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Abstract

Mean field variational Bayes (MFVB) is a popular posterior approximation
method due to its fast runtime on large-scale data sets. However, a well known ma-
jor failing of MFVB is that it underestimates the uncertainty of model variables
(sometimes severely) and provides no information about model variable covari-
ance. We generalize linear response methods from statistical physics to deliver
accurate uncertainty estimates for model variables—both for individual variables
and coherently across variables. We call our method linear response variational
Bayes (LRVB). When the MFVB posterior approximation is in the exponential
family, LRVB has a simple, analytic form, even for non-conjugate models. In-
deed, we make no assumptions about the form of the true posterior. We demon-
strate the accuracy and scalability of our method on a range of models for both
simulated and real data.

1 Introduction

With increasingly efficient data collection methods, scientists are interested in quickly analyzing
ever larger data sets. In particular, the promise of these large data sets is not simply to fit old models
but instead to learn more nuanced patterns from data than has been possible in the past. In theory,
the Bayesian paradigm yields exactly these desiderata. Hierarchical modeling allows practitioners
to capture complex relationships between variables of interest. Moreover, Bayesian analysis allows
practitioners to quantify the uncertainty in any model estimates—and to do so coherently across all
of the model variables.

Mean field variational Bayes (MFVB), a method for approximating a Bayesian posterior distribu-
tion, has grown in popularity due to its fast runtime on large-scale data sets [1–3]. But a well known
major failing of MFVB is that it gives underestimates of the uncertainty of model variables that
can be arbitrarily bad, even when approximating a simple multivariate Gaussian distribution [4–
6]. Also, MFVB provides no information about how the uncertainties in different model variables
interact [5–8].

By generalizing linear response methods from statistical physics [9–12] to exponential family vari-
ational posteriors, we develop a methodology that augments MFVB to deliver accurate uncertainty
estimates for model variables—both for individual variables and coherently across variables. In
particular, as we elaborate in Section 2, when the approximating posterior in MFVB is in the expo-
nential family, MFVB defines a fixed-point equation in the means of the approximating posterior,
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and our approach yields a covariance estimate by perturbing this fixed point. We call our method
linear response variational Bayes (LRVB).

We provide a simple, intuitive formula for calculating the linear response correction by solving a
linear system based on the MFVB solution (Section 2.2). We show how the sparsity of this system
for many common statistical models may be exploited for scalable computation (Section 2.3). We
demonstrate the wide applicability of LRVB by working through a diverse set of models to show that
the LRVB covariance estimates are nearly identical to those produced by a Markov Chain Monte
Carlo (MCMC) sampler, even when MFVB variance is dramatically underestimated (Section 3).
Finally, we focus in more depth on models for finite mixtures of multivariate Gaussians (Section 3.3),
which have historically been a sticking point for MFVB covariance estimates [5, 6]. We show that
LRVB can give accurate covariance estimates orders of magnitude faster than MCMC (Section 3.3).
We demonstrate both theoretically and empirically that, for this Gaussian mixture model, LRVB
scales linearly in the number of data points and approximately cubically in the dimension of the
parameter space (Section 3.4).

Previous Work. Linear response methods originated in the statistical physics literature [10–13].
These methods have been applied to find new learning algorithms for Boltzmann machines [13],
covariance estimates for discrete factor graphs [14], and independent component analysis [15]. [16]
states that linear response methods could be applied to general exponential family models but works
out details only for Boltzmann machines. [10], which is closest in spirit to the present work, derives
general linear response corrections to variational approximations; indeed, the authors go further to
formulate linear response as the first term in a functional Taylor expansion to calculate full pairwise
joint marginals. However, it may not be obvious to the practitioner how to apply the general formulas
of [10]. Our contributions in the present work are (1) the provision of concrete, straightforward
formulas for covariance correction that are fast and easy to compute, (2) demonstrations of the
success of our method on a wide range of new models, and (3) an accompanying suite of code.

