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Appendix A: Schematic illustration of the algorithm

Here we include a schematic illustration of the density aggregation in PART algorithm.

Figure 1: A schematic figure illustrating the density aggregation step of the algorithm. Two trees
in the left share the same block structure and the aggregated histogram is obtained by block-wise
multiplication and renormalization.

Appendix B: Proof of Theorem 1

Let ΓK,ρ be a subset of ΓK defined as ΓK,ρ =
{
f0 ∈ ΓK | minAk E1Ak ≥ ρ

}
. We prove a more

general form of Theorem 1 here.

Theorem 1. For any δ > 0, if the sample size satisfies that N > max{K, 2 log(2K/δ)
ρ(1−c0)2 }, then with

probability at least 1− δ, the optimal solution to (8) satisfies that

DKL(f‖f̂ML) ≤ min
f0∈ΓK,ρ

DKL(f‖f0) + Cρ

√
K

N
log

(
3eN

K

)
log

(
8

δ

)
,

where Cρ = 48
√
p+ 1 max

{
logD, log ρ−1

}
.

Now choosing ρ = 1/K1+1/(2p), the condition becomes N > 2(1 − c0)−2K1+1/(2p) log(2K/δ),
then with probability at least 1− δ we have

DKL(f‖f̂ML) ≤ (C1 + 2 logK)K−
1
2p + C2 max

{
logD, 2 logK

}√K

N
log

(
3eN

K

)
log

(
8

δ

)
,

where C1 = 2 logD + 4pLD with L = ‖f ′‖∞ and C2 = 48
√
p+ 1.
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When multiple densities f (1)(θ), · · · , f (m)(θ) are presented, our goal of imposing the same partition
on all functions requires solving a different problem (9). As long as Ê

∑m
i=1 f̂

(i)
ML ≥ Ê

∑m
i=1 f

(i)
K,ρ

remains true, where f (i)
K,ρ = arg minf0∈ΓK,ρ DKL(f (i)‖f0), the whole proof of Theorem 1 is also

valid for (9). Therefore, we have the following Corollary.
Corollary 1 (m copies). For any δ > 0, if the sample size satisfies that N > 2(1 −
c0)−2K1+1/(2p) log(2mK/δ) and ρ = 1/K1+1/(2p), then with probability at least 1−δ, the optimal
solution to (9) satisfies that

1

m

m∑
i=1

DKL(f (i)‖f̂ (i)
ML) ≤ (C1 + 2 logK)K−

1
2p + C2 max

{
logD, 2 logK

}√K

N
log

(
3eN

K

)
log

(
8m

δ

)
.

To prove Theorem 1 we need the following lemmas.
Lemma 1. The optimal solution of (8) is also the optimal solution of the following problem,

f̂ML = arg max
f∈ΓK

1

N

K∑
k=1

nk log π̂k, s.t. nk ≥ c0ρN, |Ak| ≥ ρ/D and
K∑
k=1

π̂k|Ak| = 1. (1)

Proof. We write out the empirical log likelihood

1

N

K∑
k=1

nk log π̂k =

K∑
k=1

nk
N

log π̂k|Ak| −
∑
nk≥0

nk
N

log |Ak|.

For any fixed partition {Ak}, under the constraint that
∑K
k=1 π̂k|Ak| = 1, one can easily see that

π̂k|Ak| =
nk
N

maximizes the result.

Next, we show that the optimal approximation

fK,ρ = arg min
f̂ML∈ΓK,ρ

DKL(f‖f̂ML)

is a feasible solution to (1) with a high probability.
Lemma 2. Let fK,ρ be the optimal approximation in ΓK,ρ, then fK,ρ satisfies that mink |Ak| ≥
ρ/D. In addition, with probability at least 1 − K exp(−(1 − c0)2ρN/2), we have nk/N ≥ c0ρ,
i.e., fK,ρ is a feasible soluton of (1).

Proof. Let nk be the counts of data points on the partition of fK,ρ. Notice fK,ρ is a fixed func-
tion that does not depend on the data. Therefore, each nk follows a binomial distribution. Define
P (Ak) = E1Ak . According to the definition of ΓK,ρ, we have P (Ak) ≥ ρ. Using the Chernoff’s
inequality, we have for any 0 < δ < 1,

P

(
nk
N
≤ (1− δ)P (Ak)

)
≤ exp

(
− δ2NP (Ak)

2

)
.

Taking δ = 1− c0 and union bounds we have

P

(
min
k

nk
N
≥ c0ρ

)
≥ 1−K exp(−(1− c0)2ρN/2).

