A Proofs

A.1 Proof of Lemma 6

Proof. Assume, without loss of generality, that z is the origin of R¢. Recall that the Dikin ellipsoid
at x is contained in K. By definition, K is itself contained in a Euclidean ball of radius D centered
at x. Therefore the Dikin ellipsoid at z is contained in the D-radius Euclidean ball. Therefore, the
gauge function (Minkowski functional) defined by this Dikin ellipsoid (which is exactly || - ||,.) is
greater or equal to the gauge function defined by the D-radius Euclidean ball (which is D71| - |2).
We proved one direction of the bound in the claim:

VzeRY %Hz”% < 2"V2R(z)z .
Plugging 2’ = (V2R(z))~'/?z into the inequality above gives
V2 e R %J(WR(@)*Z < 1202
which concludes the proof. O

A.2 Proof of Lemma 12

Proof. We prove claim (i) by complete induction on ¢t. For ¢ = 1, it holds by definition that g; =
g1/(k + 1). Lemma 8 bounds ||§s||s.« < d/d, and therefore ||g1 ||z, < d/(6(k + 1)). The
assumption that k£ > 0 proves the claim.

Next, we deal with £ > 1. Using the triangle inequality, we have

k

_ 1 .

[Gellz,s < mZHgtﬂ'Hzt,* . 9
=0

Lemma 8 gives us an upper bound on ||§;—;||x, ,«, Which is not the same norm as in Eq. (9).
Therefore, our proof strategy is to show that these two norms are only a factor of 2 apart.

Assume, by complete induction, that ||gs||,.,« < 2d/d for all s < ¢. It follows that 7)||gs ||z, « <
2nd/$. Using our assumption that 12knd < ¢ and the fact that k£ > 1, we conclude that 1| s, « <

%. Therefore, the condition of Lemma 7 holds and we have

z. < 21|gs

Again using the induction hypothesis, we have

||(Es+1 — T Lg% -
4dnd
5

By our assumption that 12knd < ¢ it follows that the right-hand side above is at most 1/3, the
conditions of Theorem 4 are satisfied, and we have

2 -1 -2 -
(1= (V?R(zs)) " = (VPR(zs41)) = (1= )7 (V2R(xs))
Recalling the definition of the dual local norm (see Definition 2), it follows that

< (1297,

”558-&-1 - fESHxs <
-1

1

VzeR?, (1—4%‘1)”;2

zox < |2

Ts41,% Tgyk

By applying this inequality recursively, we get that for any positive s € {t — k+ 1,...,t}

y k —k
VzeR!, (1= ) zlloss < llollov < (1= 2F) 7 2]

Tgyk

Next we show that (1 — 4nd/6)" is at least 5. If k = 0, this is trivial. If & > 0 denote 8 =
4nd/o and notice that 8 < % due to the assumption that 12knd < §. Then, apply the inequality
1 — B > exp(—28), which is valid for any 3 € [0, 3], to bound (1 — 4nd/6)* > exp(—8knd/s) >
exp(—2) > 1. Similarly, (1 — 4nd/5) " is at most 2. We conclude that

slellas < Nellzrs < 202l (10)
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which proves claim (ii). Combining this bound with Eq. (9) gives

k

2

1Gellers < =7 D NGe—illasi -
k+1

Applying the bound ||§t—;||z,_; « < d/6 from Lemma 8 concludes the inductive proof. O

We prove a simple corollary of Lemma 12, which shows that the assumption 12knd < § (which we
make throughout our analysis) implies the conditions of Lemma 7.

Corollary 15. If 12knd < & then n||gi ||z, « <  for all t.

Proof. Lemma 12 states that ||g;||», .« < 2d/0 and therefore 7||G¢ ||z, .« < 2dn/d. Since k > 1, the
assumption that 12knd < ¢ implies that the above is at most 1/6, and certainly less than 1/4. O

A3 f.is L-Lipschitz and H-Smooth

An important property of the function f ¢ is that it retains the properties of f;.

Lemma 16. Let f : K + [0,1] be differentiable L-Lipschitz, and H-smooth, and let f,(z) =
E[f(x 4+ dAv)], where 6 > 0, A is full-rank d x d matrix and v is a random vector. Then f is also
L-Lipschitz and H-smooth.

