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Abstract

Given a multi-armed bandit problem it may be desirable to achieve a smaller-
than-usual worst-case regret for some special actions. I show that the price for
such unbalanced worst-case regret guarantees is rather high. Specifically, if an
algorithm enjoys a worst-case regret of B with respect to some action, then there
must exist another action for which the worst-case regret is at least Ω(nK/B),
where n is the horizon and K the number of actions. I also give upper bounds
in both the stochastic and adversarial settings showing that this result cannot be
improved. For the stochastic case the pareto regret frontier is characterised exactly
up to constant factors.

1 Introduction

The multi-armed bandit is the simplest class of problems that exhibit the exploration/exploitation
dilemma. In each time step the learner chooses one of K actions and receives a noisy reward signal
for the chosen action. A learner’s performance is measured in terms of the regret, which is the
(expected) difference between the rewards it actually received and those it would have received (in
expectation) by choosing the optimal action.

Prior work on the regret criterion for finite-armed bandits has treated all actions uniformly and has
aimed for bounds on the regret that do not depend on which action turned out to be optimal. I
take a different approach and ask what can be achieved if some actions are given special treatment.
Focussing on worst-case bounds, I ask whether or not it is possible to achieve improved worst-case
regret for some actions, and what is the cost in terms of the regret for the remaining actions. Such
results may be useful in a variety of cases. For example, a company that is exploring some new
strategies might expect an especially small regret if its existing strategy turns out to be (nearly)
optimal.

This problem has previously been considered in the experts setting where the learner is allowed
to observe the reward for all actions in every round, not only for the action actually chosen. The
earliest work seems to be by Hutter and Poland [2005] where it is shown that the learner can assign
a prior weight to each action and pays a worst-case regret of O(

√−n log ρi) for expert i where ρi
is the prior belief in expert i and n is the horizon. The uniform regret is obtained by choosing ρi =
1/K, which leads to the well-known O(

√
n logK) bound achieved by the exponential weighting

algorithm [Cesa-Bianchi, 2006]. The consequence of this is that an algorithm can enjoy a constant
regret with respect to a single action while suffering minimally on the remainder. The problem was
studied in more detail by Koolen [2013] where (remarkably) the author was able to exactly describe
the pareto regret frontier when K = 2.

Other related work (also in the experts setting) is where the objective is to obtain an improved regret
against a mixture of available experts/actions [Even-Dar et al., 2008, Kapralov and Panigrahy, 2011].
In a similar vain, Sani et al. [2014] showed that algorithms for prediction with expert advice can be
combined with minimal cost to obtain the best of both worlds. In the bandit setting I am only aware
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of the work by Liu and Li [2015] who study the effect of the prior on the regret of Thompson
sampling in a special case. In contrast the lower bound given here applies to all algorithms in a
relatively standard setting.

The main contribution of this work is a characterisation of the pareto regret frontier (the set of
achievable worst-case regret bounds) for stochastic bandits.

Let µi ∈ R be the unknown mean of the ith arm and assume that supi,j µi − µj ≤ 1. In each time
step the learner chooses an action It ∈ {1, . . . ,K} and receives reward gIt,t = µi + ηt where ηt
is the noise term that I assume to be sampled independently from a 1-subgaussian distribution that
may depend on It. This model subsumes both Gaussian and Bernoulli (or bounded) rewards. Let
π be a bandit strategy, which is a function from histories of observations to an action It. Then the
n-step expected pseudo regret with respect to the ith arm is

Rπµ,i = nµi − E
n∑
t=1

µIt ,

where the expectation is taken with respect to the randomness in the noise and the actions of the
policy. Throughout this work n will be fixed, so is omitted from the notation. The worst-case
expected pseudo-regret with respect to arm i is

Rπi = sup
µ
Rπµ,i . (1)

This means that Rπ ∈ RK is a vector of worst-case pseudo regrets with respect to each of the arms.
Let B ⊂ RK be a set defined by

B =

B ∈ [0, n]K : Bi ≥ min

n,∑
j 6=i

n

Bj

 for all i

 . (2)

The boundary of B is denoted by δB. The following theorem shows that δB describes the pareto
regret frontier up to constant factors.

