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You can find this paper, as well as all the code necessary to run the described experiments, in our
Github repo, rgiordan/LinearResponseVariationalBayesNIPS2015.

A LRVB estimates of the covariance of functions

In Section 2.2, we derived an estimate of the covariance of the natural sufficient statistics, θ, of our
variational approximation, q(θ). In this section we derive a version of Eq. (7) for the covariance of
functions of θ.

We begin by estimating the covariance between θ and a function φ(θ). Suppose we have an MFVB
solution, q(θ), to Eq. (1). Define the expectation of φ(θ) to be Eq [φ(θ)] := f(m). This expectation
is function of m alone since m completely parameterizes q. As in Eq. (3), we can consider a
perturbed log likelihood that also includes f (m):

log pt (θ|x) = log p+ tT0 m+ tff (m) := log p+ tTmf

t :=

�
t0
tf

�
mf :=

�
m

f (m)

�

Using the same reasoning that led to Eq. (4), we will define

Σθφ = Covp(θ,φ(θ)) ≈
dm∗

t

dtf
=: Σ̂θφ

We then have the following lemma:

Lemma A.1. If Eq [φ(θ)] =: f(m) is a differentiable function of m with gradient ∇f , then

Σ̂θφ = Σ̂∇f

Proof. The derivative of the perturbed ELBO, Et, is given by:

Et := E + tTmf

∂Et

∂m
=

∂E

∂m
+ ( I ∇f )

�
t0
tf

�

The fixed point Eq. (2) then gives:

Mt (m) := M (m) + ( I ∇f )

�
t0
tf

�

dm∗
t

dtT
=

∂Mt

∂mT

����
m=m∗

t

dm∗
t

dtT
+

∂Mt

∂tT

=

�
∂M

∂mT

����
m=m∗

t

+
∂

∂mT
( I ∇f )

�
t0
tf

��
dm∗

dtT
+ ( I ∇f )
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The term ∂
∂mT ( I ∇f )

�
t0
tf

�
is awkward, but it disappears when we evaluate at t = 0, giving

dm∗
t

dtT
=

�
∂M

∂mT

����
m=m∗

t

�
dm∗

dtT
+ ( I ∇f )

=

�
∂2E

∂m∂mT
+ I

�
dm∗

dtT
+ ( I ∇f ) ⇒

dm∗

dtT
= −

�
∂2E

∂m∂mT

�−1

( I ∇f )

Recalling that

dm∗

dtT0
:= Σ̂

We can plug in to see that

Σ̂θφ =
dm∗

dtf
= Σ̂∇f (11)

Finally, suppose we are interested in estimating Covp(γ(θ),φ(θ)), where g(m) := Eq [γ(θ)]. Again
using the same reasoning that led to Eq. (4), we will define

Σγφ = Covp(γ(θ),φ(θ)) ≈
dEq [γ(θ)]

dtf
=: Σ̂γφ

Proposition A.2. If Eq [φ(θ)] = f(m) and Eq [γ(θ)] = g(m) are differentiable functions of m with
gradients ∇f and ∇g respectively, then

Σ̂γφ = ∇gT Σ̂∇f

Proof. By Lemma A.1 an application of the chain rule,

Σ̂γφ =
dEq [γ(θ)]

dtf
=

dg (m)

dtf
=

dg(m)

dmT

dm

dtf
= ∇gT Σ̂∇f

B Exactness of LRVB for multivariate normal means

For any target distribution p(θ|x), it is well-known that MFVB cannot be used to estimate the co-
variances between the components of θ. In particular, if q∗ is the estimate of p(θ|x) returned by
MFVB, q∗ will have a block-diagonal covariance matrix—no matter the form of the covariance of
p(θ|x).
Consider approximating a multivariate Gaussian posterior distribution p(θ|x) with MFVB. The
Gaussian is the unique distribution that is fully determined by its mean and covariance. This poste-
rior arises, for instance, given a multivariate normal likelihood p(x|µ) = �

n=1:N N (xn|µ, S) with
fixed covariance S and an improper uniform prior on the mean parameter µ. We make the mean
field factorization assumption q(µ) =

�
d=1:D q(µd), where D is the total dimension of µ. This

fact is often used to illustrate the shortcomings of MFVB [5–7]. In this case, it is well known that
the MFVB posterior means are correct, but the marginal variances are underestimated if S is not
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diagonal. However, since the posterior means are correctly estimated, the LRVB approximation in
Eq. (7) is in fact an equality. That is, for this model, Σ̂ = dmt/dt

T = Σ exactly.