On the other hand, the following inequality shows the bound on |Ak|,

|Ak| =
∫
Ak

1 ≥
∫
Ak

f/D ≥ ρ/D.
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Lemma 2 states that with a high probability we have Ê log f̂ML ≥ Ê log fK,ρ. This result will be
used to prove our main theorem.

Although the actual partition algorithm selects the dimension for partitioning completely at ran-
dom for each iteration, in the proof we will assume one predetermined order of partition (such as
{1, 2, 3, · · · , p, 1, 2, · · · }) just for simplicity. The order of partitioning does not matter as long as
every dimension receives sufficient number of partitions. When the selection is randomly taken,
with high probability (increasing exponentially with N ), the number of partitions in each dimen-
sion will concentrate around the average. Thus, it suffices to prove the result for the simple
{1, 2, 3, · · · , p, 1, 2, · · · } case.

Proof of Theorem 1. The proof consists of two parts, namely (1) bounding the excess loss com-
pared to the optimal approximation fK,ρ in ΓK,ρ and (2) bounding the error between the optimal
approximation and the true density.

For the first part, using the fact that Ê log fK,ρ(θ) ≤ Ê log f̂ML(θ), the excess loss can be expressed
as

DKL(f‖f̂ML)−DKL(f‖fK,ρ) = E log fK,ρ(θ)−E log f̂ML(θ)

= E log fK,ρ(θ)− Ê log fK,ρ(θ) + Ê log fK,ρ(θ)

− Ê log f̂ML(θ) + Ê log f̂ML(θ)−E log f̂ML(θ)

≤ E log fK,ρ(θ)− Ê log fK,ρ(θ) + Ê log f̂ML(θ)−E log f̂ML(θ).

Assuming the partitions for fK,ρ and f̂ML are {Ak} and {Âk} respectively, we have

DKL(f‖f̂ML)−DKL(f‖fK,ρ) =

K∑
k=1

log πk
(
E1Ak − Ê1Ak

)
+

K∑
k=1

log
nk

N |Âk|
(
E1Âk − Ê1Âk

)
≤
(

max
k
| log πk|+ max

k

∣∣ log
nk

N |Âk|
∣∣) sup
{Ak}∈Fk

K∑
k=1

|E1Ak − Ê1Ak |. (2)

Following a similar argument as Lemma 1, for fK,ρ we can prove that πk =
∫
Ak
f(θ)dθ/|Ak|, thus

we have ρ0 ≤ πk ≤ D for any 1 ≤ k ≤ K. Similarly for nk
N |Ak| we have ρ ≤ nk

N |Ak| ≤ D/ρ.
Therefore, the first term in (2) can be bounded as

max
k
| log πk|+ max

k

∣∣ log
nk

N |Âk|
∣∣ ≤ 3 max{logD, log ρ−1}.

The second term in (2) is the concentration of the empirical measure over all possible K-rectangular
partitions. Using the result from [1], we have the following large deviation inequality. For any
ε ∈ (0, 1), we have

P

(
sup

{Ak}∈Fk

K∑
k=1

|E1Ak − Ê1Ak | > ε

)
< 4 exp

{
− ε2N

29

}
, (3)

if N ≥ max{K, (100 log 6)/ε2, 29(p + 1)K log(3eN/K)/ε2}. For any δ > 0, taking ε = 29(p +
1)K log(3eN/K)/N log(4/δ), we have that

sup
{Ak}∈Fk

K∑
k=1

|E1Ak − Ê1Ak | ≤ 16
√

2(p+ 1)

√
K

N
log

(
3eN

K

)
log

(
8

δ

)
,

with probability at least 1 − δ/2. Define Cρ = 48
√

2(p+ 1) max{logD, log ρ−1}. When N >
2 log(2K/δ)
ρ(1−c0)2 , Lemma 2 holds with probability at least 1− δ/2. Taking the union bound, we have

DKL(f‖f̂ML) ≤ min
f0∈ΓK,ρ

DKL(f‖f0) + Cρ

√
K

N
log

(
3eN

K

)
log

(
8

δ

)
(4)

holds with probability greater than 1− δ.
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To prove the second part, we construct one reference density f̃ ∈ ΓK,ρ that gives the error spec-
ified in the theorem. According to the argument provided in the paragraph prior to this proof, we
assume the dimension that we cut at each iteration follows an order {1, 2, · · · , p, 1, 2, · · · }. We then
construct f0 in the following way. At iteration i, we check the probability on the whole region.

i If the probability is greater than 2ρ, we then cut at the midpoint of the selected dimension.
If the resulting two blocks B1 and B2 satisfy that Pf (B1) ≥ ρ and Pf (B2) ≥ ρ, we
continue to the next iteration. However, if any of them fails to satisfy the condition, we find
the minimum-deviated cut that satisfies the probability requirement.

ii If the probability on the whole region is less than 2ρ, we stop cutting on this region and
move to the next region for the current iteration.