Theorem
There exist universal constants c1 = 8 and c2 = 252 such that:

Lower bound: for ηt ∼ N (0, 1) and all strategies π we have c1(Rπ +K) ∈ B
Upper bound: for all B ∈ B there exists a strategy π such that Rπi ≤ c2Bi for all i

Observe that the lower bound relies on the assumption that the noise term be Gaussian while the
upper bound holds for subgaussian noise. The lower bound may be generalised to other noise models
such as Bernoulli, but does not hold for all subgaussian noise models. For example, it does not hold
if there is no noise (ηt = 0 almost surely).

The lower bound also applies to the adversarial framework where the rewards may be chosen arbi-
trarily. Although I was not able to derive a matching upper bound in this case, a simple modification
of the Exp-γ algorithm [Bubeck and Cesa-Bianchi, 2012] leads to an algorithm with

Rπ1 ≤ B1 and Rπk .
nK

B1
log

(
nK

B2
1

)
for all k ≥ 2 ,

where the regret is the adversarial version of the expected regret. The details may be found in the
Appendix.

The new results seem elegant, but disappointing. In the experts setting we have seen that the learner
can distribute a prior amongst the actions and obtain a bound on the regret depending in a natural
way on the prior weight of the optimal action. In contrast, in the bandit setting the learner pays
an enormously higher price to obtain a small regret with respect to even a single arm. In fact,
the learner must essentially choose a single arm to favour, after which the regret for the remaining
arms has very limited flexibility. Unlike in the experts setting, if even a single arm enjoys constant
worst-case regret, then the worst-case regret with respect to all other arms is necessarily linear.
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2 Preliminaries

I use the same notation as Bubeck and Cesa-Bianchi [2012]. Define Ti(t) to be the number of times
action i has been chosen after time step t and µ̂i,s to be the empirical estimate of µi from the first s
times action i was sampled. This means that µ̂i,Ti(t−1) is the empirical estimate of µi at the start of
the tth round. I use the convention that µ̂i,0 = 0. Since the noise model is 1-subgaussian we have

∀ε > 0 P {∃s ≤ t : µ̂i,s − µi ≥ ε/s} ≤ exp

(
−ε

2

2t

)
. (3)

This result is presumably well known, but a proof is included in Appendix E for convenience. The
optimal arm is i∗ = arg maxi µi with ties broken in some arbitrary way. The optimal reward is
µ∗ = maxi µi. The gap between the mean rewards of the jth arm and the optimal arm is ∆j =
µ∗ − µj and ∆ji = µi − µj . The vector of worst-case regrets is Rπ ∈ RK and has been defined
already in Eq. (1). I write Rπ ≤ B ∈ RK if Rπi ≤ Bi for all i ∈ {1, . . . ,K}. For vector Rπ and
x ∈ R we have (Rπ + x)i = Rπi + x.

3 Understanding the Frontier

Before proving the main theorem I briefly describe the features of the regret frontier. First notice
that if Bi =

√
n(K − 1) for all i, then

Bi =
√
n(K − 1) =

∑
j 6=i

√
n/(K − 1) =

∑
j 6=i

n

Bj
.

Thus B ∈ B as expected. This particular B is witnessed up to constant factors by MOSS [Audibert
and Bubeck, 2009] and OC-UCB [Lattimore, 2015], but not UCB [Auer et al., 2002], which suffers
Rucb
i ∈ Ω(

√
nK log n).

Of course the uniform choice of B is not the only option. Suppose the first arm is special, so B1

should be chosen especially small. Assume without loss of generality that B1 ≤ B2 ≤ . . . ≤ BK ≤
n. Then by the main theorem we have

B1 ≥
K∑
i=2

n

Bi
≥

k∑
i=2

n

Bi
≥ (k − 1)n

Bk
.