In order to prove this result, we will rely on the following lemma.

Lemma B.1. Consider a target posterior distribution characterized by p(θ|x) = N (θ|µ,Σ), where
µ and Σ may depend on x, and Σ is invertible. Let θ = (θ1, . . . , θJ), and consider a MFVB
approximation to p(θ|x) that factorizes as q(θ) =

�
j q(θj). Then the variational posterior means

are the true posterior means; i.e. mj = µj for all j between 1 and J .

Proof. The derivation of MFVB for the multivariate normal can be found in Section 10.1.2 of [5];
we highlight some key results here. Let Λ = Σ−1. Let the j index on a row or column correspond
to θj , and let the −j index correspond to {θi : i ∈ [J ] \ j}. E.g., for j = 1,

Λ =

�
Λ11 Λ1,−1

Λ−1,1 Λ−1,−1

�
.

By the assumption that p(θ|x) = N (θ|µ,Σ), we have

log p(θj |θi∈[J]\j , x)

= −1

2
(θj − µj)

TΛjj(θj − µj) + (θj − µj)
TΛj,−j(θ−j − µ−j) + C, (12)

where the final term is constant with respect to θj . It follows that

log q∗j (θj) = Eq∗i :i∈[J ]\j log p(θ, x) + C

= −1

2
θTj Λjjθj + θjµjΛjj − θjΛj,−j(Eq∗θ−j − µ−j).

So

q∗j (θj) = N (θj |mj ,Λ
−1
jj ),

with mean parameters

mj = Eq∗j θj = µj − Λ−1
jj Λj,−j(m−j − µ−j) (13)

as well as an equation for Eq∗θ
T θ.

Note that Λjj must be invertible, for if it were not, Σ would not be invertible.
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The solution m = µ is a unique stable point for Eq. (13), since the fixed point equations for each j
can be stacked and rearranged to give

m− µ = −




0 Λ−1
11 Λ12 · · · Λ−1

11 Λ1(J−1) Λ−1
11 Λ1J

...
. . .

...
Λ−1
JJΛJ1 Λ−1

JJΛJ2 · · · Λ−1
JJΛJ(J−1) 0


 (m− µ)

= −




Λ−1
11 · · · 0 · · · 0
...

. . .
...

0
. . . 0

...
. . .

...
0 · · · 0 · · · Λ−1

JJ







0 Λ12 · · · Λ1(J−1) Λ1J

...
. . .

...
ΛJ1 ΛJ2 · · · ΛJ(J−1) 0


 (m− µ) ⇔

0 =




Λ11 · · · 0 · · · 0
...

. . .
...

0
. . . 0

...
. . .

...
0 · · · 0 · · · ΛJJ



(m− µ) +




0 Λ12 · · · Λ1(J−1) Λ1J

...
. . .

...
ΛJ1 ΛJ2 · · · ΛJ(J−1) 0


 (m− µ) ⇔

0 = Λ (m− µ) ⇔
m = µ.

The last step follows from the assumption that Σ (and hence Λ) is invertible. It follows that µ is the
unique stable point of Eq. (13).

Proposition B.2. Assume we are in the setting of Lemma B.1, where additionally µ and Σ are on
the interior of the feasible parameter space. Then the LRVB covariance estimate exactly captures
the true covariance, Σ̂ = Σ.

Proof. Consider the perturbation for LRVB defined in Eq. (3). By perturbing the log likelihood,
we change both the true means µt and the variational solutions, mt. The result is a valid density
function since the original µ and Σ are on the interior of the parameter space. By Lemma B.1, the
MFVB solutions are exactly the true means, so mt,j = µt,j , and the derivatives are the same as well.
This means that the first term in Eq. (7) is not approximate, i.e.

dmt

dtT
=

d

dtT
Ept

θ = Σt,

It follows from the arguments above that the LRVB covariance matrix is exact, and Σ̂ = Σ.