2 Linear response covariance estimation

2.1 Variational Inference

Suppose we observe N data points, denoted by the N -long column vector x, and denote our un-
observed model parameters by θ. Here, θ is a column vector residing in some space Θ; it has J
subgroups and total dimension D. Our model is specified by a distribution of the observed data
given the model parameters—the likelihood p(x|θ)—and a prior distributional belief on the model
parameters p(θ). Bayes’ Theorem yields the posterior p(θ|x).
Mean-field variational Bayes (MFVB) approximates p(θ|x) by a factorized distribution of the form
q(θ) =

�J
j=1 q(θj). q is chosen so that the Kullback-Liebler divergence KL(q||p) between q and p

is minimized. Equivalently, q is chosen so that E := L + S, for L := Eq[log p(θ|x)] (the expected
log posterior) and S := −Eq[log q(θ)] (the entropy of the variational distribution), is maximized:

q∗ := argmin
q

KL(q||p) = argmin
q

Eq [log q(θ)− log p(θ|x)] = argmax
q

E. (1)

Up to a constant in θ, the objective E is sometimes called the “evidence lower bound”, or the ELBO
[5]. In what follows, we further assume that our variational distribution, q (θ), is in the exponential
family with natural parameter η and log partition function A: log q (θ|η) = ηT θ−A (η) (expressed
with respect to some base measure in θ). We assume that p (θ|x) is expressed with respect to the
same base measure in θ as for q. Below, we will make only mild regularity assumptions about the
true posterior p(θ|x) and no assumptions about its form.

If we assume additionally that the parameters η∗ at the optimum q∗(θ) = q(θ|η∗) are in the interior
of the feasible space, then q(θ|η) may instead be described by the mean parameterization: m := Eqθ
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with m∗ := Eq∗θ. Thus, the objective E can be expressed as a function of m, and the first-order
condition for the optimality of q∗ becomes the fixed point equation

∂E

∂m

����
m=m∗

= 0 ⇔
�
∂E

∂m
+m

�����
m=m∗

= m∗ ⇔ M(m∗) = m∗ for M(m) :=
∂E

∂m
+m. (2)

2.2 Linear Response

Let V denote the covariance matrix of θ under the variational distribution q∗(θ), and let Σ denote
the covariance matrix of θ under the true posterior, p(θ|x):

V := Covq∗θ, Σ := Covpθ.

In MFVB, V may be a poor estimator of Σ, even when m∗ ≈ Epθ, i.e., when the marginal estimated
means match well [5–7]. Our goal is to use the MFVB solution and linear response methods to
construct an improved estimator for Σ. We will focus on the covariance of the natural sufficient
statistic θ, though the covariance of functions of θ can be estimated similarly (see Appendix A).

The essential idea of linear response is to perturb the first-order condition M(m∗) = m∗ around its
optimum. In particular, define the distribution pt (θ|x) as a log-linear perturbation of the posterior:

log pt (θ|x) := log p (θ|x) + tT θ − C (t) , (3)

where C (t) is a constant in θ. We assume that pt(θ|x) is a well-defined distribution for any t in an
open ball around 0. Since C (t) normalizes pt(θ|x), it is in fact the cumulant-generating function
of p(θ|x), so the derivatives of C (t) evaluated at t = 0 give the cumulants of θ. To see why this
perturbation may be useful, recall that the second cumulant of a distribution is the covariance matrix,
our desired estimand:

Σ = Covp(θ) =
d

dtT dt
C(t)

����
t=0

=
d

dtT
Eptθ

����
t=0

.

The practical success of MFVB relies on the fact that its estimates of the mean are often good in
practice. So we assume that m∗

t ≈ Ept
θ, where m∗

t is the mean parameter characterizing q∗t and
q∗t is the MFVB approximation to pt. (We examine this assumption further in Section 3.) Taking
derivatives with respect to t on both sides of this mean approximation and setting t = 0 yields

Σ = Covp(θ) ≈
dm∗

t

dtT

����
t=0

=: Σ̂, (4)

where we call Σ̂ the linear response variational Bayes (LRVB) estimate of the posterior covariance
of θ.