Therefore

Bk ≥
(k − 1)n

B1
. (4)

This also proves the claim in the abstract, since it implies that BK ≥ (K − 1)n/B1. If B1 is fixed,
then choosing Bk = (k − 1)n/B1 does not lie on the frontier because

K∑
k=2

n

Bk
=

K∑
k=2

B1

k − 1
∈ Ω(B1 logK)

However, if H =
∑K
k=2 1/(k − 1) ∈ Θ(logK), then choosing Bk = (k − 1)nH/B1 does lie on

the frontier and is a factor of logK away from the lower bound given in Eq. (4). Therefore up the
a logK factor, points on the regret frontier are characterised entirely by a permutation determining
the order of worst-case regrets and the smallest worst-case regret.

Perhaps the most natural choice of B (assuming again that B1 ≤ . . . ≤ BK) is

B1 = np and Bk = (k − 1)n1−pH for k > 1 .

For p = 1/2 this leads to a bound that is at most
√
K logK worse than that obtained by MOSS and

OC-UCB while being a factor of
√
K better for a select few.
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Assumptions

The assumption that ∆i ∈ [0, 1] is used to avoid annoying boundary problems caused by the fact that
time is discrete. This means that if ∆i is extremely large, then even a single sample from this arm can
cause a big regret bound. This assumption is already quite common, for example a worst-case regret
of Ω(

√
Kn) clearly does not hold if the gaps are permitted to be unbounded. Unfortunately there is

no perfect resolution to this annoyance. Most elegant would be to allow time to be continuous with
actions taken up to stopping times. Otherwise you have to deal with the discretisation/boundary
problem with special cases, or make assumptions as I have done here.

4 Lower Bounds

Theorem 1. Assume ηt ∼ N (0, 1) is sampled from a standard Gaussian. Let π be an arbitrary
strategy, then 8(Rπ +K) ∈ B.

Proof. Assume without loss of generality that Rπ1 = miniR
π
i (if this is not the case, then simply

re-order the actions). If Rπ1 > n/8, then the result is trivial. From now on assume Rπ1 ≤ n/8. Let
c = 4 and define

εk = min

{
1

2
,
cRπk
n

}
≤ 1

2
.

Define K vectors µ1, . . . , µK ∈ RK by

(µk)j =
1

2
+


0 if j = 1

εk if j = k 6= 1

−εj otherwise .

Therefore the optimal action for the bandit with means µk is k. Let A = {k : Rπk ≤ n/8} and
A′ = {k : k /∈ A} and assume k ∈ A. Then

Rπk
(a)

≥ Rπµk,k

(b)

≥ εkEπµk

∑
j 6=k

Tj(n)

 (c)
= εk

(
n− Eπµk

Tk(n)
) (d)

=
cRπk (n− Eπµk

Tk(n))

n
,

where (a) follows since Rπk is the worst-case regret with respect to arm k, (b) since the gap between
the means of the kth arm and any other arm is at least εk (Note that this is also true for k = 1
since ε1 = mink εk. (c) follows from the fact that

∑
i Ti(n) = n and (d) from the definition of εk.

Therefore

n

(
1− 1

c

)
≤ Eπµk

Tk(n) . (5)

Therefore for k 6= 1 with k ∈ A we have

n

(
1− 1

c

)
≤ Eπµk

Tk(n)
(a)

≤ Eπµ1
Tk(n) + nεk

√
Eπµ1

Tk(n)

(b)

≤ n− Eπµ1
T1(n) + nεk

√
Eπµ1

Tk(n)
(c)

≤ n

c
+ nεk

√
Eπµ1

Tk(n) ,

where (a) follows from standard entropy inequalities and a similar argument as used by Auer et al.
[1995] (details given in Appendix C), (b) since k 6= 1 and Eπµ1

T1(n) + Eπµ1
Tk(n) ≤ n, and (c) by

Eq. (5). Therefore

Eπµ1
Tk(n) ≥ 1− 2

c

ε2
k

,

which implies that

Rπ1 ≥ Rπµ1,1 =

K∑
k=2

εkEπµ1
Tk(n) ≥

∑
k∈A−{1}

1− 2
c

εk
=

1

8

∑
k∈A−{1}

n

Rπk
.
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Therefore for all i ∈ A we have

8Rπi ≥
∑

k∈A−{1}

n

Rπk
· R

π
i

Rπ1
≥

∑
k∈A−{i}

n

Rπk
.

