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Theorem 4.1 (Algorithm 1 solves Problem 2 in semi-dense graphs). Let tn =
n
(
π(α+ γ)2/2 + (1− 2π)γ2). Let S be the set of nodes returned by SCAN(A1, q, tn). Let

nw (no) denote the number of nodes in S ∩ C1 (S \ C1). If the graph is semi-dense, and
α−γ
α ≥ 2√

π

(
logn
nα2

)1/4
, then P (nw = nπ)→ 1 and P (no = 0)→ 1.

Proof. Let dqa =
∑
i∈Ca

A1(q, i) be the number of links from the query node q to nodes in
cluster Ca. Let dq = {dq1, . . . qqK} and d =

∑
a dqa.

Let ψn =
√

(6 logn)/(nπγ). By a Chernoff bound, we can show that

P (|dq1 − nπα| ≤ nπαψn) ≤ 2/n2 (1)
P (|dqa − nπγ| ≤ nπγψn) ≤ 2/n2 ∀a 6= 1 (2)

⇒ P (dq ∈ Good) , P

(
dq1 ∈ nπα(1± ψn)
dqa ∈ nπγ(1± ψn) ∀a 6= 1

)
≥ 1− K

n2 , (3)

where the Good set is defined via the last inequality. Note that

ψn =
√

Θ (logn/(nρ)) =
√√

logn/n ·Θ(
√

logn/(nρ2))→ 0. (4)

Conditioned on dq, Xi is the sum of K Binomial(dqa, B1a) independent random variables
representing the number of common neighbors between q and i via nodes in each of the K
clusters:

η̂a , E[Xi | dq, i ∈ Ca] = dqaα+ (d− dqa)γ.

We have, for dq ∈ Good:

n
(
πα2 + (1− π)γ2) (1− ψn) ≤ η̂1 ≤ n

(
πα2 + (1− π)γ2) (1 + ψn) (5)

n
(
2παγ + (1− 2π)γ2) (1− ψn) ≤ η̂a ≤ n

(
2παγ + (1− 2π)γ2) (1 + ψn) For a 6= 1 (6)

Let us denote by `n , n
(
πα2 + (1− π)γ2) and un ,

(
2παγ + (1− 2π)γ2), and also let

tn = (`n +un)/2. Clearly, un ≤ tn ≤ `n, and `n−un = nπ(α− γ)2 ≥ 4 logn
√
nα2/ logn→

∞, where we applied condition on (α − γ)/α noted in the theorem statement. Second, we
can easily see that η̂a ≤ η̂1 ≤ nα2(1 + ψn) for large enough n.
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Now, by a Chernoff bound,

P (Xi ≤ tn | dq ∈ Good, i ∈ C1) = E[P (Xi ≤ tn | dq,dq ∈ Good, i ∈ C1) | dq ∈ Good]

≤ E
[
exp

(
− (η̂1 − tn)2

3η̂1

)
| dq ∈ Good

]
≤ exp

(
− (`n − tn − `nψn)2

3nα2(1 + ψn)

)

= exp

−
(
`n − un

2

)2(
1− 2`nψn

`n − un

)2

3nα2(1 + ψn)


≤ exp

(
− (`n − un)2

12nα2

(
1−O

(
`nψn
`n − un

)
−O (ψn)

))
(7)

Now,

(`n − un)2

12nα2 = n2π2(α− γ)4

12nα2 ≥ 4/3 logn

`nψn
`n − un

= Θ
(

nρ2

nπ(α− γ)2

√
logn
nρ

)
≤ Θ

(
nρ2√
nρ2 logn

√
logn
nρ

)
= Θ (√ρ)→ 0

ψn → 0, (Eq. 2)

where we used the condition on (α−γ)/α, and the fact that α = Θ(ρ) and γ = Θ(ρ). Using
this in Eq. 7 yields

P (Xi ≤ tn | dq ∈ Good, i ∈ C1) ≤ n−4/3+o(1).

By a similar argument, we find that

P (Xi ≥ tn | dq ∈ Good, i ∈ Ca, a 6= 1) ≤ n−4/3+o(1).