C Comparison with supplemented expectation-maximization

The result in Appendix B about the multivariate normal distribution draws a connection between
LRVB corrections and the “supplemented expectation-maximization” (SEM) method of [23]. SEM
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is an asymptotically exact covariance correction for the EM algorithm that transforms the full-data
Fisher information matrix into the observed-data Fisher information matrix using a correction that
is formally similar to Eq. (7). In this section, we argue that this similarity is not a coincidence; in
fact the SEM correction is an asymptotic version of LRVB with two variational blocks, one for the
missing data and one for the unknown parameters.

Although LRVB as described here requires a prior (unlike SEM, which supplements the MLE),
the two covariance corrections coincide when the full information likelihood is approximately log
quadratic and proportional to the posterior, p(θ|x). This might be expected to occur when we have
a large number of independent data points informing each parameter—i.e., when a central limit
theorem applies and the priors do not affect the posterior. In the full information likelihood, some
terms may be viewed as missing data, whereas in the Bayesian model the same terms may be viewed
as latent parameters, but this does not prevent us from formally comparing the two methods.

We can draw a term-by-term analogy with the equations in [23]. We denote variables from the SEM
paper with a superscript “SEM” to avoid confusion. MFVB does not differentiate between missing
data and parameters to be estimated, so our θ corresponds to (θSEM , Y SEM

mis ) in [23]. SEM is an
asymptotic theory, so we may assume that (θSEM , Y SEM

mis ) have a multivariate normal distribution,
and that we are interested in the mean and covariance of θSEM .

In the E-step of [23], we replace Y SEM
mis with its conditional expectation given the data and other

θSEM . This corresponds precisely to Eq. (13), taking θj = Y SEM
mis . In the M-step, we find the

maximum of the log likelihood with respect to θSEM , keeping Y SEM
mis fixed at its expectation. Since

the mode of a multivariate normal distribution is also its mean, this, too, corresponds to Eq. (13),
now taking θj = θSEM .

It follows that the MFVB and EM fixed point equations are the same; i.e., our M is the same as
their MSEM , and our ∂M/∂m of Eq. (5) corresponds to the transpose of their DMSEM , defined
in Eq. (2.2.1) of [23]. Since the “complete information” corresponds to the variance of θSEM with
fixed values for Y SEM

OBS , this is the same as our Σq∗,11, the variational covariance, whose inverse is
I−1
oc . Taken all together, this means that equation (2.4.6) of [23] can be re-written as our Eq. (7).

V SEM =I−1
oc

�
I −DMSEM

�−1 ⇒

Σ =V

�
I −

�
∂M

∂mT

�T
�−1

=

�
I − ∂M

∂mT

�−1

V

D Normal-Poisson details

In this section, we use this model to provide a detailed, step-by-step description of a simple LRVB
analysis.

The full joint distribution for the model in Eq. (9) is

log p (y, z,β, τ) =

N�

n=1

�
−1

2
τz2n + xnτβzn − 1

2
x2
nτβ

2 − 1

2
log τ

�

+

N�

n=1

(− exp (zn) + znyn)−
1

2σ2
β

β2 + (ατ − 1) log τ − βτ τ + C

We find a mean-field approximation under the factorization q (β, τ, z) = q (β) q (τ)
�N

n=1 q (zn).
By inspection, the log joint is quadratic in β, so the optimal q (β) will be Gaussian [5]. Similarly,
the log joint is a function of τ only via τ and log τ , so the optimal q (τ) will be gamma. However,
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the joint does not take a standard exponential family form in zn:

log p (zn|y,β, τ) = (xnτβ + yn) zn − 1

2
τz2n − exp (zn) + C

The difficulty is with the term exp (zn). So we make the further restriction that

q (zn) = N (·) = q
�
zn;E [zn] ,E

�
z2n

��
.

Fortunately, the troublesome term has an analytic expectation, as a function of the mean parameters,
under this variational posterior:

Eq [exp (zn)] = exp

�
Eq [zn] +

1

2

�
Eq

�
z2n

�
− Eq [zn]

2
��

.