Proof of Lemma 16. First, we prove that f is L-Lipschitz. For any z,y € K, we have
f(@) = f(y) = Elf(z+54v) — f(y +0Av)] < E[L]z —yl-] ,
where the inequality follows from the assumption that f itself is L-Lipschitz.

Next, we prove that f is H-Smooth. For any z,y € K, we have
IVf(z) = Vi)l = |VE[f(z + 6Av)] — VE[f(y + 6 Av)]| .

We can switch the order of the expectation and the differentiation due to uniform boundedness, and
the right-hand side above becomes

|IE[Vf(x + dAv) — Vf(y + Av)]| .

From Jensen’s inequality, the above is bounded by
E[[[Vf(z + 640) - Vf(y + 6 Av)]] .

The term inside the square brackets is bounded by H||z — y||2 due to the assumption that f is
H-smooth. This proves that f is also H-smooth. O

A.4 Proof of Lemma 13

Proof. From the definition of g, and the triangle inequality, we bound

k k k
1 1 1

Jtllwe,« = 77— EAfi < — g]Ef’L'Afi 7H§A4—E4A7i

19¢ ., k-l-lHi_Ogt < k+1H 2 t—i[gt—i] %*‘Fk_'_l i:ogt t—i[Gt—i]

Using (B + 7)? < 282 + 2+? and taking expectations, we have
E[||g:]2 2 g - f E ’ 2 g f E ’ 11
Itllz, ) < 735 —ilgt—i -5 gr—i — Ei—i[g1—i ,
1gellz, ] < 2 Hi_o t—ilgt—i] . + 12 H 2 Gt t—iGt—i] e (In

We deal separately with each of the two terms on the right-hand side above. Using Eq. (6), we have

k
> Eilge]
1=0

) .

Ttk

<D H zk:Etfi[gtfi]
i=0
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Triangle inequality upper bounds the right-hand side above by D Zf:o HEt,i[gt,i] H2 By Theo-
rem 1, this equals D Y% |[Vf,_i(2;_;)||2. The functions f,_; are L-Lipschitz due to Lemma 16,
so the first term on the right-hand side of Eq. (11) is upper-bounded by 2D?L?2.

Moving on to the second term in Eq. (11), we abbreviate hy = §s — E;[g;] for all s and study the
] . Using Lemma 12, we bound

term E[H Zf:o ht,iHQ
k 2
< 4R H By

Tt %
2
T
Using the definition of the local norm, we write the right-hand side above as

k
£l | o
=0

ty*

k ok
-1
B> S hi (VPR(xe-k)) hej| - (12)
i=0 j=0
Now note that the sequence hq, ..., hy is a martingale difference sequence, and therefore its incre-

ments are uncorrelated. Namely, for ¢ > j it holds that
-1
]Et,j[hL (V2R(z1-1)) htﬂ} =0.
Therefore, Eq. (12) equals

k
4> E[llheil3, ] -
=0

Another application of Lemma 12 gives the bound

k
£l o
=0

Each term E, [|| |2 ,] satisfies

T, %

k
2
x ] < 165 E[[heil2, ] - (13
% i=0

-1 1

E WL (V2R(2) ' h| = EJ|gL(V*R(@.)) ™3] — Eufa " (V2R(.) "Elg,] -

The right-most term above is non-negative because (V2R(x,))~! is positive semi-definite, so

Eq[[hs]|Z, ] < Es[llgsllZ, ], which Lemma 8 further bounds by d* /6. Plugging this back into

k
£l o
=0

Eq. (13) gives
Overall, we have shown that the second term on the right-hand side of Eq. (11) is upper-bounded by
3242/ (6%(k + 1)). O

2 ] 16kd?
< -
Ty, % - 62

A.5 Proof of Lemma 14

Proof. Using triangle inequality, we get

t—1

Ellwi—s — 2] < ) Elles —zrill2]

s=t—1
and we bound each term individually. For any s, using Lemma 6, it holds that
v, - (14)

By Corollary 15, the conditions of Lemma 7 are met, so the right-hand side of Eq. (14) is bounded
by 2D1||gs ||z .«. Therefore

E[”xs_ms—&-l”ﬂ < QDUE[HQSH%,*] . 5)

H-Ts - xs+1||2 S D”xs — Ts+1
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Using Jensen’s inequality, we have

aes] < A/E[l912

ws,*]

E[l|gs

The right-hand side above is upper-bounded by Lemma 13. Using the fact that v/a + b < y/a + Vb,

we obtain
6d

Elgsllz. «] < 2D?L% + —— .
[19:lla. 4] < NiEsi

Plugging back into Eq. (15) gives
12Ddn
Vk

The claim follows from the assumption that 7 < k. O

Elllzs — zsi1l2) < 4D*L%n+

A.6 Proof of Lemma 11

We begin with a technical lemma.

