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Theorem 4.1 (Algorithm solves Problem in semi-dense graphs). Let t, =
n (m(a+7)?/24 (1 —2m)y?). Let S be the set of nodes returned by SCAN(Ay,q,ty). Let
Ny (no) denote the number of nodes in SN Cy (S\ C1). If the graph is semi-dense, and

1/4
=1 > % (fg;‘) , then P(ny, =nm) — 1 and P(n, =0) — 1.

Proof. Let dgq = ZiEC’a A1(q, 1) be the number of links from the query node ¢ to nodes in
cluster Cy. Let dg = {dg1,...qqr} and d =", dgq.

Let ¢, = \/(6logn)/(nmy). By a Chernoff bound, we can show that

P(|dy — nral < nrarh,) < 2/n? (1)
P (|dga — nmy| < nmyin) < 2/n* Va#1 (2)

dg1 € nma(l £y,) o1 K
dga € nry(1£1),) Va#1 | = n2’

where the GOOD set is defined via the last inequality. Note that

U = /O (log n/(np)) = \/ VVIog n/n - ©(+/Tog ] (np?)) — 0. (4)

= P(d, € Goop) £ P <

Conditioned on d,, X; is the sum of K Binomial(dy,, B1,) independent random variables
representing the number of common neighbors between ¢ and ¢ via nodes in each of the K
clusters:

fla = E[X; | dgyi € Cy] = dga + (d — dya)7-
We have, for d, € Goob:

n (7ra2 +(1- w)’yz) (1 —1y)

n (7roz2 +(1- 7r)72) (1+n) (5)
n (2ray + (1 —2m)7?) (1 — y) n

(2ray+ (1 —27m)7%) (1+¢,) Fora#1 (6)
Let us denote by ¢, £ n(ra?+ (1 —7)y?) and u, £ (2ray+ (1 —27)y?), and also let

tn = (b +uy)/2. Clearly, u, <t, <, and £, —u, = nw(a—~)? > 4logn,/na?/logn —
00, where we applied condition on (o — )/« noted in the theorem statement. Second, we
can easily see that 9, < 1 < na?(1 +1,) for large enough n.



Now, by a Chernoff bound,

P(X,; <t,|d, € Goop,i € Cy) = E[P(X; <tn \dq,d € Goop,i € C4) | dy € GooD]
2
<FE { ( tn) > | d, € Goop
o (=t —ewm
- 3na2(1 —l—wn)
én n L 2t N
Cex by —un
P 3na2(1 + )
gn"/}’ﬂ
< 12na2 1_O<€n—un> _O(¢n)))
(7)
Now,
w2 n2n2(a— )t
(b = un) = (@~ 1) >4/3logn

12na?2 12na?2

by np? logn np? logn
=0 \/ <0 =0 —0
gn — Up (nﬂ-<a - 7)2 v 'fl,02 lOg’I’L (\/ﬁ)

Y — 0, (Eq.

where we used the condition on (a —+)/a, and the fact that @ = O(p) and v = ©(p). Using
this in Eq. [7] yields

P(X; <t,|d, € Goop,ie C;) <n /3o,
By a similar argument, we find that

P(X; >t,|d, € GooD,i € Cy,a # 1) < n~ /3o,

We want to point out that while it seems that we need p — 0 for our analysis, that is not
the case. In order to analyze the case where p = ©(1), we would simply need an updated

separation condition:
(4, — up) > max(4y/na?logn, C,t,,)

When p — 0, the first term is larger. This again requires an updated separation between «

and -y, namely
2 [(logn v o logn 1/4
_ > i
(o ’y)/a_max<ﬁ<na2> ’7r3/4< n ’

for some large enough constant C'. However for ease of exposition we only present the p — 0
case in the main paper.

Let V; := 1{X; > t,}. SCAN(Ay,q,t,) returns exactly the nodes S = {i | ¥; = 1}. We

have:
=> Y ne=) Y (8)

i€Cy iZCy




Conditioned on dg, both n,, and n, are sums of conditionally independent and identically
distributed Bernoullis.

P(n,, =nm) > P(d, € Goob) - P(n,, = nw | d, € GOOD)

> P(d, € GooD) - (1 — P(3i € C1,X; < t,|d, € GOOD))
K oy

> <1n2> (1 —nm -3

>1-0(n"?)

—1

P(n, =0) > P(d, € Goop) - P(n, =0|d,; € GOOD)

> P(d, € Goop) - (1 — P(3i ¢ C1,X; > t,|d, € GOOD))
K -

> (1n2> (1 =n(1l—mx)-n"Y3)

>1-0(n"?)

—1

O

Theorem 4.2 (Algorithm (1| followed by Algorithm [2| solves Problem [2| in semi-sparse
graphs). Let t, = 1 and s, = n? (ra+ (1 —7)7)* (a +7)/2. Let S = SCAN(A;,q,ty)
and S; = CLEAN(S, As,q,s,). Let nff) (n(()c)) denote the number of nodes in S1 N Ci

(S1\ C1). If the graph is semi-sparse, and wa > 3(1 — m)~y, then P (ngf) = nﬂ') — 1 and
P(nf? =0) =1,

Proof. The degrees of nodes can still be bound w.h.p. via Eq. [I] since in the semi-sparse
case

1 logn
n =0 (logn/(np) =\ [ 175 1o 0

Similarly, the equations for the E[X; | d, € Goob] hold as well (Egs. and @ We can also
bound the variances of X; (which are sums of conditionally independent Bernoullis):

var[X; | dg,i € C1] =dpa(l — ) + (d — dg1)y(1 — )
SE[Xi|dq,i€C’1]é771 Since y < a < 1

These highlight two major differences between the semi-sparse and semi-dense cases. First,
in the semi-sparse case, both expectations ; and 7, (for d, € GooD) are of the order O(np?)
which tends to zero. Second, standard deviations on the number of common neighbors are
of a larger order than expectations. Together, this means that the number of common
neighbors to within-cluster and outside-cluster nodes can no longer be separated; hence,
Algorithm [1] by itself cannot work.

