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Abstract

In this paper, we study the estimation of the k-dimensional sparse principal sub-
space of covariance matrix Σ in the high-dimensional setting. We aim to recover
the oracle principal subspace solution, i.e., the principal subspace estimator ob-
tained assuming the true support is known a priori. To this end, we propose a
family of estimators based on the semidefinite relaxation of sparse PCA with novel
regularizations. In particular, under a weak assumption on the magnitude of the
population projection matrix, one estimator within this family exactly recovers the
true support with high probability, has exact rank-k, and attains a

√
s/n statistical

rate of convergence with s being the subspace sparsity level and n the sample size.
Compared to existing support recovery results for sparse PCA, our approach does
not hinge on the spiked covariance model or the limited correlation condition. As a
complement to the first estimator that enjoys the oracle property, we prove that, an-
other estimator within the family achieves a sharper statistical rate of convergence
than the standard semidefinite relaxation of sparse PCA, even when the previous
assumption on the magnitude of the projection matrix is violated. We validate the
theoretical results by numerical experiments on synthetic datasets.

1 Introduction

Principal Component Analysis (PCA) aims at recovering the top k leading eigenvectors u1, . . . ,uk
of the covariance matrix Σ from sample covariance matrix Σ̂. In applications where the dimension p
is much larger than the sample size n, classical PCA could be inconsistent [12]. To avoid this problem,
one common assumption is that the leading eigenvector u1 of the population covariance matrix Σ is
sparse, i.e., the number of nonzero elements in u1 is less than the sample size, s = supp(u1) < n.
This gives rise to Sparse Principal Component Analysis (SPCA). In the past decade, significant
progress has been made toward the methodological development [13, 8, 30, 22, 7, 14, 28, 19, 27] as
well as theoretical understanding [12, 20, 1, 24, 21, 4, 6, 3, 2, 18, 15] of sparse PCA.

However, all the above studies focused on estimating the leading eigenvector u1. When the top k
eigenvalues of Σ are not distinct, there exist multiple groups of leading eigenvectors that are equivalent
up to rotation. In order to address this problem, it is reasonable to de-emphasize eigenvectors
and to instead focus on their span U , i.e., the principal subspace of variation. [23, 25, 16, 27]
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proposed Subspace Sparsity, which defines sparsity on the projection matrix onto subspace U , i.e.,
Π∗ = UU>, as the number of nonzero entries on the diagonal of Π∗, i.e., s = |supp(diag(Π∗))|.
They proposed to estimate the principal subspace instead of principal eigenvectors of Σ, based
`1,1-norm regularization on a convex set called Fantope [9], that provides a tight relaxation for
simultaneous rank and orthogonality constraints on the positive semidefinite cone. The convergence
rate of their estimator is O(λ1/(λk − λk+1)s

√
log p/n), where λk, k = 1, . . . , p is the k-th largest

eigenvalue of Σ. Moreover, their support recovery relies on limited correlation condition (LCC) [16],
which is similar to irrepresentable condition in sparse linear regression. We notice that [1] also
analyzed the semidefinite relaxation of sparse PCA. However, they only considered rank-1 principal
subspace and the stringent spiked covariance model, where the population covariance matrix is block
diagonal.

In this paper, we aim to recover the oracle principal subspace solution, i.e., the principal subspace
estimator obtained assuming the true support is known a priori. Based on recent progress made
on penalized M -estimators with nonconvex penalty functions [17, 26], we propose a family of
estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. It estimates
the k-dimensional principal subspace of a population matrix Σ based on its empirical version Σ̂. In
particular, under a weak assumption on the magnitude of the projection matrix, i.e,

min
(i,j)∈T

|Π∗ij | ≥ ν +
C
√
kλ1

λk − λk+1

√
s

n
,

where T is the support of Π∗, ν is a parameter from nonconvex penalty and C is an universal constant,
one estimator within this family exactly recovers the oracle solution with high probability, and is
exactly of rank k. It is worth noting that unlike the linear regression setting, where the estimators that
can recover the oracle solution often have nonconvex formulations, our estimator here is obtained
from a convex optimization1, and has unique global solution. Compared to existing support recovery
results for sparse PCA, our approach does not hinge on the spiked covariance model [1] or the limited
correlation condition [16]. Moreover, it attains the same convergence rate as standard PCA as if the
support of the true projection matrix is provided a priori. More specifically, the Frobenius norm error
of the estimator Π̂ is bounded with high probability as follows

‖Π̂−Π∗‖F ≤
Cλ1

λk − λk+1

√
ks

n
,

where k is the dimension of the subspace.