Therefore

8Rπi + 8K ≥
∑
k 6=i

n

Rπk
+ 8K −

∑
k∈A′−{i}

n

Rπk
≥
∑
k 6=i

n

Rπk
,

which implies that 8(Rπ +K) ∈ B as required.

5 Upper Bounds

I now show that the lower bound derived in the previous section is tight up to constant factors. The
algorithm is a generalisation MOSS [Audibert and Bubeck, 2009] with two modifications. First, the
width of the confidence bounds are biased in a non-uniform way, and second, the upper confidence
bounds are shifted. The new algorithm is functionally identical to MOSS in the special case that Bi
is uniform. Define log+(x) = max {0, log(x)}.

1: Input: n and B1, . . . , BK
2: ni = n2/B2

i for all i
3: for t ∈ 1, . . . , n do

4: It = arg max
i

µ̂i,Ti(t−1) +

√
4

Ti(t− 1)
log+

(
ni

Ti(t− 1)

)
−
√

1

ni
5: end for

Algorithm 1: Unbalanced MOSS

Theorem 2. Let B ∈ B, then the strategy π given in Algorithm 1 satisfies Rπ ≤ 252B.
Corollary 3. For all µ the following hold:

1. Rπµ,i∗ ≤ 252Bi∗ .

2. Rπµ,i∗ ≤ mini(n∆i + 252Bi)

The second part of the corollary is useful when Bi∗ is large, but there exists an arm for which n∆i

and Bi are both small. The proof of Theorem 2 requires a few lemmas. The first is a somewhat stan-
dard concentration inequality that follows from a combination of the peeling argument and Doob’s
maximal inequality.

Lemma 4. Let Zi = max
1≤s≤n

µi − µ̂i,s −
√

4

s
log+

(ni
s

)
. Then P {Zi ≥ ∆} ≤ 20

ni∆2 for all ∆ > 0.

Proof. Using the peeling device.

P {Zi ≥ ∆} (a)
= P

{
∃s ≤ n : µi − µ̂i,s ≥ ∆ +

√
4

s
log+

(ni
s

)}
(b)

≤
∞∑
k=0

P
{
∃s < 2k+1 : s(µi − µ̂i,s) ≥ 2k∆ +

√
2k+2 log+

( ni
2k+1

)}
(c)

≤
∞∑
k=0

exp
(
−2k−2∆2

)
min

{
1,

2k+1

ni

}
(d)

≤
(

8

log(2)
+ 8

)
· 1

ni∆2
≤ 20

ni∆2
,

where (a) is just the definition of Zi, (b) follows from the union bound and re-arranging the equation
inside the probability, (c) follows from Eq. (3) and the definition of log+ and (d) is obtained by
upper bounding the sum with an integral.

5



In the analysis of traditional bandit algorithms the gap ∆ji measures how quickly the algorithm can
detect the difference between arms i and j. By design, however, Algorithm 1 is negatively biasing
its estimate of the empirical mean of arm i by

√
1/ni. This has the effect of shifting the gaps, which

I denote by ∆̄ji and define to be

∆̄ji = ∆ji +
√

1/nj −
√

1/ni = µi − µj +
√

1/nj −
√

1/ni .

Lemma 5. Define stopping time τji by

τji = min

{
s : µ̂j,s +

√
4

s
log+

(nj
s

)
≤ µj + ∆̄ji/2

}
.

If Zi < ∆̄ji/2, then Tj(n) ≤ τji.

Proof. Let t be the first time step such that Tj(t− 1) = τji. Then

µ̂j,Tj(t−1)+

√
4

Tj(t− 1)
log+

(
nj

Tj(t− 1)

)
−
√

1/nj ≤ µj + ∆̄ji/2−
√

1/nj

= µj + ∆̄ji − ∆̄ji/2−
√

1/nj

= µi −
√

1/ni − ∆̄ji/2

< µ̂i,Ti(t−1) +

√
4

Ti(t− 1)
log+

(
ni

Ti(t− 1)

)
−
√

1/ni ,

which implies that arm j will not be chosen at time step t and so also not for any subsequent time
steps by the same argument and induction. Therefore Tj(n) ≤ τji.