It is easy to show that as long as ρ ≤ 1/(2K), the above procedure is able to yield a K-block
partition {Ãk} before termination. Finally, the reference density f̃ is defined as

f̃(θ) =

K∑
k=1

∫
Ãk
f(θ)dθ

|Ãk|
1Ãk(θ). (5)

The construction procedure ensures the following property for f̃ ∈ ΓK,ρ. AssumingK ∈ [2d, 2d+1)

for some d > 0, then each Ãk must fall into either of the following two categories (could be both),

1. ρ ≤ Pf (Ãk) ≤ 2ρ,

2. Pf (Ãk) ≥ ρ and the longest edge of cube Ãk must be less than 2−bd/pc ≤ 2−d/p+1 ≤
4k−1/p.

We use I1 and I2 to denote the two different collections of sets. Now for any b0 > 0, let B = {f <
b0} ∪ {f̃ < b0}. We divide the KL-divergence between f and f̃ into three regions and bound them
accordingly.

DKL(f‖f̃) =

∫
Ω

f log
f

f̃
=

∫
B

f log
f

f̃
+

∫
Bc∩
(⋃

I1

) f log
f

f̃
+

∫
Bc∩
(⋃

I2

) f log
f

f̃

= M1 +M2 +M3.

We first look at M1. Because f̃ is a block-valued function, {f̃ < b0} must be the union of all the
Ãk that satisfies

∫
Ãk
f(θ)dθ ≤ b0|Ãk|. Therefore, we have∫

f̃<b0

f(θ)dθ =
∑

Ãk:
∫
Ãk

f(θ)dθ≤b0|Ãk|

∫
Ãk

f(θ)dθ ≤
∑

Ãk:
∫
Ãk

f(θ)dθ≤b0|Ãk|

b0|Ãk| ≤ b0.

Therefore, we have∫
B

f(θ)dθ ≤
∫
f̃<b0

f(θ)dθ +

∫
f<b0

f(θ)dθ = b0 + b0|Ω| = 2b0.

Because f̃ ≥ mink P (Ak)/|Ak| ≥ P (Ak) ≥ ρ, we have

M1 =

∫
B

f log
f

f̃
≤
∫
B

f(θ) log
b0
ρ
≤ 2b0

∣∣ log
b0
ρ

∣∣.
Next, we look at M2. It is clear that∫

Bc∩
(⋃

I1

) f(θ)dθ ≤
∫(⋃

I1

) f(θ)dθ ≤ card(I1)2ρ,
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and hence we have

M2 =

∫
Bc∩
(⋃

I1

) f log
f

f̃
≤
∫
Bc∩
(⋃

I1

) f(θ) log
D

b0
≤ card(I1)2ρ

∣∣ log
D

b0

∣∣ ≤ 2Kρ
∣∣ log

D

b0

∣∣.
Now for M3, we first use the inequality that log x ≤ x− 1 for any x > 0,

M3 =

∫
Bc∩
(⋃

I2

) f log
f

f̃
≤
∫
Bc∩
(⋃

I2

) f(f
f̃
− 1

)
≤
∫
Bc∩
(⋃

I2

) f
f̃

(f − f̃) ≤ D

b0

∫
⋃
I2

|f − f̃ |.

Using the mean value theorem for integration, we have
∫
Ãk
f(θ)/|Ãk| = f(θ0) for some θ0 ∈

Ãk. Also because f ∈ C1(Ω), ‖f ′‖∞ is bounded, i.e., there exists some constant L such that
|f(x1)− f(x2)| ≤ L

∑p
j=1 |x1j − x2j |. Therefore, we have∫

⋃
I2

|f − f̃ | =
∑
Ãk∈I2

∫
Ãk

|f(θ)− f̃(θ)| =
∑
Ãk∈I2

∫
Ãk

|f(θ)− f(θ0)| ≤
∑
Ãk∈I2

4pLk−
1
p |Ãk| ≤ 4pLk−

1
p ,

and thus

M3 ≤
4pLD

b0
K−

1
p .

Putting all pieces together we have

DKL(f‖f̃) ≤ 2b0
∣∣ log

b0
ρ

∣∣+ 2Kρ
∣∣ log

D

b0

∣∣+
4pLD

b0
K−

1
p .