In spite of this, there are small differences between nodes within and outside the query
cluster, which can be exploited. First, by an application of the Paley-Zygmund inequality,
we find a lower bound as:

(1>

P(X;>1|d,i€Cy)
S E[X;|d, i€ C,]?
- V&I‘(Xi | dq7’L' S Ca) + E[XZ | dq,i S C’a]Z
~2
Na
" o+
On the other hand Markov’s inequality can be used to upper bound this quantity:
Pa < E(X’L | dq;i € Ca) = ﬁa

Pa

Z ﬁa(l - ﬁa)



Hence for a = 1 vs a # 1, using Equations 5] and [6] we have:

For d, € Goop
tn(1 = &,) < Ma(l = Na) < pa < Mo < up(1+ 1) (10)

where gn £ 'll)n +4,+ angn + enw% and 57/1 £ qzbn + up + anun + Unw%

Note that even though p, — 0 in probability, w.h.p. (when d, € GOOD) nmp, — oo faster
than logn. So we can use concentration inequalities like the Chernoff bound again to bound
Ny and n,.

P(nmpr (1 —¢p) <ny <nap1 (1+¢,) |dg) >1— on~2 (11)

Similarly,
Pn(1 —m)pa(1 —6,) <no <n(l —m)pa(1+6,)|dg) >1— on 2 (12)
(13)

Since 4, £ \/6logn/n(l —m)p,) and ¢, = \/6logn/nmp; are O(y/logn/n2p?), they are

o(1) for d; € GoOoD.

Note that unlike the denser regime, n,, and n, can be of the same order here. And so
the candidate set S returned by thresholding the common neighbors has a non-vanishing
fraction of nodes from outside ¢’s community. However, this fraction is relatively small,
which is what we would exploit in the cleaning step.

We will heavily use the fact that A is an independent copy of A and so the number of
edges to the set S obtained by thresholding common neighbors from A, are still pairwise
independent. The expectation of the number of edges from a node to S is given by:

O £ E[Y_ As(i,j) | i € C1,dg] = nuwa +nyy (14)
JjeES

0, £ B[ As(i,j) |i ¢ C1,dg] = nuy + noc (15)
JjeS

Now we will bound the probability of mistakes in the cleaning step. We set the degree
threshold s,, = n(a +7v)(ra + (1 —7)y)2/2.

Using Equations [10| we have with probability at least 1 — 2/n?,
O = nypa +nyy > napra(l — ¢n) + n(l — m)pay(1 — 6r)
> nrlna(l — &) (1 = ¢n) + n(l — muny(1 = &)1 — 65)
= (nmlpa+ n(l — T)uyy) + wy

where w,, is the remainder term, whose magnitude is o(n?p?), since &,, ¢, = o(1), when
d, € Goob. Thus we have:

For d, € Goop
0w — spn > (nlpa+n(l — m)upy) + wp — Sp
> (nwly, —n(l — m)uy) (e —7v)/2 +w,
=n*(a —y)((ra+ (1 = 1)y)(ra — (1 = 7)) = 2x(1 = m)y(a —7))/2 + w,
=n*(a =) (1 -7 +w, =n’(a = 7)(1 = 7)y*(1 +0(1))
> 44/0, logn For large enough n

The last step uses the definition of £,, and u,,, the separation condition between « and « and
an algebraic simplification. We also use the fact that for d, € Goop, 6, < nap1(1+0(1)) <
n*ra’(14 o(1)) w.h.p.



A similar argument holds for s, — 6, as well; in fact, s,, was chosen to be the midpoint of
the lower bound of 8,, and the upper bound of 6,.

Now, the probability of a node from C having number of edges to .S below the threshold is
given by:

P(3i € C1,»  Ag(i,j) < sn | dg € GOOD) < nP(> _ Ag(i,j) > sn;i € Cy | dg € GOOD)
jes jes

<nE |P Y Ay(i,j) > snii€Cy|d, | |dy € GoOD| + c/n?
j€S
< nE [exp(— (0w — 5n)*/30) | dg € GOOD] + ¢/n* < n~Y3 4 en72 50
The ¢/n? term comes from the error probabilities in Equations and Similarly the

probability of a node from outside C; having number of edges to S above the threshold s,
can be upper bounded by:

P(3i ¢ C1,ZA2(Z',J') > s, | d, € Goop) < ”P(Z As(i,§) = smii ¢ C: | d, € Goop)
ies jes
< nElexp(—(0o — $n)?/30,) | dg € GOOD] + ¢/n* <n~'/* =0

These two error probabilities and argument identical to the proof of theorem establish
that P(S; = C1) — 0 under semi-sparse regime.

O



