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A Hierarchical Dirichlet Process

A Dirichlet process (DP), parametrized as DP(γ,H), is a stochastic process whose realizations are
countably infinite measures:

G(φ) =

∞∑
k=1

βkδφk
, φk ∼ H (1)

over some parameter space Φ. Here H is the base measure defined on the space Φ, while γ is a
scalar concentration parameter controlling the variability of the process around H (lower γ implies
more variability). The weights, βk of the DP can be sampled via a stick-breaking construction
[Sethuraman, 1991]:

β′k
iid∼ Beta(1, γ), βk = β′kΠk−1

`=1 (1− β′`) (2)

referred to as β ∼ GEM(γ). Importantly for our purposes, note the βk are defined in a purely
recursive fashion.

The Hierarchical Dirichlet Process (HDP) of [Teh et al., 2006] takes a hierarchical Bayesian ap-
proach by defining multiple DP’s that share one random measure that is itself drawn from a DP.
This hierarchical coupling allows one to non-parametrically model individual subgroups that are
generated uniquely but share some overall information. Specifically, we have that

G0 ∼ DP(γ,H), Gk ∼ DP(α,G0) ∀k (3)

Here α controls the variability of eachGk around the shared base measureG0, whileH is the global
base measure over the parameter space. By appealing to the stick-breaking construction for the DP
we can express the random measures succinctly as:

β ∼ GEM(γ), G0 ∼
∞∑
k′=1

βk′δφk′ , Gk =

∞∑
k′=1

πkk′δφk′ (4)

with

π′jk ∼ Beta
(
α0βk, α0(1−

k∑
`=1

βl)
)
, πjk = π′jkΠk−1

`=1 (1− π′j`) (5)

and βk defined as before.

B Particle MCMC
The key idea of the Particle Markov Chain Monte Carlo framework (PMCMC) of Andrieu et al.
[2010] is that Sequential Monte Carlo (or particle filtering) is used as a complex, high-dimensional
proposal for Metropolis-Hastings. The Particle Gibbs sampler results from using the conditional
SMC algorithm, which clamps one particle to an apriori fixed trajectory. Crucially, the Particle
Gibbs algorithm will leave the target distribution invariant (we refer the reader to the original paper
for further technical details).

First we review the construction of the SMC sampler for finite-state space models. Let p(s1:T |y1:T )
denote the target density of the latent states parametrized by some θ ∈ Θ, with prior p(s1) over the
initial state. Then let {sit, wit}Ni=1 be a weighted particle system at time t serving as an empirical
point-mass approximation to the distribution p(s1:T ), with the variables ait denoting the ancestor
particles of sit. For the state-space model dynamics, we will use π(st|st−1) to denote the latent
transition density, f(yt|st) the conditional likelihood, and p(s1:T , y1:T ) the joint likelihood.

The algorithm is initialized by sampling si1 ∼ q1,θ(·) from a proposal density and initializing the
importance weights as wi1 = p(s1)fθ,1(y1|s1)/qθ,1(s1). We can then describe the SMC kernel on
N particles indexed as i ∈ 1, ..., N :

Step 1: For iteration t = 1:

(a) sample si1 ∼ q1,θ(·)
(b) initialize weights wi1 = p(s1)fθ,1(y1|s1)/qθ,1(s1)
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Step 2: For iteration t > 1:

(a) sample the index ait−1 ∼ Mult(·|W 1:N
t−1,θ) of the ancestor of particle i for i ∈ 1, ..., N

(b) sample sit ∼ qt,θ(· | s
ait−1

t−1 )
(c) recompute and normalize weights

wt,θ(s
i
t) = πθ(s

i
t | s

ait−1

t−1 )fθ(yt | sit)/qt,θ(sit | s
ait−1

t−1 )

Wt,θ(s
i
t) = wt,θ(s

i
t)/(

N∑
i=1

wt,θ(s
i
t))

The Particle Gibbs sampler is similar to the SMC sampler, but conditions on the event that one par-
ticle in the system is constrained to a reference trajectory s′1:T = (s′1, ..., s

′
T ). This is accomplished

by only resampling for i = 1, ..., N − 1 in parts b) and c) above. After one pass of the conditional
SMC algorithm, an entire trajectory is sampled as P(s∗1:T = si1:T ) ∝ wiT where si1:T is constructed
by tracing the ancestors of siT back through the sampled trajectories.

C Sampling Other Variables and Related Work
The goal of any sampling scheme for the iHMM is to sample the variables
s1:T ,β,π1:K , φ1:K , α, γ, κ.