Lemma 6. If ∆̄ji > 0, then Eτji ≤
40

∆̄2
ji

+
64

∆̄2
ji

ProductLog

(
nj∆̄

2
ji

64

)
.

Proof. Let s0 be defined by

s0 =

⌈
64

∆̄2
ji

ProductLog

(
nj∆̄

2
ji

64

)⌉
=⇒

√
4

s0
log+

(
nj
s0

)
≤ ∆̄ji

4
.

Therefore

Eτji =

n∑
s=1

P {τji ≥ s} ≤ 1 +

n−1∑
s=1

P

{
µ̂i,s − µi,s ≥

∆̄ji

2
−
√

4

s
log+

(nj
s

)}

≤ 1 + s0 +

n−1∑
s=s0+1

P
{
µ̂i,s − µi,s ≥

∆̄ji

4

}
≤ 1 + s0 +

∞∑
s=s0+1

exp

(
−
s∆̄2

ji

32

)

≤ 1 + s0 +
32

∆̄2
ji

≤ 40

∆̄2
ji

+
64

∆̄2
ji

ProductLog

(
nj∆̄

2
ji

64

)
,

where the last inequality follows since ∆̄ji ≤ 2.
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Proof of Theorem 2. Let ∆ = 2/
√
ni and A = {j : ∆ji > ∆}. Then for j ∈ A we have ∆ji ≤

2∆̄ji and ∆̄ji ≥
√

1/ni +
√

1/nj . Letting ∆′ =
√

1/ni we have

Rπµ,i = E

 K∑
j=1

∆jiTj(n)


≤ n∆ + E

∑
j∈A

∆jiTj(n)


(a)

≤ 2Bi + E

∑
j∈A

∆jiτji + nmax
j∈A

{
∆ji : Zi ≥ ∆̄ji/2

}
(b)

≤ 2Bi +
∑
j∈A

(
80

∆̄ji
+

128

∆̄ji
ProductLog

(
nj∆̄

2
ji

64

))
+ 4nE[Zi1{Zi ≥ ∆′}]

(c)

≤ 2Bi +
∑
j∈A

90
√
nj + 4nE[Zi1{Zi ≥ ∆′}] ,

where (a) follows by using Lemma 5 to bound Tj(n) ≤ τji when Zi < ∆̄ji. On the other hand,
the total number of pulls for arms j for which Zi ≥ ∆̄ji/2 is at most n. (b) follows by bounding
τji in expectation using Lemma 6. (c) follows from basic calculus and because for j ∈ A we have
∆̄ji ≥

√
1/ni. All that remains is to bound the expectation.

4nE[Zi1{Zi ≥ ∆′}] ≤ 4n∆′P {Zi ≥ ∆′}+ 4n

∫ ∞
∆′

P {Zi ≥ z} dz ≤
160n

∆′ni
=

160n√
ni

= 160Bi ,

where I have used Lemma 4 and simple identities. Putting it together we obtain

Rπµ,i ≤ 2Bi +
∑
j∈A

90
√
nj + 160B1 ≤ 252Bi ,

where I applied the assumption B ∈ B and so
∑
j 6=1

√
nj =

∑
j 6=1 n/Bj ≤ Bi.

The above proof may be simplified in the special case that B is uniform where we recover the
minimax regret of MOSS, but with perhaps a simpler proof than was given originally by Audibert
and Bubeck [2009].

On Logarithmic Regret

In a recent technical report I demonstrated empirically that MOSS suffers sub-optimal problem-
dependent regret in terms of the minimum gap [Lattimore, 2015]. Specifically, it can happen that

Rmoss
µ,i∗ ∈ Ω

(
K

∆min
log n

)
, (6)

where ∆min = mini:∆i>0 ∆i. On the other hand, the order-optimal asymptotic regret can be signif-
icantly smaller. Specifically, UCB by Auer et al. [2002] satisfies

Rucb
µ,i∗ ∈ O

( ∑
i:∆i>0

1

∆i
log n

)
, (7)

which for unequal gaps can be much smaller than Eq. (6) and is asymptotically order-optimal [Lai
and Robbins, 1985]. The problem is that MOSS explores only enough to obtain minimax regret, but
sometimes obtains minimax regret even when a more conservative algorithm would do better. It is
worth remarking that this effect is harder to observe than one might think. The example given in the
afforementioned technical report is carefully tuned to exploit this failing, but still requires n = 109

and K = 103 before significant problems arise. In all other experiments MOSS was performing
admirably in comparison to UCB.
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All these problems can be avoided by modifying UCB rather than MOSS. The cost is a factor of
O(
√

log n). The algorithm is similar to Algorithm 1, but chooses the action that maximises the
following index.