As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator
within the family achieves a sharper statistical rate of convergence than the standard semidefinite
relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection
matrix is violated. This estimator is based on nonconvex optimizaiton. With a suitable choice of
the regularization parameter, we show that any local optima to the optimization problem is a good
estimator for the projection matrix of the true principal subspace. In particular, we show that the
Frobenius norm error of the estimator Π̂ is bounded with high probability as

‖Π̂−Π∗‖F ≤
Cλ1

λk − λk+1

(√
s1s

n
+

√
m1m2

log p

n

)
,

where s1,m1,m2 are all no larger than s. Evidently, it is sharper than the convergence rate proved
in [23]. Note that the above rate consists of two terms, the O(

√
s1s/n) term corresponds to the

entries of projection matrix satisfying the previous assumption (i.e., with large magnitude), while
O(
√
m1m2 log p/n) corresponds to the entries of projection matrix violating the previous assumption

(i.e., with small magnitude).

Finally, we demonstrate the numerical experiments on synthetic datasets, which support our theoretical
analysis.

The rest of this paper is arranged as follows. Section 2 introduces two estimators for the principal
subspace of a covariance matrix. Section 3 analyzes the statistical properties of the two estimators.

1Even though we use nonconvex penalty, the resulting problem as a whole is still a convex optimization
problem, because we add another strongly convex term in the regularization part, i.e., τ/2‖Π‖F .
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We present an algorithm for solving the estimators in Section 4. Section 5 shows the experiments on
synthetic datasets. Section 6 concludes this work with remarks.

Notation. Let [p] be the shorthand for {1, . . . , p}. For matrices A, B of compatible dimension,
〈A,B〉 := tr(A>B) is the Frobenius inner product, and ‖A‖F = 〈A,A〉 is the squared Frobenius
norm. ‖x‖q is the usual `q norm with ‖x‖0 defined as the number of nonzero entries of x. ‖A‖a,b
is the (a, b)-norm defined to be the `b norm of the vector of rowwise `a norms of A, e.g. ‖A‖1,∞
is the maximum absolute row sum. ‖A‖2 is the spectral norm of A, and ‖A‖∗ is the trace norm
(nuclear norm) of A. For a symmetric matrix A, we define λ1(A) ≥ λ2(A) ≥ . . . ≥ λp(A) to be the
eigenvalues of A with multiplicity. When the context is obvious we write λj = λj(A) as shorthand.

2 The Proposed Estimators

In this section, we present a family of estimators based on the semidefinite relaxation of sparse PCA
with novel regularizations, for the principal subspace of the population covariance matrix. Before
going into the details of the proposed estimators, we first present the formal definition of principal
subspace estimation.

2.1 Problem Definition

Let Σ ∈ Rp×p be an unknown covariance matrix, with eigen-decomposition as follows

Σ =

p∑
i=1

λiuiu
>
i ,

where λ1 ≥ . . . ≥ λp are eigenvalues (with multiplicity) and u1, . . . ,up ∈ Rp are the associated
eigenvectors. The k-dimensional principal subspace of Σ is the subspace spanned by u1, . . . ,uk.
The projection matrix to the k-dimensional principal subspace is

Π∗ =

k∑
i=1

uiu
>
i = UU>,

where U = [u1, . . . ,uk] is an orthonormal matrix. The reason why principal subspace is more
appealing is that it avoids the problem of un-identifiability of eigenvectors when the eigenvalues are
not distinct. In fact, we only need to assume λk−λk+1 > 0 instead of λ1 > . . . > λk > λk+1. Then
the principal subspace Π∗ is unique and identifiable. We also assume that k is fixed.

Next, we introduce the definition of Subspace Sparsity [25], which can be seen as the extension of
conventional Eigenvector Sparsity used in sparse PCA.
Definition 1. [25] (Subspace Sparsity) The projection Π∗ onto the subspace spanned by the
eigenvectors of Σ corresponding to its k largest eigenvalues satisfies ‖U‖2,0 ≤ s, or equivalently
‖diag(Π)‖0 ≤ s.