We next show that there exists a simple formula for Σ̂. Recalling the form of the KL divergence
(see Eq. (1)), we have that −KL(q||pt) = E+tTm =: Et. Then by Eq. (2), we have m∗

t = Mt(m
∗
t )

for Mt(m) := M(m) + t. It follows from the chain rule that

dm∗
t

dt
=

∂Mt

∂mT

����
m=m∗

t

dm∗
t

dt
+

∂Mt

∂t
=

∂Mt

∂mT

����
m=m∗

t

dm∗
t

dt
+ I, (5)

where I is the identity matrix. If we assume that we are at a strict local optimum and so can invert
the Hessian of E, then evaluating at t = 0 yields

Σ̂ =
dm∗

t

dtT

����
t=0

=
∂M

∂m
Σ̂+ I =

�
∂2E

∂m∂mT
+ I

�
Σ̂+ I ⇒ Σ̂ = −

�
∂2E

∂m∂mT

�−1

, (6)
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where we have used the form for M in Eq. (2). So the LRVB estimator Σ̂ is the negative inverse
Hessian of the optimization objective, E, as a function of the mean parameters. It follows from
Eq. (6) that Σ̂ is both symmetric and positive definite when the variational distribution q∗ is at least
a local maximum of E.

We can further simplify Eq. (6) by using the exponential family form of the variational approximat-
ing distribution q. For q in exponential family form as above, the negative entropy −S is dual to the
log partition function A [17], so S = −ηTm+A(η); hence,

dS

dm
=

∂S

∂ηT
dη

dm
+

∂S

∂m
=

�
∂A

∂η
−m

�
dη

dm
− η(m) = −η(m).

Recall that for exponential families, ∂η(m)/∂m = V −1. So Eq. (6) becomes1

Σ̂ = −
�

∂2L

∂m∂mT
+

∂2S

∂m∂mT

�−1

= −(H − V −1)−1, for H :=
∂2L

∂m∂mT
. ⇒

Σ̂ = (I − V H)−1V. (7)

When the true posterior p(θ|x) is in the exponential family and contains no products of the vari-
ational moment parameters, then H = 0 and Σ̂ = V . In this case, the mean field assumption is
correct, and the LRVB and MFVB covariances coincide at the true posterior covariance. Further-
more, even when the variational assumptions fail, as long as certain mean parameters are estimated
exactly, then this formula is also exact for covariances. E.g., notably, MFVB is well-known to pro-
vide arbitrarily bad estimates of the covariance of a multivariate normal posterior [4–7], but since
MFVB estimates the means exactly, LRVB estimates the covariance exactly (see Appendix B).

2.3 Scaling the matrix inverse

Eq. (7) requires the inverse of a matrix as large as the parameter dimension of the posterior p(θ|x),
which may be computationally prohibitive. Suppose we are interested in the covariance of parameter
sub-vector α, and let z denote the remaining parameters: θ = (α, z)

T . We can partition Σ =
(Σα,Σαz;Σzα,Σz) . Similar partitions exist for V and H . If we assume a mean-field factorization
q(α, z) = q(α)q(z), then Vαz = 0. (The variational distributions may factor further as well.) We
calculate the Schur complement of Σ̂ in Eq. (7) with respect to its zth component to find that

Σ̂α = (Iα − VαHα − VαHαz

�
Iz − VzHz)

−1VzHzα

�−1
Vα. (8)

Here, Iα and Iz refer to α- and z-sized identity matrices, respectively. In cases where
(Iz − VzHz)

−1 can be efficiently calculated (e.g., all the experiments in Section 3; see Fig. (5)
in Appendix D), Eq. (8) requires only an α-sized inverse.

3 Experiments

We compare the covariance estimates from LRVB and MFVB in a range of models, including models
both with and without conjugacy 2. We demonstrate the superiority of the LRVB estimate to MFVB
in all models before focusing in on Gaussian mixture models for a more detailed scalability analysis.

For each model, we simulate datasets with a range of parameters. In the graphs, each point represents
the outcome from a single simulation. The horizontal axis is always the result from an MCMC

1For a comparison of this formula with the frequentist “supplemented expectation-maximization” procedure
see Appendix C.