It = arg max
i

µ̂i,Ti(t−1) +

√
(2 + ε) log t

Ti(t− 1)
−
√

log n

ni
,

where ε > 0 is a fixed arbitrary constant.

Theorem 7. If π is the strategy of unbalanced UCB with ni = n2/B2
i and B ∈ B, then the regret

of the unbalanced UCB satisfies:

1. (problem-independent regret). Rπµ,i∗ ∈ O
(
Bi∗
√

log n
)
.

2. (problem-dependent regret). Let A =
{
i : ∆i ≥ 2

√
1/ni∗ log n

}
. Then

Rπµ,i∗ ∈ O
(
Bi∗
√

log n1{A 6= ∅}+
∑
i∈A

1

∆i
log n

)
.

The proof may be found in Appendix B. The indicator function in the problem-dependent bound van-
ishes for sufficiently large n provided ni∗ ∈ ω(log(n)), which is equivalent to Bi∗ ∈ o(n/

√
log n).

Thus for reasonable choices of B1, . . . , BK the algorithm is going to enjoy the same asymptotic
performance as UCB. Theorem 7 may be proven for any index-based algorithm for which it can be
shown that

ETi(n) ∈ O
(

1

∆2
i

log n

)
,

which includes (for example) KL-UCB [Cappé et al., 2013] and Thompson sampling (see analy-
sis by Agrawal and Goyal [2012a,b] and original paper by Thompson [1933]), but not OC-UCB
[Lattimore, 2015] or MOSS [Audibert and Bubeck, 2009].

A Note on Constants

The constants in the statement of Theorem 2 can be improved by carefully tuning all thresh-holds,
but the proof would grow significantly and I would not expect a corresponding boost in practical
performance. In fact, the reverse is true, since the “weak” bounds used in the proof would propagate
to the algorithm. Also note that the 4 appearing in the square root of the unbalanced MOSS algorithm
is due to the fact that I am not assuming rewards are bounded in [0, 1] for which the variance is at
most 1/4. It is possible to replace the 4 with 2 + ε for any ε > 0 by changing the base in the peeling
argument in the proof of Lemma 4 as was done by Bubeck [2010] and others.

Experimental Results

I compare MOSS and unbalanced MOSS in two simple simulated examples, both with horizon
n = 5000. Each data point is an empirical average of∼104 i.i.d. samples, so error bars are too small
to see. Code/data is available in the supplementary material. The first experiment has K = 2 arms
and B1 = n

1
3 and B2 = n

2
3 . I plotted the results for µ = (0,−∆) for varying ∆. As predicted,

the new algorithm performs significantly better than MOSS for positive ∆, and significantly worse
otherwise (Fig. 1). The second experiment has K = 10 arms. This time B1 =

√
n and Bk =

(k − 1)H
√
n with H =

∑9
k=1 1/k. Results are shown for µk = ∆1{k = i∗} for ∆ ∈ [0, 1/2] and

i∗ ∈ {1, . . . , 10}. Again, the results agree with the theory. The unbalanced algorithm is superior to
MOSS for i∗ ∈ {1, 2} and inferior otherwise (Fig. 2).
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Figure 2: θ = ∆ + (i∗ − 1)/2

Sadly the experiments serve only to highlight the plight of the biased learner, which suffers signifi-
cantly worse results than its unbaised counterpart for most actions.

6 Discussion

I have shown that the cost of favouritism for multi-armed bandit algorithms is rather serious. If
an algorithm exhibits a small worst-case regret for a specific action, then the worst-case regret of
the remaining actions is necessarily significantly larger than the well-known uniform worst-case
bound of Ω(

√
Kn). This unfortunate result is in stark contrast to the experts setting for which there

exist algorithms that suffer constant regret with respect to a single expert at almost no cost for the
remainder. Surprisingly, the best achievable (non-uniform) worst-case bounds are determined up to
a permutation almost entirely by the value of the smallest worst-case regret.