In the extreme case that k = 1, the support of the projection matrix onto the rank-1 principal subspace
is the same as the support of the sparse leading eigenvector.

The problem definition of principal subspace estimation is: given an i.i.d. sample {x1,x2, . . . ,xn} ⊂
Rp which are drawn from an unknown distribution of zero mean and covariance matrix Σ, we
aim to estimate Π∗ based on the empirical covariance matrix S ∈ Rp×p, that is given by Σ̂ =
1/n

∑n
i=1 xix

>
i . We are particularly interested in the high dimensional setting, where p → ∞ as

n→∞, in sharp contrast to conventional setting where p is fixed and n→∞.

Now we are ready to design a family of estimators for Π∗.

2.2 A Family of Sparse PCA Estimators

Given a sample covariance matrix Σ̂ ∈ Rp×p, we propose a family of sparse principal subspace
estimator Π̂ that is defined to be a solution of the semidefinite relaxation of sparse PCA

Π̂τ = argmin
Π

− 〈Σ̂,Π〉+
τ

2
‖Π‖2F + Pλ(Π), subject to Π ∈ Fk, (1)
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where τ > 0, λ > 0 is a regularization parameter, Fk is a convex body called the Fantope [9, 23],
that is defined as follows

Fk = {X : 0 ≺ X ≺ I and tr(X) = k },

and Pλ(Π) is a decomposable nonconvex penalty, i.e., Pλ(Π) =
∑p
i,j=1 pλ(Πij). Typical nonconvex

penalties include the smoothly clipped absolute deviation (SCAD) penalty [10] and minimax concave
penalty MCP [29], which can eliminate the estimation bias and attain more refined statistical rates of
convergence [17, 26]. For example, MCP penalty is defined as

pλ(t) = λ

∫ |t|
0

(
1− z

λb

)
dz =

(
λ|t| − t2

2b

)
1(|t| ≤ bλ) +

bλ2

2
1(|t| > bλ), (2)

where b > 0 is a fixed parameter.

An important property of the nonconvex penalties pλ(t) is that they can be formulated as the sum of
the `1 penalty and a concave part qλ(t): pλ(t) = λ|t|+ qλ(t). For example, if pλ(t) is chosen to be
the MCP penalty, then the corresponding qλ(t) is:

qλ(t) = − t
2

2b
1(|t| ≤ bλ) +

(
bλ2

2
− λ|t|

)
1(|t| > bλ),

We rely on the following regularity conditions on pλ(t) and its concave component qλ(t):

(a) pλ(t) satisfies p′λ(t) = 0, for |t| ≥ ν > 0.
(b) q′λ(t) is monotone and Lipschitz continuous, i.e., for t′ ≥ t, there exists a constant ζ− ≥ 0

such that

−ζ− ≤
q′λ(t′)− q′λ(t)

t′ − t
.

(c) qλ(t) and q′λ(t) pass through the origin, i.e., qλ(0) = q′λ(0) = 0.
(d) q′λ(t) is bounded, i.e., |q′λ(t)| ≤ λ for any t.

The above conditions apply to a variety of nonconvex penalty functions. For example, for MCP in
(2), we have ν = bλ and ζ− = 1/b.

It is easy to show that when τ > ζ−, the problem in (1) is strongly convex, and therefore its solution is
unique. We notice that [16] also introduced the same regularization term τ/2‖Π‖2F in their estimator.
However, our motivation is quite different from theirs. We introduce this term because it is essential
for the estimator in (1) to achieve the oracle property provided that the magnitude of all the entries in
the population projection matrix is sufficiently large. We call (1) Convex Sparse PCA Estimator.

Note that constraint Π ∈ Fk only guarantees that the rank of Π̂ is ≥ k. However, we can prove that
our estimator is of rank k exactly. This is in contrast to [23], where some post projection is needed,
to make sure their estimator is of rank k.