Building on the direct assignment sampling scheme for the HDP derived in Teh et al. [2006],
the original Gibbs sampler took the approach of first marginalizing out the infinite, latent
variables π and φ in (6). Thus we need only explicitly resample the hidden trajectory s,
the base DP parameters β, and hyper parameters α and γ. Sampling β, α, and γ fol-
lows directly from the theory of the HDP, and the stick-breaking construction. To sam-
ple st conditional on s−t, β, y, α,H for t ∈ 1, ..., T , we need to compute the conditional
p(st|s−t, β, y, α,H) ∝ p(yt|st, s−t, y−t, H)p(st|s−t, β, α). The first factor is simply the condi-
tional likelihood: p(yt|st, s−t, y−t, H) =

∫
p(yt|st, φst)p(φst |s−t, y−t, H)dφst , which is easily

computed when the base distribution H is conjugate to the likelihood f . The second factor can be
easily computed using the Markov property of the hidden state sequence. Since for each t ∈ 1, ..., T
we compute O(K) probabilities, the Gibbs sampler has O(TK) complexity. The Gibbs sampler’s
is straightforwardly implemented but often suffers from slow mixing behavior since sequential data
tends to be strongly correlated.

In contrast, the traditional approach for efficient inference of the hidden state trajectory in the clas-
sical, finite-state space HMM uses the forward-backwards algorithm (i.e. belief propagation) to
recursively infer the hidden state trajectory in O(TK2) time where T is the length of the HMM
and K the size of the latent space. It is tempting to hope a similar type of algorithm exists for the
iHMM, but it is impossible to directly apply such a message-passing approach due to the countably
infinite state-space (i.e. K is unbounded). However, Van Gael et al. [2008] circumvented this dif-
ficulty in the iHMM by introducing of a set of auxiliary slice variable u1:T into the model; when
conditioned on u1:T the model becomes finite. In contrast to the original Gibbs sampling routine,
the beam sampler iteratively resamples auxiliary slice variables u, the trajectory s, transition ma-
trix π, shared DP measure β, and hyper-parameters α, γ conditioned on all other variables. This
allowed Van Gael et al. [2008] to use dynamic programming to jointly resample the latent states.
In practice, they found that their sampler mixed much faster than the naive Gibbs sampler and had
average-case complexity closer to O(TK) for sparse transition matrices, but worst-case complexity
O(TK2) [Van Gael et al., 2008].

Despite the power of the beam-sampling scheme, Fox et al. [2008] found that application of the
beam sampler to the sticky iHMM, resulted in slow mixing. As noted in Fox et al. [2008], for
the beam sampler to consider transitions with low prior probability one must also have sampled an
unlikely corresponding slice variable so as not to have truncated that state out of the space. Such
a situation becomes increasingly problematic if one must make several of these low-probability
moves, independently of whether there is strong data-dependent likelihood favoring the transition.
This problem was avoided in Fox et al. [2008] by considering a fixed-order truncation of the HDP-
HMM and designing a blocked Gibbs sampler to resample the finite set of latent states at the cost of
introducing bias into the inference. Although the truncation affords the possibility of exploring the
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full set of paths unhindered by the slice variables, one must balance the trade-off between the bias
and computational cost of the blocked sampler on the truncated model – O(TK2) where K must
be taken to be large to obtain small bias. This more complex variant of the iHMM coupled with a
Dirichlet Process (DP) emission distribution achieved state-of-the-art performance on a particularly
challenging speaking diarization task. Notably, the “stickiness” helped eliminate the undesirable
fast-transition behaviour characteristic of the HDP-HMM1, and the DP emission model helped cap-
ture the complex, multimodal nature of the data. Indeed, it is worth noting that although the beam
sampler can be applied to the sticky iHMM, it cannot be applied to the sticky iHMM with a non-
parametric DP emission model. In fact, no exact sampler has been previously constructed for this
model.

Our resampling scheme for π, φ, β, α, γ, and κ will follow straightforwardly from this scheme in
[Van Gael et al., 2008], [Fox et al., 2008] and [Teh et al., 2006]. We refer the reader to these works
for the details on the resampling of α, κ and γ since we use exactly the constructions presented
there, but present a brief overview of how to sample π, φ, and β.

For simplicity we will review the case of the normal iHMM where κ = 0 since the introduction of
κ involves more bookkeeping but does not modify the core scheme. Let nij denote the number of
times state i transitions to state j in the trajectory s1:T , andK be the number of distinct states in s1:T .
Merging the infinitely many states not represented in s into one state, the conditional distribution of
(π(1|st), ..., π(K|st),

∑∞
s′=K+1 π(s′t+1|st)) given its Markov blanket s, β, and α is

Dir(nsk1 + αβ1, ..., nskK + αβK , α

∞∑
i=K+1

βi)

To sample β we first introduce a set of auxiliary variables mjk which can be interpreted as the
number of times parameter φk has been sampled in πj (sometimes these parameters are referred
to as dishes in the Chinese Restaurant Franchise analogy). These parameters have conditional dis-
tributions equal to p(mjk = m|s,β, α, κ) ∝ S(nij ,m)(αβj)

m where S(·, ·) denote the Stirling
numbers of the first kind. As Teh et al. [2006] and Antoniak [1974] show this gives the conditional
distribution over β as Dir(m·k, ...,m·K , γ) where m·k =

∑K
k′=1mk′k′ . Conditional on all other

variables the φk are independent of each other and can be easily sampled efficiently when the base
distribution H is conjugate to the data distribution F , though the assumption of conjugacy is not
necessary.
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1This only requires the introduction of a single extra hyper-parameter

3


	Hierarchical Dirichlet Process
	Particle MCMC
	Sampling Other Variables and Related Work