There are some interesting open questions. Most notably, in the adversarial setting I am not sure if
the upper or lower bound is tight (or neither). It would also be nice to know if the constant factors
can be determined exactly asymptotically, but so far this has not been done even in the uniform
case. For the stochastic setting it is natural to ask if the OC-UCB algorithm can also be modified.
Intuitively one would expect this to be possible, but it would require re-working the very long proof.
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et Technologie de Lille-Lille I, 2010.
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A Table of Notation

n time horizon
K number of available actions
t time step
k, i actions
B set of achievable worst-case regrets defined in Eq. (2)
δB boundary of B
µ vector of expected rewards µ ∈ [0, 1]K

µ∗ expected return of optimal action
∆j µ∗ − µj
∆ji µi − µj
π bandit strategy
It action chosen at time step t
Rπµ,k regret of strategy π with respect to the kth arm
Rπk worst-case regret of strategy π with respect to the kth arm
µ̂k,s empirical estimate of the return of the k action after s samples
Tk(t) number of times action k has been taken at the end of time step t
i∗ optimal action
log+(x) maximum of 0 and log(x)
N (µ, σ2) Gaussian with mean µ and variance σ2

B Proof of Theorem 7

Recall that the proof of UCB depends on showing that

ETi(n) ∈ O
(

1

∆2
i

log n

)
.

Now unbalanced UCB operates exactly like UCB, but with shifted rewards. Therefore for unbal-
anced UCB we have

ETi(n) ∈ O
(

1

∆̄2
i

log n

)
,

where

∆̄i ≥ ∆i +

√
log n

ni
−
√

log n

ni∗
.

Define :

A =

{
i : ∆i ≥ 2

√
log n

ni∗

}

If i ∈ A, then ∆i ≤ 2∆̄i and ∆̄i ≥
√

logn
ni

. Therefore

∆iETi(n) ∈ O
(

∆i

∆̄2
i

log n

)
⊆ O

(
1

∆̄i
log n

)
⊆ O

(√
ni log n

)
⊆ O

(
n

Bi

√
log n

)
.

For i /∈ A we have ∆i < 2
√

logn
ni∗

thus

E

[∑
i/∈A

∆iTi(n)

]
∈ O

(
n

√
log n

ni∗

)
⊆ O

(
Bi∗
√

log n
)
.

Therefore

Rπµ,i∗ =

K∑
i=1

∆iETi(n) ∈ O
((

Bi∗ +
∑
i∈A

n

Bi

)√
log n

)
= O

(
Bi∗
√

log n
)
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as required. For the problem-dependent bound we work similarly.

Rπµ,i∗ =

K∑
i=1

∆iETi(n)

∈ O
(∑
i∈A

1

∆̄i
log n+ 1{A 6= ∅}Bi∗

√
log n

)

∈ O
(∑
i∈A

1

∆i
log n+ 1{A 6= ∅}Bi∗

√
log n

)
.

C KL Techniques

Let µ1, µk ∈ RK be two bandit environments as defined in the proof of Theorem 1. Here I prove
the claim that

Eπµk
Tk(n)− Eπµ1

Tk(n) ≤ nεk
√
Eπµ1

Tk(n) .

The result follows along the same lines as the proof of the lower bounds given by Auer et al. [1995].
Let {Ft}nt=1 be a filtration where Ft contains information about rewards and actions chosen up to
time step t. So gIt,t and 1{It = i} are measurable with respect toFt. Let P1 and Pk be the measures
on F induced by bandit problems µ1 and µk respectively. Note that Tk(n) is a Fn-measurable
random variable bounded in [0, n]. Therefore

Eπµk
Tk(n)− Eπµ1

Tk(n)
(a)

≤ n sup
A
|P1(A)− P2(A)|

(b)

≤ n

√
1

2
KL(P1, Pk) ,

where the supremum in (a) is taken over all measurable sets (this is the total variation distance) and
(b) follows from Pinsker’s inequality. It remains to compute the KL divergence. Let P1,t and Pk,t
be the conditional measures on the tth reward. By the chain rule for the KL divergence we have