2.3 Nonconvex Sparse PCA Estimator

In the case that the magnitude of entries in the population projection matrix Π∗ violates the previous
assumption, (1) with τ > ζ− no longer enjoys the desired oracle property. To this end, we consider
another estimator from the family of estimators in (1) with τ = 0,

Π̂τ=0 = argmin
Π

− 〈Σ̂,Π〉+ Pλ(Π), subject to Π ∈ Fk. (3)

Since −〈Σ̂,Π〉 is an affine function, and Pλ(Π) is nonconvex, the estimator in (3) is nonconvex.
We simply refer to it as Nonconvex Sparse PCA Estimator. We will prove that it achieves a sharper
statistical rate of convergence than the standard semidefinite relaxation of sparse PCA [23], even
when the previous assumption on the magnitude of the projection matrix is violated.

It is worth noting that although our estimators in (1) and (3) are for the projection matrix Π of the
principal subspace, we can also provide an estimator of U . By definition, the true subspace satisfies
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Π∗ = UU>. Thus, the estimator Û can be computed from Π̂ using eigenvalue decomposition. In
detail, we can set the columns of Û to be the top k leading eigenvectors of Π̂. In case that the top k
eigenvalues of Π̂ are the same, we can follow the standard PCA convention by rotating the eigenvectors
with a rotation matrix R, such that (ÛR)T Σ̂(ÛR) is diagonal. Then ÛR is the orthonormal basis for
the estimated principal subspace, and can be used for visualization and dimension reduction.

3 Statistical Properties of the Proposed Estimators

In this section, we present the statistical properties of the two estimators in the family (1). One is
with τ > ζ−, the other is with τ = 0. The proofs are all included in the longer version of this paper.

To evaluate the statistical performance of the principal subspace estimators, we need to define the
estimator error between the estimated projection matrix and the true projection matrix. In our study,
we use the Frobenius norm error ‖Π̂−Π∗‖F .

3.1 Oracle Property and Convergence Rate of Convex Sparse PCA

We first analyze the estimator in (1) when τ > ζ−. We prove that, the estimator Π̂ in (1) recovers
the support of Π∗ under suitable conditions on its magnitude. Before we present this theorem, we
introduce the definition of an oracle estimator, denoted by Π̂O. Recall that S = supp(diag(Π∗)).
The oracle estimator Π̂O is defined as

Π̂O = argmin
supp(diag(Π))⊂S,Π∈Fk

L(Π). (4)

where L(Π) = −〈Σ̂,Π〉+ τ
2‖Π‖

2
F . Note that the above oracle estimator is not a practical estimator,

because we do not know the true support S in practice.

The following theorem shows that, under suitable conditions, Π̂ in (1) is the same as the oracle
estimator Π̂O with high probability, and therefore exactly recovers the support of Π∗.
Theorem 1. (Support Recovery) Suppose the nonconvex penalty Pλ(Π) =

∑p
i,j=1 pλ(Π) satis-

fies conditions (a) and (b). If Π∗ satisfies min(i,j)∈T |Π∗ij | ≥ ν + C
√
kλ1/(λk − λk+1)

√
s/n.

For the estimator in (1) with the regularization parameter λ = Cλ1

√
log p/n and τ > ζ−, we

have with probability at least 1 − 1/n2 that Π̂ = Π̂O, which further implies supp(diag(Π̂)) =

supp(diag(Π̂O)) = supp(diag(Π∗)) and rank(Π̂) = rank(Π̂O) = k.

For example, if we use MCP penalty, the magnitude assumption turns out to be min(i,j)∈T |Π∗ij | ≥
Cbλ1

√
log p/n+ C

√
kλ1/(λk − λk+1)

√
s/n.

Note that in our proposed estimator in (1), we do not rely on any oracle knowledge on the true support.
Our theory in Theorem 1 shows that, with high probability, the estimator is identical to the oracle
estimator, and thus exactly recovers the true support.

Compared to existing support recovery results for sparse PCA [1, 16], our condition on the magnitude
is weaker. Note that the limited correlation condition [16] and the even stronger spiked covariance
condition [1] impose constraints not only on the principal subspace corresponding to λ1, . . . , λk,
but also on the “non-signal” part, i.e., the subspace corresponding to λk+1, . . . , λp. Unlike these
conditions, we only impose conditions on the “signal” part, i.e., the magnitude of the projection
matrix Π∗ corresponding to λ1, . . . , λk. We attribute the oracle property of our estimator to novel
regularizations (τ/2‖Π‖2F plus nonconvex penalty).