Now taking b0 = K−1/(2p) and ρ = K−1−1/(2p), we have

DKL(f‖f̃) ≤ (logK)K−
1
2p + 2(logD +

logK

2p
)K−

1
2p + 4pLDK−

1
2p

≤ (2 logK + 2 logD + 4pLD)K−
1
2p .

Now defining C1 = 2 logD + 4pLD and C2 = 48
√
p+ 1 and combining with (4), we have

DKL(f‖f̂ML) ≤ (C1 + 2 logK)K−
1
2p + C2 max

{
logD, 2 logK

}√K

N
log

(
3eN

K

)
log

(
8

δ

)
.

Appendix C: Proof of Theorem 2

The KD-tree f̂KD always cuts at the empirical median for different dimensions, aiming to approxi-
mate the true density by equal probability partitioning. For f̂KD we have the following result.

Theorem 2. For any ε > 0, define rε = log2

(
1 + 1

2+3L/ε

)
. For any δ > 0, if N >

32e2(logK)2K log(2K/δ), then with probability at least 1− δ, we have

‖f̂KD − fKD‖1 ≤ ε+ pLK−
rε
p + 4e logK

√
2K

N
log

(
2K

δ

)
.

If the function is further lower bounded by some constant b0 > 0, we can then obtain an upper

bound on the KL-divergence. Define rb0 = log2

(
1 + 1

2+3L/b0

)
and we have

DKL(f‖f̂KD) ≤ pLD

b0
K−

rb0
p + 8e logK

√
2K

N
log

(
2K

δ

)
.
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When there are multiple functions and the median partition is performed on pooled data, the partition
might not happen at the empirical median on each subset. However, as long as the partition quantiles
are upper and lower bounded by α and 1−α for some α ∈ [1/2, 1), we can establish similar theory
as Theorem 2.

Corollary 2. Assume we instead partition at different quantiles that are upper and lower bounded

by α and 1 − α for some α ∈ [1/2, 1). Define rε = log2

(
1 + (1−α)

2α+3L/ε+1

)
and rb0 = log2

(
1 +

(1−α)
2α+3L/b0+1

)
. For any δ > 0, if N > 12e2

(1−α)2K(logK)2 log(K/δ), then with probability at least

1− δ we have

‖f̂KD − fKD‖1 ≤ ε+ pLK−
rε
p +

2e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
2K

δ

)
and if the function is lower bounded by b0, then we have

DKL(f‖f̂KD) ≤ pLD

b0
K−

rb0
p +

4e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
2K

δ

)
.

Following the same argument for Theorem 1, we will prove Theorem 2 by assuming a predetermined
order of partition (such as {1, 2, 3, · · · , p, 1, 2, · · · }) for simplicity, though in the actual precedure,
the dimensions are selected completely at random. We need the following two lemmas to prove
Theorem 2. Let fKD have the same partition as f̂KD but with function value replaced by the true

probability on each region divided by the area, i.e., fKD =
∑
Ak

∫
Ak

f(θ)dθ

|Ak| 1Ak(θ).

Lemma 3. With fKD defined above, for any δ > 0, if N > 32e2(logK)2K log(K/δ), then with
probability at least 1− δ, we have

‖f̂KD − fKD‖1 ≤ 4e logK

√
2K

N
log

(
K

δ

)
and

DKL(f‖f̂KD) ≤ DKL(f‖fKD) + 8e logK

√
2K

N
log

(
K

δ

)
.

If we instead partition at some different quantiles, which are upper bounded by α and lower bounded
by 1 − α for some α ∈ [1/2, 1), then for any δ > 0, if N > 12e2

(1−α)2K(logK)2 log(K/δ), with
probability at least 1− δ we have

‖f̂KD − fKD‖1 ≤
2e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
K

δ

)
,

and

DKL(f‖f̂KD) ≤ DKL(f‖fKD) +
4e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
K

δ

)
.

Proof. The proof is based on how close the data median is to the true median. Suppose there are
Ni points in the current region, condition on this region, and partition it into two regions Â1 and
Â2 by cutting at the data median point M̂i. Denote the true median by Mi and two anchor points
Mi − ε1, Mi + ε2 such that P (X ≤Mi − ε1) = 1/2− t and P (X ≤Mi + ε2) = 1/2 + t for some
0 < t < 1/2. By Chernoff’s inequality we have

P (M̂i ≤Mi − ε1) ≤ exp

{
− t2Ni

1 + 2t

}
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and

P (M̂i ≥Mi + ε2) ≤ exp

{
− t2Ni

1 + 2t

}
.