We can now write the variational distribution in terms of the following mean parameters:

m =
�
Eq [β] ,Eq

�
β2

�
,Eq [τ ] ,Eq [log τ ] ,Eq [z1] ,Eq

�
z21
�
, ...,Eq [zN ] ,Eq

�
z2N

��T
.

Calculating the LRVB covariance consists of roughly four steps:

1. finding the MFVB optimum q∗,

2. computing the covariance V of q∗,

3. computing H , the Hessian of L(m), for q∗, and

4. computing the matrix inverse and solving (I − V H)
−1

V .

For step (1), the LRVB correction is agnostic as to how the optimum is found. In our experiments be-
low, we follow a standard coordinate ascent procedure for MFVB [5]. We analytically update q (β)
and q (τ). Given q (β) and q (τ), finding the optimal q (z) becomes N separate two-dimensional
optimization problems; there is one dimension for each of the mean parameters Eq [zn] and Eq

�
z2n

�
.

In our examples, we solved these problems sequentially using IPOPT [24].

To compute V for step (2), we note that by the mean-field assumption, β, τ , and zn are indepen-
dent, so V is block diagonal. Since we have chosen convenient variational distributions, the mean
parameters have known covariance matrices. For example, from standard properties of the normal
distribution, Cov

�
β,β2

�
= 2Eq [β]

�
Eq

�
β2

�
− Eq [β]

2
�

.

For step (3), the mean parameters for β and τ co-occur with each other and with all the zn, so these
four rows of H are expected to be dense. However, the mean parameters for zn never occur with
each other, so the bulk of H—the 2N × 2N block corresponding to the mean parameters of z—will
be block diagonal (Fig. (5b)). The Hessian of L (m) can be calculated analytically, but we used the
autodifferentiation software JuMP [19].

Finally, for step (4), we use the technique in Section 2.3 to exploit the sparsity of V and H (Fig. (5c))
in calculating (I − V H)−1.

(a) MFVB covariance V (b) Hessian matrix H (c) (I − V H)

Figure 5: Sparsity patterns for Σ̂ = (I − V H)−1 using the model in Eq. (9), n = 5 (white = 0)
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E Random effects model details

As introduced in Section 3.2, our model is:

yn|β, z, τ indep∼ N
�
βTxn + rnzk(n), τ

−1
�

zk|ν iid∼ N
�
0, ν−1

�

With the priors:

β ∼ N (0,Σβ)

ν ∼ Γ (αν ,βν)

τ ∼ Γ (ατ ,βτ )

We will make the following mean field assumption:

q (β, z, τ, ν) = q (ν) q (τ) q (β)

K�

k=1

q (zk)

We have n ∈ {1, ..., N}, and k ∈ {1, ..., K}, and k (n) matches an observation n to a random effect
k, allowing repeated observations of a random effect. The full joint log likelihood is:

log p
�
yn|zk(n), τ,β

�
= −τ

2

�
yn − βTxn − rnzk(n)

�2
+

1

2
log τ + C

log p (zk|ν) = −ν

2
z2k +

1

2
log ν + C

log p (β) −1

2
trace

�
Σ−1

β ββT
�
+ C

log p (τ) = (ατ − 1) log τ − βτ τ + C

log p (ν) = (αν − 1) log ν − βνν + C

log p (y, τ,β, z) =

N�

n=1

log p
�
yn|zk(n), τ,β

�
+

K�

k=1

log p (zk|ν) +

log p (β) + log p (ν) + log p (τ)

Expanding the first term of the conditional likelihood of yn gives

−τ

2

�
yn − βTxn − rnzk(n)

�2

= −τ

2

�
y2n − 2ynx

T
nβ − 2ynrnzn(k) + trace

�
xnx

T
nββ

T
�
+ r2nz

2
k(n) + 2rnx

T
nβzk(n)

�

By grouping terms, we can see that the mean parameters will be

q (β) = q
�
β;Eq [β] ,Eq

�
ββT

��

q (zk) = q
�
zk;Eq [zk] ,Eq

�
z2k
��

q (τ) = q (τ ;Eq [τ ] ,Eq [log τ ])

q (ν) = q (ν;Eq [ν] ,Eq [log ν])

It follows that the optimal variational distributions are q (β) =multivariate normal,
q (zk) =univariate normal, and q (τ) and q (ν) will be gamma. We performed standard coordinate
ascent on these distributions [5].

