
A Proof of Theorem 1

Proposition 3. There exist constants C
1

, C
2

> 0 such that C
1

(p⇤�p)2 < f(p⇤)�f(p) < C
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(p⇤�
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Proof. Since the second derivative f 00
(p⇤) exists, it follows that
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It then follows by definition that there exists � such that 0 < |p�p⇤| < � implies 0 < � f 00
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(p⇤ � p)2. On the other hand, the continuity of g : p ! f(p⇤
)�f(p)

p⇤�p

on the set X = {p 2 [0, 1]||p⇤ � p| � �}, as well as the compactness of X implies
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p2X
g(p)  g(p)  max

p2X
g(p),

where we have used the fact that g(p) > 0 for all p 2 X . The result of the proposition straightfor-
wardly follows from these observations.

Proposition 4. Let pi =
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for all i.
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Proof. From Proposition 3 it follows that �i > C
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p⇤� i
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�
2. The reordering is defined recursively

as follows i
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Proposition 5. The optimal price pK satisfies, f(pK) � f(p⇤)� C2
K2 .

Proof. Let bp be the element in PK closer to p⇤, then (bp� p⇤)2  1

K

2 and by Proposition 3 we have

C
2
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� f(p⇤)� f(bp) � f(p⇤)� f(pK).

Theorem 1. Let K =

�
T

log T

�
1/4

, if the discounting factor � satisfies �  �
0

< 1 and the seller uses

the R-UCBL algorithm with set of prices PK and L = d log(1/✏(1��0))

log(1/�0)

⌥
, then the strategic regret of

the seller can be bounded as follows:
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Proof. If pK = argmaxp2PK f(p) , then by Proposition 5 we have:
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�
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The last term in the previous expression corresponds to the regret of the buyer when using a discrete
set of prices. By Corollary 2 this term can be bounded by
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Letting ij be as in Proposition 4, we have
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Finally, we have
P

p : �p>� p  K + 1 =

�
T

log T

�
1/4

+ 1. Substituting these bounds into (5) gives
the desired result.
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