2All the code is available on our Github repository, rgiordan/LinearResponseVariationalBayesNIPS2015,
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procedure, which we take as the ground truth. As discussed in Section 2.2, the accuracy of the
LRVB covariance for a sufficient statistic depends on the approximation m∗

t ≈ Eptθ. In the models
to follow, we focus on regimes of moderate dependence where this is a reasonable assumption for
most of the parameters (see Section 3.2 for an exception). Except where explicitly mentioned,
the MFVB means of the parameters of interest coincided well with the MCMC means, so our key
assumption in the LRVB derivations of Section 2 appears to hold.

3.1 Normal-Poisson model

Model. First consider a Poisson generalized linear mixed model, exhibiting non-conjugacy. We
observe Poisson draws yn and a design vector xn, for n = 1, ..., N . Implicitly below, we will
everywhere condition on the xn, which we consider to be a fixed design matrix. The generative
model is:

zn|β, τ indep∼ N
�
zn|βxn, τ

−1
�
, yn|zn indep∼ Poisson (yn| exp(zn)) , (9)

β ∼ N (β|0,σ2
β), τ ∼ Γ(τ |ατ ,βτ ).

For MFVB, we factorize q (β, τ, z) = q (β) q (τ)
�N

n=1 q (zn). Inspection reveals that the optimal
q (β) will be Gaussian, and the optimal q (τ) will be gamma (see Appendix D). Since the optimal
q (zn) does not take a standard exponential family form, we restrict further to Gaussian q (zn). There
are product terms in L (for example, the term Eq [τ ]Eq [β]Eq [zn]), so H �= 0, and the mean field
approximation does not hold; we expect LRVB to improve on the MFVB covariance estimate. A
detailed description of how to calculate the LRVB estimate can be found in Appendix D.

Results. We simulated 100 datasets, each with 500 data points and a randomly chosen value for
µ and τ . We drew the design matrix x from a normal distribution and held it fixed throughout. We
set prior hyperparameters σ2

β = 10, ατ = 1, and βτ = 1. To get the “ground truth” covariance
matrix, we took 20000 draws from the posterior with the R MCMCglmm package [18], which
used a combination of Gibbs and Metropolis Hastings sampling. Our LRVB estimates used the
autodifferentiation software JuMP [19].

Results are shown in Fig. (1). Since τ is high in many of the simulations, z and β are correlated,
and MFVB underestimates the standard deviation of β and τ . LRVB matches the MCMC standard
deviation for all β, and matches for τ in all but the most correlated simulations. When τ gets very
high, the MFVB assumption starts to bias the point estimates of τ , and the LRVB standard deviations
start to differ from MCMC. Even in that case, however, the LRVB standard deviations are much more
accurate than the MFVB estimates, which underestimate the uncertainty dramatically. The final plot
shows that LRVB estimates the covariances of z with β, τ , and log τ reasonably well, while MFVB
considers them independent.

Figure 1: Posterior mean and covariance estimates on normal-Poisson simulation data.

3.2 Linear random effects

Model. Next, we consider a simple random slope linear model, with full details in Appendix E. We
observe scalars yn and rn and a vector xn, for n = 1, ..., N . Implicitly below, we will everywhere
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condition on all the xn and rn, which we consider to be fixed design matrices. In general, each
random effect may appear in multiple observations, and the index k(n) indicates which random
effect, zk, affects which observation, yn. The full generative model is:

yn|β, z, τ indep∼ N
�
yn|βTxn + rnzk(n), τ

−1
�
, zk|ν iid∼ N

�
zk|0, ν−1

�
,

β ∼ N (β|0,Σβ), ν ∼ Γ(ν|αν ,βν), τ ∼ Γ(τ |ατ ,βτ ).

We assume the mean-field factorization q (β, ν, τ, z) = q (β) q (τ) q (ν)
�K

k=1 q (zn). Since this is
a conjugate model, the optimal q will be in the exponential family with no additional assumptions.