Lemma 17. Assume that the parameters k, n, and § are chosen such that 12knd < 6, and for any
€ (0, 1) it holds that

) Ylog * )
D G (@ —a") < o +20) 1313, . + O(T/d).
t=1 t=1

Proof. Let y be the analytic center of the convex body K and recall the definition of the shrunk set
K, in Section 2.3. Define 2’ = argmin,cg, . ||# — 2*||2, the Euclidean projection of 2* onto
K, .. Since Tz e K, ., Theorem 5 states that

R(z) < 19log1 .
€

Lemma 7 holds due to Corollary 15, and states that

1
th (2 —a') < ﬁlog +2nZHgtHx,*-

t=1 t=1

To replace ' with z* in the above, we note that

T T
g (e —a*) = Y g (w—a) < Tlgilla 12’ — 2]l -
t=1 t=1

Since the diameter of K is D, it follows that ||z’ — 2*||2 < eD. The norm ||g||> is bounded by
D||g¢|z, +» Lemma 12 bounds by 2dD /4. O

We are ready to prove the main theorem.

Proof of Lemma 11. By the definition of f; in Eq. (7), it holds that

T

T—k k
th It ft It = ﬁzz 17t+z (zt)Jr Z%ft(zt) .
t=1 i=1

t=T—k+1

Lemma 16 tells us that each f ¢ is L-Lipschitz, and we know that its range is [0, 1]. Therefore, the
above can be upper-bounded by

T—-k k

k+1 SO Lllwei — a2 + k-

t=1 i=1

Lemma 14 bounds each term ||x;1; — x¢||2 and establishes the stated bound over Eq. (8a).
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Moving on to Eq. (8b), we use the convexity of f to bound
T _ —
E[th(xt)_ft(x*)] vat (w¢) - (2 — )]
t=1

T
E > (V@) = ge) - (20— a)

IN

+E

T
metfﬂ

Recalling that x; is the result of a dual averaging step using the gradient estimates g1, ..., G¢—1,
Lemma 17 states that

E th-(azt—x*)] <
t=1

Using Lemma 13, we bound the above by

ﬁlog%

+miﬂmiq+owm.

t=1

ﬁlog% n 64d*nT
n 2(k+1)

+ O(T(e/5 + n)) .

It remains to bound the term

T
E > (Vi) = ge) - (w0 — x*)] . (16)
t=1

Using the definitions of f; and g;, we rewrite it as

k
k'—|—lzz Vft i l't gtfi)'(l't—l'*)]
t=11i=0

Note that the random variable z 4 is determined by the randomness before time s, while g, is only
determined when we expose the randomness on round s. Therefore, This term equals

Tk
%H Z ZE [(Vfei(@e) = Beilge—i]) - (we — 2*)]

Using Lemma 1 states that E;_;[§;—;] above equals Vft_i(xt_i). Cauchy-Schwartz bounds this by

,HIZZ IVfi—i(@e—i) = V1 (ze—i)ll2 [Joe — 2*|2]

t=1 =0

The term ||z, — #*||2 is bounded by D. Lemma 16 states that f,_; is H-smooth; together with
Lemma 14 we have the bound

d L\f

IVfii(@is) — Vi1 (ze—i)|a < 12HD + O(k) .

Plugging these bounds back into Eq. (16) gives the desired bound of Eq. (8b).

Moving on to the last term,
T
E Z Folz*) - ft<x*>] :

itis not hard to show that the sum 1n51de the expectation is non-positive. Indeed, each f; is a moving
average of the f +’s, so that up to boundary effects the sum of the f;(z*) terms equals the sum of the
f+(z*) ones; considering the boundary effects, we see that the first sum can only be smaller than the
latter. This implies that Eq. (8c) < 0, and concludes the proof. O
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