality.

Establishing the second inequality To establish the second inequality, it suffices to show that for
any g € G.|,.q.6,»€ach j € {1,...,d}, and ¢ £ ¢, there exists a function g; satisfying

9;(2) = g;(2), Vg;(2) = Vg;(z), g;(b) =0, Vig;(b) =0, Vk # j, (12)

19;(b) — g;(2)| < [Ib— =[5, (13)

V95(0) ~ Vsl < Cllb— 2l, I99;0) - Vg0 < o=l (1)

1956) — 9;(2) = (Vg5(2),b = 2)| < SIb = =], 15)
3

105() — 05(8) — (Vs (8), =~ B)] < b~ 2|}, and (16)

195(0) — 9;(0) — (Vg (6),b ¥ < S 1o~ ¥ a7

for all z € supp(Q) and all b, b’ in the j-th coordinate boundary set
B 2{beR:b=2+ej(a; —z)orb=z+e;(Bj — 2;) for some z € X}.

Indeed, since such g; will satisfy max (|g; ()], | Vg;(2)| ) < 1 forall z € supp(Q) U B; and

max(lgj(w)*gj(y)l IVg; (@)=Vg; Wl 195(x)—9;(¥)—=Vg; (@) (z—y)| Igj(w)*gj(y)ngj(y)(a:*y)\) < 22

lz—yll, lz—yll, ’ slle—ylly ’ sllz—yll}

for all z, y € supp(Q) by the argument of Appendix F, the Whitney-Glaeser extension theorem [16,
Thm. 1.4] of Glaeser [15] will then imply that there exists g* € t2kq gj.|,» for a constant rq
independent of § depending only on d, with g*(z) = g(z) and Vg*(z) = Vg(z) for all z €
supp(Q). Since § and g* will have matching Stein discrepancy objective values, and each objective
is linear in g, the second advertised inequality will then follow.

Fixg € §).,.@.c, and j € {1,...,d}. We will now construct a function g; satisfying the desired

properties. Since g; and Vg; are determined on supp(Q), and g; and Vg, are determined on B;
for k # j by the constraints (12), it remains to define V¢, on B;. We choose the extension

V;g;(b) £ min ){ngj(z)+C||Z_b||1} forall be Bj.

z€supp(Q

Fix any z € supp(Q) and b € Bj, and let b* = z + e;(b; — z;). The argument of Appendix F
implies that V;g; is ¢-Lipschitz on supp(Q), and hence it is also ¢-Lipschitz on supp(Q) U B;.
Since

Vg (2) = Vg (0)] = [Vig;(2)] < |25 — bj| < |z — bl
for all k£ # j, we have (14). Moreover, the boundary compatibility constraints of G| .@.c, imply
195(0) — 9;(2) = 1g; (2)| < Ib" = z2ll; < [|b— =]y,
establishing (13). We next invoke the triangle inequality, the boundary compatibility conditions

of G.|,.q.c,» Holder’s inequality, the Lipschitz derivative property (14), and the fact ||z — b[|; =
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|b* — z||; + ||b* — b||, in turn to establish (15):

l9;(b) — gj(2) = (Vg;(2),b— 2)| = |g;(2) — V;g;(2)(2; — bj) — (Vg;(2),b" — D)
19j(2) = V;9(2) (2 — b;)| + |{Vg; (") — Vg;(2),b" —b)|

1 * * E
S 10" =213 + Vg5 (6%) = Vs ()] Ib* = b,

IN

IN

loo

IN

1 * 2 * *
§||b — 2|7 +ClIb" = =l 16" = bll,

IN

C * * C 2
Sl = 2y + 16° = blly)? = Sl — =17
A parallel argument yields (17). Finally, we may deduce (16), as
|9;(2) — g5(b) = (Vg;(b), 2 = b)| < lg;(2) — V;g;(2)(z; — bj)| +V;9;(b) — V;g;(2)[|2; — b5
1 3¢
< 525 = b Clb = 2l |25 — bl < b= I}

by the triangle inequality, the definition of G|, @.c,, and the Lipschitz property (14). O
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