As in Section 3.1, we implemented this model in the autodifferentiation software JuMP [19]. This
means conjugate coordinate updates were easy, since the natural parameters corresponding to a mean
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parameters are the first derivatives of the log likelihood with respect to the mean parameters. For
example, denoting the log likelihood at step s by Ls, the update for qs+1 (zk) will be:

log qs+1 (zk) =
∂Eq [Ls]

∂Eq [zk]
zk +

∂Eq [Ls]

∂Eq [z2k]
z2k + C

Given the partial derivatives of Ls with respect to the mean parameters, the updated mean parameters
for zk can be read off directly using standard properties of the normal distribution.

The variational covariance matrices are all standard. We can see that H will have nonzero terms
in general (for example, the three-way interaction Eq [τ ]Eq

�
zk(n)

�
Eq [β]), and that LRVB will be

different from MFVB. As usual in our models, H is sparse, and we can easily apply the technique
in section Section 2.3 to get the covariance matrix excluding the random effects, z.

F Multivariate normal mixture details

In this section we derive the basic formulas needed to calculate Eq. (7) for a finite mixture of nor-
mals, which is the model used in Section 3. We will follow the notation introduced in Section 3.3.

Let each observation, xn, be a P×1 vector. We will denote the P th component of the nth observation
xn, with a similar pattern for z and µ. We will denote the p, qth entry in the matrix Λk as Λk,pq . The
data generating process is as follows:

P (x|µ,π,Λ) =
N�

n=1

P (xn|zn, µ,Λ)
K�

k=1

P (znk|πk)

logP (xn|zn, µ,Λ) =

N�

n=1

znk log φk(xn) + C

log φk(x) = −1

2
(x− µk)

T
Λk (x− µk) +

1

2
log |Λk|+ C

logP (znk|πk) =
K�

k=1

znk log πk + C

It follows that the log posterior is given by

logP (z, µ,π,Λ|x) =
N�

n=1

K�

k=1

znk

�
log πk − 1

2
(xn − µk)

T
Λk (xn − µk) +

1

2
log |Λk|

�
+

K�

k=1

log p(µk) +

K�

k=1

log p(Λk) + log p(π) + C

We used a multivariate normal prior for µk, a Wishart prior for Λk, and a Dirichlet prior for π. In
the simulations described in Section 3.3, we used the following prior parameters for the VB model:

p(µk) = N
�
0P , diagP (0.01)

−1
�

p(Λk) = Wishart(diagP (0.01), 1)

p(π) = Dirichlet(5K)

Here, diagP (a) is a P -dimensional diagonal matrix with a on the diagonal, and 0P is a length P
vector of the value 0, with a similar definition for 5K . Unfortunately, the function we used for the
MCMC calculations, rnmixGibbs in the package bayesm, uses a different form for the µk prior.
Specifically, rnmixGibbs uses the prior

pMCMC (µk|Λk) = N (0, a−1Λ−1
k )
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where a is a scalar. There is no way to exactly match pMCMC(µk) to p(µk), so we simply set
a = 0.01. Since our datasets are all reasonably large, the prior was dominated by the likelihood, and
we found the results extremely insensitive to the prior on µk, so this discrepancy is of no practical
importance.

The parameters µk, Λk, π, and zn will each be given their own variational distribution. For qµk
we

will use a multivariate normal distribution; for qΛk
we will us a Wishart distirbution; for qπ we will

use a Dirichlet distribution; for qzn we will use a Multinoulli (a single multinomial draw). These are
all the optimal variational choices given the mean field assumption and the conditional conjugacy in
the model.

The sufficient statistics for µk are all terms of the form µkp and µkpµkq . Consequently, the sub-
vector of θ corresponding to µk is

θµk
=




µk1

...
µkp

µk1µk1

µk1µk2

...
µkPµkP




We will only save one copy of µkpµkq and µkqµkp, so θµk
has length P + 1

2 (P + 1)P . For all the
parameters, we denote the complete stacked vector without a k subscript:

θµ =




θµ1

...
θµK




The sufficient statistics for Λk are all the terms Λk,pq and the term log |Λk|. Again, since Λ is
symmetric, we do not keep redundant terms, so θΛk

has length 1 + 1
2 (P + 1)P . The sufficient

statistic for π is the K-vector (log π1, ..., log πK). The sufficient statistics for z are simply the
N ×K values znk themselves.