The oracle property immediately implies that under the above conditions on the magnitude, the
estimator in (1) achieves the convergence rate of standard PCA as if we know the true support S a
priori. This is summarized in the following theorem.
Theorem 2. Under the same conditions of Theorem 1, we have with probability at least 1− 1/n2

that

‖Π̂−Π∗‖F ≤
C
√
kλ1

λk − λk+1

√
s

n
,
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for some universal constant C.

Evidently, the estimator attains a much sharper statistical rate of convergence than the state-of-the-art
result proved in [23].

3.2 Convergence Rate of Nonconvex Sparse PCA

We now analyze the estimator in (3), which is a special case of (1) when τ = 0. We basically
show that any local optima of the non-convex optimization problem in (3) is a good estimator. In
other words, our theory applies to any projection matrix Π̂τ=0 ∈ Rp×p that satisfies the first-order
necessary conditions (variational inequality) to be a local minimum of (3):

〈Π̂τ=0 −Π′,−Σ̂ +∇Pλ(Π̂)〉 ≤ 0, ∀ Π′ ∈ Fk

Recall that S = supp(diag(Π∗)) with |S| = s, T = S × S with |T | = s2, and T c = [p]× [p] \ T .
For (i, j) ∈ T1 ⊂ T with |T1| = t1, we assume |Π∗ij | ≥ ν, while for (i, j) ∈ T2 ⊂ T with |T2| = t2,
we assume |Π∗ij | < ν. Clearly, we have s2 = t1 + t2. There exists a minimal submatrix A ∈ Rn1×n2

of Π∗, which contains all the elements in T1, with s1 = min{n1, n2}. There also exists a minimal
submatrix B ∈ Rm1×m2 of Π∗, that contains all the elements in T2.

Note that in general, s1 ≤ s, m1 ≤ s and m2 ≤ s. In the worst case, we have s1 = m1 = m2 = s.
Theorem 3. Suppose the nonconvex penalty Pλ(Π) =

∑p
i,j=1 pλ(Π) satisfies conditions (b) (c)

and (d). For the estimator in (3) with regularization parameter λ = Cλ1

√
log p/n and ζ− ≤

(λk − λk+1)/4, with probability at least 1− 4/p2, any local optimal solution Π̂τ=0 satisfies

‖Π̂τ=0 −Π∗‖F ≤
4Cλ1

√
s1

(λk − λk+1)

√
s

n︸ ︷︷ ︸
T1:|Π∗

ij |≥ν

+
12Cλ1

√
m1m2

(λk − λk+1)

√
log p

n︸ ︷︷ ︸
T2:|Π∗

ij |<ν

.

Note that the upper bound can be decomposed into two parts according to the magnitude of the entries
in the true projection matrix, i.e., |Π∗ij |, 1 ≤ i, j ≤ p. We have the following comments:

On the one hand, for those strong “signals”, i.e., |Π∗ij | ≥ ν, we are able to achieve the convergence rate
of O(λ1

√
s1/(λk − λk+1)

√
s/n). Since s1 is at most equal to s, the worst-case rate is O(λ1/(λk −

λk+1)s/
√
n), which is sharper than the rate proved in [23], i.e., O(λ1/(λk − λk+1)s

√
log p/n). In

the other case that s1 < s, the convergence rate could be even sharper.

On the other hand, for those weak “signals”, i.e., |Π∗ij | < ν, we are able to achieve the convergence
rate of O(λ1

√
m1m2/(λk − λk+1)

√
log p/n). Since both m1 and m2 are at most equal to s, the

worst-case rate is O(λ1/(λk − λk+1)s
√

log p/n), which is the same as the rate proved in [23]. In
the other case that

√
m1m2 < s, the convergence rate will be sharper than that in [23].

The above discussions clearly demonstrate the advantage of our estimator, which essentially benefits
from non-convex penalty.

4 Optimization Algorithm

In this section, we present an optimization algorithm to solve (1) and (3). Since (3) is a special case
of (1) with τ = 0, it is sufficient to develop an algorithm for solving (1).