We want to point out that while it seems that we need ρ → 0 for our analysis, that is not
the case. In order to analyze the case where ρ = Θ(1), we would simply need an updated
separation condition:

(`n − un) ≥ max(4
√
nα2 logn,Cψn`n)

.
When ρ→ 0, the first term is larger. This again requires an updated separation between α
and γ, namely

(α− γ)/α ≥ max
(

2√
π

(
logn
nα2

)1/4
,
C

π3/4

(
logn
n

)1/4
)
,

for some large enough constant C. However for ease of exposition we only present the ρ→ 0
case in the main paper.
Let Yi := 1{Xi ≥ tn}. SCAN(A1, q, tn) returns exactly the nodes S = {i | Yi = 1}. We
have:

nw =
∑
i∈C1

Yi no =
∑
i 6∈C1

Yi (8)
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Conditioned on dq, both nw and no are sums of conditionally independent and identically
distributed Bernoullis.

P (nw = nπ) ≥ P (dq ∈ Good) · P (nw = nπ | dq ∈ Good)
≥ P (dq ∈ Good) · (1− P (∃i ∈ C1, Xi < tn|dq ∈ Good))

≥
(

1− K

n2

)
· (1− nπ · n−4/3)

≥ 1−Θ(n−1/3)
→ 1

P (no = 0) ≥ P (dq ∈ Good) · P (no = 0 | dq ∈ Good)
≥ P (dq ∈ Good) · (1− P (∃i /∈ C1, Xi ≥ tn|dq ∈ Good))

≥
(

1− K

n2

)
· (1− n(1− π) · n−4/3)

≥ 1−Θ(n−1/3)
→ 1

Theorem 4.2 (Algorithm 1 followed by Algorithm 2 solves Problem 2 in semi-sparse
graphs). Let tn = 1 and sn = n2 (πα+ (1− π)γ)2 (α + γ)/2. Let S = Scan(A1, q, tn)
and S1 = Clean(S,A2, q, sn). Let n(c)

w

(
n

(c)
o

)
denote the number of nodes in S1 ∩ C1

(S1 \ C1). If the graph is semi-sparse, and πα ≥ 3(1 − π)γ, then P
(
n

(c)
w = nπ

)
→ 1 and

P
(
n

(c)
o = 0

)
→ 1.

Proof. The degrees of nodes can still be bound w.h.p. via Eq. 1 since in the semi-sparse
case

ψn =
√

Θ (logn/(nρ)) =

√
1

n1/3 ·
logn
n2/3ρ

→ 0.

Similarly, the equations for the E[Xi | dq ∈ Good] hold as well (Eqs. 5 and 6). We can also
bound the variances of Xi (which are sums of conditionally independent Bernoullis):

var[Xi | dq, i ∈ C1] = dq1α(1− α) + (d− dq1)γ(1− γ)
≤ E[Xi | dq, i ∈ C1] , η̂1 Since γ < α < 1

These highlight two major differences between the semi-sparse and semi-dense cases. First,
in the semi-sparse case, both expectations η̂1 and η̂a (for dq ∈ Good) are of the order O(nρ2)
which tends to zero. Second, standard deviations on the number of common neighbors are
of a larger order than expectations. Together, this means that the number of common
neighbors to within-cluster and outside-cluster nodes can no longer be separated; hence,
Algorithm 1 by itself cannot work.
In spite of this, there are small differences between nodes within and outside the query
cluster, which can be exploited. First, by an application of the Paley-Zygmund inequality,
we find a lower bound as:

pa , P (Xi ≥ 1 | dq, i ∈ Ca)

≥ E[Xi | dq, i ∈ Ca]2

var(Xi | dq, i ∈ Ca) + E[Xi | dq, i ∈ Ca]2

≥ η̂2
a

η̂a + η̂2
a

≥ η̂a(1− η̂a)

On the other hand Markov’s inequality can be used to upper bound this quantity:
pa ≤ E(Xi | dq, i ∈ Ca) = η̂a
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Hence for a = 1 vs a 6= 1, using Equations 5 and 6 we have:

For dq ∈ Good
`n(1− ξn) ≤ η̂1(1− η̂1) ≤ p1 ≤ η̂1 ≤ `n(1 + ψn) (9)
un(1− ξ′n) ≤ η̂a(1− η̂a) ≤ pa ≤ η̂a ≤ un(1 + ψn) (10)

where ξn , ψn + `n + 2ψn`n + `nψ
2
n and ξ′n , ψn + un + 2ψnun + unψ

2
n.