KL(P1, Pk) =

n∑
t=1

EP1 KL(P1,t, Pk,t)
(a)
= 2ε2

k

n∑
t=1

EP11{It = k} = 2ε2
kEπµ1

Tk(n) ,

where (a) follows by noting that if It 6= k, then the distribution of the rewards at time step t is
the same for both bandit problems µ1 and µk. For It = k we have the difference in means is
(µk)k−(µ1)k = εk and since the distributions are Gaussian the KL divergence is 2ε2

k. For Bernoulli
random noise the KL divergence is also Θ(ε2

k) provided (µk)k ≈ (µ1)k ≈ 1/2 and so a similar proof
works for this case. See the work by Auer et al. [1995] for an example.

D Adversarial Bandits

In the adversarial setting I obtain something similar. First I introduce some new notation. Let
gi,t ∈ [0, 1] be the gain/reward from choosing action i at time step t. This is chosen in an arbitrary
way by the adversary with gi,t possibly even dependent on the actions of the learner up to time step
t. The regret difference between the gains obtained by the learner and those of the best action in
hindsight.

Rπg = max
i∈{1,...,K}

E

[
n∑
t=1

gi,t − gIt,t
]
.

I make the most obvious modification to the Exp3-γ algorithm, which is to bias the prior towards
the special action and tune the learning rate accordingly. The algorithm accepts as input the prior
ρ ∈ [0, 1]K , which must satisfy

∑
i ρi = 1, and the learning rate η.

12



1: Input: K, ρ ∈ [0, 1]K , η
2: wi,0 = ρi for each i
3: for t ∈ 1, . . . , n do
4: Let pi,t =

wi,t−1∑K
i=1 wi,t−1

5: Choose action It = i with probability pi,t and observe gain gIt,t
6: ˜̀

t,i =
(1−gt,i)1{It=i}

pi,t

7: wi,t = wi,t−1 exp
(
−η ˜̀

t,i

)
8: end for

Algorithm 2: Exp3-γ

The following result follows trivially from the standard proof.

Theorem 8 (Bubeck and Cesa-Bianchi [2012]). Let π be the strategy determined by Algorithm 2,
then

Rπg ≤ ηKn+
1

η
log

1

ρi∗
.

Corollary 9. If ρ is given by

ρi =

{
exp

(
− B2

1

4Kn

)
if i = 1

(1− ρ1)/(K − 1) otherwise

and η = B1/(2Kn), then

Rπg ≤
{
B1 if i∗ = 1
B1

2 + 2Kn
B1

log
(

4Kn(K−1)
B2

1

)
otherwise .

Proof. The proof follows immediately from Theorem 8 by noting that for i∗ 6= 1 we have

log
1

ρi∗
= log

 K − 1

1− exp
(
− B2

1

4Kn

)


≤ log

(
4Kn(K − 1)

B2
1

)
as required.

E Concentration

The following straight-forward concentration inequality is presumably well known and the proof of
an almost identical result is available by Boucheron et al. [2013], but an exact reference seems hard
to find.

Theorem 10. Let X1, X2, . . . , Xn be independent and 1-subgaussian, then

P

∃t ≤ n :
1

t

∑
s≤t

Xs ≥
ε

t

 ≤ exp

(
− ε

2

2n

)
.

Proof. Since Xi is 1-subgaussian, by definition it satisfies

(∀λ ∈ R) E [exp (λXi)] ≤ exp
(
λ2/2

)
.
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Now X1, X2, . . . are independent and zero mean, so by convexity of the exponential function
exp(λ

∑t
s=1Xs) is a sub-martingale. Therefore if ε > 0, then by Doob’s maximal inequality

P

{
∃t ≤ n :

t∑
s=1

Xs ≥ ε
}

= inf
λ≥0

P

{
∃t ≤ n : exp

(
λ

t∑
s=1

Xs

)
≥ exp (λε)

}

≤ inf
λ≥0

exp

(
λ2n

2
− λε

)
= exp

(
− ε

2

2n

)
as required.
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