Observing that (1) has both nonsmooth regularization term and nontrivial constraint set Fk, it is
difficult to directly apply gradient descent and its variants. Following [23], we present an alternating
direction method of multipliers (ADMM) algorithm. The proposed ADMM algorithm can efficiently
compute the global optimum of (1). It can also find a local optimum to (3). It is worth noting that
other algorithms such as Peaceman Rachford Splitting Method [11] can also be used to solve (1).

We introduce an auxiliary variable Φ ∈ Rp×p, and consider an equivalent form of (1) as follows

argmin
Π,Φ

−〈Σ̂,Π〉+
τ

2
‖Π‖2F + Pλ(Φ), subject to Π = Φ, Π ∈ Fk. (5)
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The augmented Lagrangian function corresponding to (5) is

L(Π,Φ,Θ) =∞1Fk(Π)− 〈Σ̂,Π〉+
τ

2
‖Π‖2F + Pλ(Φ) + 〈Θ,Π− Φ〉+

ρ

2
‖Π− Φ‖2F , (6)

where Θ ∈ Rd×d is the Lagrange multiplier associated with the equality constraint Π = Φ in (5),
and ρ > 0 is a penalty parameter that enforces the equality constraint Π = Φ. The detailed update
scheme is described in Algorithm 1. In details, the first subproblem (Line 5 of Algorithm 1) can be
solved by projecting ρ/(ρ+ τ)Φ(t)− 1/(ρ+ τ)Θ(t) + 1/(ρ+ τ)Σ̂ onto Fantope Fk. This projection
has a simple form solution as shown by [23, 16]. The second subproblem (Line 6 of Algorithm 1)
can be solved by generalized soft-thresholding operator as shown by [5] [17].

Algorithm 1 Solving Convex Relaxation (5) using ADMM.

1: Input: Covariance Matrix Estimator Σ̂
2: Parameter: Regularization parameters λ>0, τ ≥ 0, Penalty parameter ρ>0 of the augmented

Lagrangian, Maximum number of iterations T
3: Π(0) ← 0, Φ(0) ← 0, Θ(0) ← 0
4: For t = 0, . . . , T − 1

5: Π(t+1) ← arg minΠ∈Fk
1
2‖Π− ( ρ

ρ+τΦ(t) − 1
ρ+τΘ(t) + 1

ρ+τ Σ̂)‖2F
6: Φ(t+1) ← arg minΦ

1
2‖Φ− (Π(t+1) + 1

ρΘ(t))‖2F + Pλ
ρ

(Φ)

7: Θ(t+1) ← Θ(t) + ρ(Π(t+1) − Φ(t+1))
8: End For
9: Output: Π(T )

5 Experiments

In this section, we conduct simulations on synthetic datasets to validate the effectiveness of the
proposed estimators in Section 2. We generate two synthetic datasets via designing two covariance
matrices. The covariance matrix Σ is basically constructed through the eigenvalue decomposition.
In detail, for synthetic dataset I, we set s = 5 and k = 1. The leading eigenvalue of its covariance
matrix Σ is set as λ1 = 100, and its corresponding eigenvector is sparse in the sense that only the
first s = 5 entries are nonzero and set be to 1/

√
5. The other eigenvalues are set as λ2 = . . . =

λp = 1, and their eigenvectors are chosen arbitrarily. For synthetic dataset II, we set s = 10 and
k = 5. The top-5 eigenvalues are set as λ1 = . . . = λ4 = 100 and λ5 = 10. We generate their
corresponding eigenvectors by sampling its nonzero entries from a standard Gaussian distribution,
and then orthnormalizing them while retaining the first s = 10 rows nonzero. The other eigenvalues
are set as λ6 = . . . = λp = 1, and the associated eigenvectors are chosen arbitrarily. Based on the
covariance matrix, the groundtruth rank-k projection matrix Π∗ can be immediately calculated. Note
that synthetic dataset II is more challenging than synthetic dataset I, because the smallest magnitude
of Π∗ in synthetic dataset I is 0.2, while that in synthetic dataset II is much smaller (about 10−3).
We sample n = 80 i.i.d. observations from a normal distribution N (0,Σ) with p = 128, and then
calculate the sample covariance matrix Σ̂.