Note that even though pa → 0 in probability, w.h.p. (when dq ∈ Good) nπpa →∞ faster
than logn. So we can use concentration inequalities like the Chernoff bound again to bound
nw and no.

P (nπp1 (1− φn) ≤ nw ≤ nπp1 (1 + φn) | dq) ≥ 1− 2n−2 (11)

Similarly,

P (n(1− π)pa(1− δn) ≤ no ≤ n(1− π)pa(1 + δn) | dq) ≥ 1− 2n−2 (12)
(13)

Since δn ,
√

6 logn/n(1− π)pa) and φn ,
√

6 logn/nπp1 are O(
√

logn/n2ρ2), they are
o(1) for dq ∈ Good.
Note that unlike the denser regime, nw and no can be of the same order here. And so
the candidate set S returned by thresholding the common neighbors has a non-vanishing
fraction of nodes from outside q’s community. However, this fraction is relatively small,
which is what we would exploit in the cleaning step.
We will heavily use the fact that A2 is an independent copy of A and so the number of
edges to the set S obtained by thresholding common neighbors from A, are still pairwise
independent. The expectation of the number of edges from a node to S is given by:

θw , E[
∑
j∈S

A2(i, j) | i ∈ C1,dq] = nwα+ noγ (14)

θo , E[
∑
j∈S

A2(i, j) | i 6∈ C1,dq] = nwγ + noα (15)

Now we will bound the probability of mistakes in the cleaning step. We set the degree
threshold sn = n(α+ γ)(πα+ (1− π)γ)2/2.
Using Equations 10 we have with probability at least 1− 2/n2,

θw = nwα+ noγ ≥ nπp1α(1− φn) + n(1− π)paγ(1− δn)
≥ nπ`nα(1− ξn)(1− φn) + n(1− π)unγ(1− ξ′n)(1− δn)
= (nπ`nα+ n(1− π)unγ) + wn

where wn is the remainder term, whose magnitude is o(n2ρ3), since ξn, φn = o(1), when
dq ∈ Good. Thus we have:

For dq ∈ Good
θw − sn ≥ (nπ`nα+ n(1− π)unγ) + wn − sn

≥ (nπ`n − n(1− π)un)(α− γ)/2 + wn

= n2(α− γ)((πα+ (1− π)γ)(πα− (1− π)γ)− 2π(1− π)γ(α− γ))/2 + wn

= n2(α− γ)(1− π)γ2 + wn = n2(α− γ)(1− π)γ2(1 + o(1))
≥ 4
√
θw logn For large enough n

The last step uses the definition of `n and un, the separation condition between α and γ and
an algebraic simplification. We also use the fact that for dq ∈ Good, θw ≤ nπp1(1+o(1)) ≤
n2πα3(1 + o(1)) w.h.p.
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A similar argument holds for sn − θo as well; in fact, sn was chosen to be the midpoint of
the lower bound of θw and the upper bound of θo.
Now, the probability of a node from C1 having number of edges to S below the threshold is
given by:

P (∃i ∈ C1,
∑
j∈S

A2(i, j) ≤ sn | dq ∈ Good) ≤ nP (
∑
j∈S

A2(i, j) ≥ sn; i ∈ C1 | dq ∈ Good)

≤ nE

P
∑
j∈S

A2(i, j) ≥ sn; i ∈ C1 | dq

 | dq ∈ Good

+ c/n2

≤ nE
[
exp(−(θw − sn)2/3θw) | dq ∈ Good

]
+ c/n2 ≤ n−1/3 + cn−2 → 0

The c/n2 term comes from the error probabilities in Equations 11 and 12. Similarly the
probability of a node from outside C1 having number of edges to S above the threshold sn
can be upper bounded by:

P (∃i 6∈ C1,
∑
j∈S

A2(i, j) ≥ sn | dq ∈ Good) ≤ nP (
∑
j∈S

A2(i, j) ≥ sn; i 6∈ C1 | dq ∈ Good)

≤ nE[exp(−(θo − sn)2/3θo) | dq ∈ Good] + c/n2 ≤ n−1/3 → 0

These two error probabilities and argument identical to the proof of theorem 4.1 establish
that P (S1 = C1)→ 0 under semi-sparse regime.
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