Results. We simulated 100 datasets of 300 datapoints each and 30 distinct random effects. We
set prior hyperparameters to αν = 2, βν = 2, ατ = 2 , βτ = 2, and Σβ = 0.1−1I . Our xn was
2-dimensional. As in Section 3.1, we implemented the variational solution using the autodifferenti-
ation software JuMP [19]. The MCMC fit was performed with using MCMCglmm [18].

Intuitively, when the random effect explanatory variables rn are highly correlated with the fixed
effects xn, then the posteriors for z and β will also be correlated, leading to a violation of the
mean field assumption and an underestimated MFVB covariance. In our simulation, we used rn =
x1n + N (0, 0.4), so that rn is correlated with x1n but not x2n. The result, as seen in Fig. (2),
is that β1 is underestimated by MFVB, but β2 is not. The ν parameter, in contrast, is not well-
estimated by the MFVB approximation in many of the simulations. Since the LRVB depends on the
approximation m∗

t ≈ Ept
θ, its LRVB covariance is not accurate either (Fig. (2)). However, LRVB

still improves on the MFVB standard deviation.

Figure 2: Posterior mean and covariance estimates on linear random effects simulation data.

3.3 Mixture of normals

Model. Mixture models constitute some of the most popular models for MFVB application [1, 2]
and are often used as an example of where MFVB covariance estimates may go awry [5, 6]. Thus, we
will consider in detail a Gaussian mixture model (GMM) consisting of a K-component mixture of
P -dimensional multivariate normals with unknown component means, covariances, and weights. In
what follows, the weight πk is the probability of the kth component, µk is the P -dimensional mean
of the kth component, and Λk is the P × P precision matrix of the kth component (so Λ−1

k is the
covariance parameter). N is the number of data points, and xn is the nth observed P -dimensional
data point. We employ the standard trick of augmenting the data generating process with the latent
indicator variables znk, for n = 1, ..., N and k = 1, ..., K, such that znk = 1 implies xn ∼
N (µk,Λ

−1
k ). So the generative model is:

P (znk = 1) = πk, p(x|π, µ,Λ, z) =
�

n=1:N

�

k=1:K

N (xn|µk,Λ
−1
k )znk (10)

We used diffuse conditionally conjugate priors (see Appendix F for details). We make the variational
assumption q (µ,π,Λ, z) =

�K
k=1 q (µk) q (Λk) q (πk)

�N
n=1 q (zn). We compare the accuracy and
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speed of our estimates to Gibbs sampling on the augmented model (Eq. (10)) using the function
rnmixGibbs from the R package bayesm. We implemented LRVB in C++, making extensive use
of RcppEigen [20]. We evaluate our results both on simulated data and on the MNIST data set [21].

Results. For simulations, we generated N = 10000 data points from K = 2 multivariate normal
components in P = 2 dimensions. MFVB is expected to underestimate the marginal variance of µ,
Λ, and log(π) when the components overlap since that induces correlation in the posteriors due to
the uncertain classification of points between the clusters. We check the covariances estimated with
Eq. (7) against a Gibbs sampler, which we treat as the ground truth.3

We performed 198 simulations, each of which had at least 500 effective Gibbs samples in each
variable—calculated with the R tool effectiveSize from the coda package [22]. The first three plots
show the diagonal standard deviations, and the third plot shows the off-diagonal covariances. Note
that the off-diagonal covariance plot excludes the MFVB estimates since most of the values are
zero. Fig. (3) shows that the raw MFVB covariance estimates are often quite different from the
Gibbs sampler results, while the LRVB estimates match the Gibbs sampler closely.

For a real-world example, we fit a K = 2 GMM to the N = 12665 instances of handwritten 0s
and 1s in the MNIST data set. We used PCA to reduce the pixel intensities to P = 25 dimensions.
Full details are provided in Appendix G. In this MNIST analysis, the Λ standard deviations were
under-estimated by MFVB but correctly estimated by LRVB (Fig. (3)); the other parameter standard
deviations were estimated correctly by both and are not shown.

Figure 3: Posterior mean and covariance estimates on GMM simulation and MNIST data.