Since the focus of this paper is principal subspace estimation rather than principal eigenvectors
estimation, it is sufficient to compare our proposed estimators (Convex SPCA in (1) and Nonconvex
SPCA in 3) with the estimator proposed in [23], which is referred to as Fantope SPCA. Note that
Fantope PCA is the pioneering and the state-of-the-art estimator for principal subspace estimation
of SPCA. However, since Fantope SPCA uses convex penalty ‖Π‖1,1on the projection matrix Π,
the estimator is biased [29]. We also compare our proposed estimators with the oracle estimator
in (4), which is not a practical estimator but provides the optimal results that we could achieve. In
our experiments, we need to compare the estimator attained by the algorithmic procedure and the
oracle estimator. To obtain the oracle estimator, we apply standard PCA on the submatrix (supported
on the true support) of the sample covariance Σ̂. Note that the true support is known because we use
synthetic datasets here.

In order to evaluate the performance of the above estimators, we look at the Frobenius norm error
‖Π̂ − Π∗‖F . We also use True Positive Rate (TPR) and False Positive Rate (FPR) to evaluate the
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support recovery result. The larger the TPR and the smaller the FPR, the better the support recovery
result.

Both of our estimators use MCP penalty, though other nonconvex penalties such as SCAD could
be used as well. In particular, we set b = 3. For Convex SPCA, we set τ = 2

b . The regularization
parameter λ in our estimators as well as Fantope SPCA is tuned by 5-fold cross validation on a
held-out dataset. The experiments are repeated 20 times, and the mean as well as the standard errors
are reported. The empirical results on synthetic datasets I and II are displayed in Table 1.

Table 1: Empirical results for subspace estimation on synthetic datasets I and II.

Synthetic I ‖Π̂−Π∗‖F TPR FPR
n = 80 Oracle 0.0289±0.0134 1 0
p = 128 Fantope SPCA 0.0317±0.0149 1.0000±0.0000 0.0146±0.0218
s = 5 Convex SPCA 0.0290±0.0132 1.0000±0.0000 0.0000±0.0000
k = 1 Nonconvex SPCA 0.0290±0.0133 1.0000±0.0000 0.0000±0.0000

Synthetic II ‖Π̂−Π∗‖F TPR FPR
n = 80 Oracle 0.1487±0.0208 1 0
p = 128 Fantope SPCA 0.2788±0.0437 1.0000±0.0000 0.8695±0.1634
s = 10 Convex SPCA 0.2031±0.0331 1.0000±0.0000 0.5814±0.0674
k = 5 Nonconvex SPCA 0.2041±0.0326 1.0000±0.0000 0.6000±0.0829

It can be observed that both Convex SPCA and Nonconvex SPCA estimators outperform Fantope
SPCA estimator [23] greatly in both datasets. In details, on synthetic dataset I with relatively large
magnitude of Π∗, our Convex SPCA estimator achieves the same estimation error and perfect support
recovery as the oracle estimator. This is consistent with our theoretical results in Theorems 1 and 2.
In addition, our Nonconvex SPCA estimator achieves very similar results with Convex SPCA. This is
not very surprising, because provided that the magnitude of all the entries in Π∗ is large, Nonconvex
SPCA attains a rate which is only 1/

√
s slower than Convex SPCA. Fantope SPCA cannot recover

the support perfectly because it detected several false positive supports. This implies that the LCC
condition is stronger than our large magnitude assumption, and does not hold on this dataset.

On synthetic dataset II, our Convex SPCA estimator does not perform as well as the oracle estimator.
This is because the magnitude of Π∗ is small (about 10−3). Given the sample size n = 80, the
conditions of Theorems 1 are violated. But note that Convex SPCA is still slightly better than
Nonconvex SPCA. And both of them are much better than Fantope SPCA. This again illustrates the
superiority of our estimators over existing best approach, i.e., Fantope SPCA [23].

6 Conclusion

In this paper, we study the estimation of the k-dimensional principal subspace of a population
matrix Σ based on sample covariance matrix Σ̂. We proposed a family of estimators based on novel
regularizations. The first estimator is based on convex optimization, which is suitable for projection
matrix with large magnitude entries. It enjoys oracle property and the same convergence rate as
standard PCA. The second estimator is based on nonconvex optimization, and it also attains faster
rate than existing principal subspace estimator, even when the large magnitude assumption is violated.
Numerical experiments on synthetic datasets support our theoretical results.
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