In terms of Section 2.3, we have

α =

�
θµ
θΛ
θπ

�

z = ( θz )

That is, we are primarily interested in the covariance of the sufficient statistics of µ, Λ, and π. The
latent variables z are nuisance parameters.

To put the log likelihood in terms useful for LRVB, we must express it in terms of the sufficient
statistics, taking into account the fact the θ vector does not store redundant terms (e.g. it will only
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keep Λab for a < b since Λ is symmetric).

−1

2
(xn − µk)

T
Λk (xn − µk)

= −1

2
trace

�
Λk (xn − µk) (xn − µk)

T
�

= −1

2

�

a

�

b

(Λk,ab (xn,a − µk,a) (xn,b − µk,b))

= −1

2

�

a

�

b

(Λk,abµk,aµk,b − Λk,abxn,aµk,b − Λk,abxn,bµk,a + Λk,abxn,axn,b)

= −1

2

�

a

Λk,aa

�
µ2
k

�a
+
�

a

Λk,aaxn,aµk,a −
1

2

�

a

Λk,aa

�
x2
n

�2 −

1

2

�

a�=b

Λk,abµk,aµk,b +
�

a�=b

Λk,abxn,aµk,b −
1

2

�

a�=b

Λk,abxn,axn,b

= −1

2

�

a

Λk,aa

�
µ2
k

�a
+
�

a

Λk,aaxn,aµk,a −
1

2

�

a

Λk,aa

�
x2
n

�2 −
�

a<b

Λk,abµk,aµk,b +
�

a<b

Λk,ab (xn,aµk,b + xn,bµk,a)−
�

a<b

Λk,abxn,axn,b

The MFVB updates and covariances in V are all given by properties of standard distributions. To
compute the LRVB corrections, it only remains to calculate the Hessian, H . These terms can be
read directly off the posterior. First we calculate derivatives with respect to components of µ.

∂2H

∂µk,a∂Λk,ab
=

�

i

znkxn,b

∂2H

∂ (µk,aµk,b) ∂Λk,ab
= −

�
1

2

�1(a=b) �

n

znk

∂2H

∂µk,a∂znk
=

�

b

Λk,abxn,b

∂2H

∂ (µk,aµk,b) ∂znk
= −

�
1

2

�1(a=b)

Λk,ab

All other µ derivatives are zero. For Λ,

∂2H

∂Λk,ab∂znk
= −

�
1

2

�1(a=b)

(xn,axn,b − µk,axn,b − µk,bxn,a + µk,aµk,b)

∂2H

∂ log |Λk| ∂znk
=

1

2

The remaining Λ derivatives are zero. The only nonzero second derivatives for log π are to Z and
are given by

∂2H

∂ log πj∂znk
= 1

Note in particular that Hzz = 0, allowing efficient calculation of Eq. (8).

19



G MNIST details

For a real-world example, we applied LRVB to the unsupervised classification of two digits from
the MNIST dataset of handwritten digits. We first preprocess the MNIST dataset by performing
principle component analysis on the training data’s centered pixel intensities and keeping the top 25
components. For evaluation, the test data is projected onto the same 25-dimensional subspace found
using the training data.

We then treat the problem of separating handwritten 0s from 1s as an unsupervised clustering prob-
lem. We limit the dataset to instances labeled as 0 or 1, resulting in 12665 training and 2115 test
points. We fit the training data as a mixture of multivariate Gaussians. Here, K = 2, P = 25, and
N = 12665. Then, keeping the µ, Λ, and π parameters fixed, we calculate the expectations of the la-
tent variables z in Eq. (10) for the test set. We assign test set data point xn to whichever component
has maximum a posteriori expectation. We count successful classifications as test set points that
match their cluster’s majority label and errors as test set points that are different from their cluster’s
majority label. By this measure, our test set error rate was 0.08. We stress that we intend only to
demonstrate the feasibility of LRVB on a large, real-world dataset rather than to propose practical
methods for modeling MNIST.
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