3.4 Scaling experiments

We here explore the computational scaling of LRVB in more depth for the finite Gaussian mixture
model (Section 3.3). In the terms of Section 2.3, α includes the sufficient statistics from µ, π, and Λ,
and grows as O(KP 2). The sufficient statistics for the variational posterior of µ contain the P -length
vectors µk, for each k, and the (P + 1)P/2 second-order products in the covariance matrix µkµ

T
k .

Similarly, for each k, the variational posterior of Λ involves the (P + 1)P/2 sufficient statistics
in the symmetric matrix Λk as well as the term log |Λk|. The sufficient statistics for the posterior
of πk are the K terms log πk.4 So, minimally, Eq. (7) will require the inverse of a matrix of size

3The likelihood described in Section 3.3 is symmetric under relabeling. When the component locations
and shapes have a real-life interpretation, the researcher is generally interested in the uncertainty of µ, Λ, and
π for a particular labeling, not the marginal uncertainty over all possible re-labelings. This poses a problem
for standard MCMC methods, and we restrict our simulations to regimes where label switching did not occur
in our Gibbs sampler. The MFVB solution conveniently avoids this problem since the mean field assumption
prevents it from representing more than one mode of the joint posterior.

4Since
�K

k=1 πk = 1, using K sufficient statistics involves one redundant parameter. However, this does
not violate any of the necessary assumptions for Eq. (7), and it considerably simplifies the calculations. Note
that though the perturbation argument of Section 2 requires the parameters of p(θ|x) to be in the interior of the
feasible space, it does not require that the parameters of p(x|θ) be interior.
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O(KP 2). The sufficient statistics for z have dimension K ×N . Though the number of parameters
thus grows with the number of data points, Hz = 0 for the multivariate normal (see Appendix F),
so we can apply Eq. (8) to replace the inverse of an O(KN)-sized matrix with multiplication by
the same matrix. Since a matrix inverse is cubic in the size of the matrix, the worst-case scaling for
LRVB is then O(K2) in K, O(P 6) in P , and O(N) in N .

In our simulations (Fig. (4)) we can see that, in practice, LRVB scales linearly5 in N and approxi-
mately cubically in P across the dimensions considered.6 The P scaling is presumably better than
the theoretical worst case of O(P 6) due to extra efficiency in the numerical linear algebra. Note that
the vertical axis of the leftmost plot is on the log scale. At all the values of N , K and P considered
here, LRVB was at least as fast as Gibbs sampling and often orders of magnitude faster.

Figure 4: Scaling of LRVB and Gibbs on simulation data in both log and linear scales. Before taking
logs, the line in the two lefthand (N) graphs is y ∝ x, and in the righthand (P) graph, it is y ∝ x3.

4 Conclusion

The lack of accurate covariance estimates from the widely used mean-field variational Bayes
(MFVB) methodology has been a longstanding shortcoming of MFVB. We have demonstrated that
in sparse models, our method, linear response variational Bayes (LRVB), can correct MFVB to de-
liver these covariance estimates in time that scales linearly with the number of data points. Further-
more, we provide an easy-to-use formula for applying LRVB to a wide range of inference problems.
Our experiments on a diverse set of models have demonstrated the efficacy of LRVB, and our de-
tailed study of scaling of mixtures of multivariate Gaussians shows that LRVB can be considerably
faster than traditional MCMC methods. We hope that in future work our results can be extended
to more complex models, including Bayesian nonparametric models, where MFVB has proven its
practical success.

Acknowledgments. The authors thank Alex Blocker for helpful comments. R. Giordano and
T. Broderick were funded by Berkeley Fellowships.

5The Gibbs sampling time was linearly rescaled to the amount of time necessary to achieve 1000 effective
samples in the slowest-mixing component of any parameter. Interestingly, this rescaling leads to increasing
efficiency in the Gibbs sampling at low P due to improved mixing, though the benefits cease to accrue at
moderate dimensions.

6For numeric stability we started the optimization procedures for MFVB at the true values, so the time to
compute the optimum in our simulations was very fast and not representative of practice. On real data, the
optimization time will depend on the quality of the starting point. Consequently, the times shown for LRVB
are only the times to compute the LRVB estimate. The optimization times were on the same order.
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