The above two inequalities indicate that with high probability M̂i is within the interval (Mi −
ε1,Mi + ε2). Therefore, the probabilities on A1 and A2 also satisfy that

P

(∣∣E1Ai − 1

2

∣∣ ≥ t) ≤ exp

{
− t2Ni

1 + 2t

}
. (6)

Now consider the K regions of f̂KD and fKD. Each partition will bring an error of at most 1/2 + t
to the estimation of the region probability. Therefore, assuming K ∈ [2d + 1, 2d+1) we have for
each region Ak (Ak is a random variable) that(

1

2
− t
)d
≤
∫
Ak

f(θ)dθ ≤
(

1

2
+ t

)d
if nk/N = 1/2d, or (

1

2
− t
)d+1

≤
∫
Ak

f(θ)dθ ≤
(

1

2
+ t

)d+1

,

if nk/N = 1/2d+1. Notice that for all iterations before the current partition, we always have

Ni ≥ N/K. Therefore the probability is guaranteed to be greater than 1 − K exp

{
− t2N/K

1+2t

}
.

The above result indicates that

max
Ak

∣∣∣∣ ∫
Ak

fKD(θ)−
∫
Ak

f̂KD(θ)

∣∣∣∣ ≤ max

{(
1

2
+ t

)d+1

−
(

1

2

)d+1

,−
(

1

2
− t
)d+1

+

(
1

2

)d+1}
=

(
1

2

)d+1

max

{
(1 + 2t)d+1 − 1, 1− (1− 2t)d+1

}
=

(
1

2

)d+1(
(d+ 1)(1 + 2t̃)d2t

)
,

where t̃ ∈ (0, t). So if t < 1/(2d), then (1 + 2t̃)d ≤ (1 + 1/d)d < e and we have

max
Ak

∣∣∣∣ ∫
Ak

fKD(θ)−
∫
Ak

f̂KD(θ)

∣∣∣∣ ≤ 2(d+ 1)e

(
1

2

)d+1

t ≤ 4et logK

K
. (7)

This result implies that the total variation distance satisfies that

‖f̂KD − fKD‖1 =
∑
k

∫
Ak

|f̂KD(θ)− fKD(θ)| =
∑
k

∣∣∣∣ ∫
Ak

f̂KD(θ)−
∫
Ak

fKD(θ)

∣∣∣∣ ≤ 4et logK.

Similarly, one can also prove that

max
Ak

∣∣∣∣
∫
Ak
fKD(θ)∫

Ak
f̂KD(θ)

− 1

∣∣∣∣ ≤ max
Ak

∣∣∣∣
∫
Ak
fKD(θ)−

∫
Ak
f̂KD(θ)∫

Ak
f̂KD(θ)

∣∣∣∣ ≤ 4et logK.

Denote
∫
Ak
f(θ) =

∫
Ak
fKD(θ) by P (Ak) and

∫
AK

f̂KDf(θ) by P̂ (Ak). The KL-divergence can
then be computed as

DKL(f‖f̂KD)−DKL(f‖fKD) =
∑
Ak

∫
Ak

f(θ)(log fKD(θ)− log f̂KD(θ))

=
∑
Ak

∫
Ak

f(θ)

(
log

∫
Ak

f(θ)− log

∫
Ak

f̂KD(θ)

)
=
∑
Ak

P (Ak)

(
log

P (Ak)

P̂ (Ak)

)
≤
∑
Ak

P (Ak)

(
P (Ak)

P̂ (Ak)
− 1

)
=
∑
Ak

P (Ak)

P̂ (Ak)

(
P (Ak)− P̂ (Ak)

)
≤ (1 + 4et logK)4et logK ≤ 8et logK,

7



as long as t < min

{
1

4e logK ,
1

2 log2K

}
, with probability at least 1−K exp

{
− t

2N
2K

}
. Consequently,

for any δ > 0, if N > 32e2K(logK)2 log(K/δ), then with probability at least 1− δ, we have

‖f̂KD − fKD‖1 ≤ 4e logK

√
2K

N
log

(
K

δ

)
and

DKL(f‖f̂KD) ≤ DKL(f‖fKD) + 8e logK

√
2K

N
log

(
K

δ

)
.

When the partition occurs at a different quantile, which is assumed to be αi for iteration i, we have
d+1∏
i=1

(α′i − t) ≤
∫
Ak

f(θ)dθ ≤
d+1∏
i=1

(α′i + t),

where α′i = αi if Ak takes the region containing smaller data values and α′i = 1 − αi if Ak takes
the other half. First, (6) can be updated as

P

(∣∣E 1Ai −α′i
∣∣ ≥ t) ≤ exp

{
− t2Ni

3α

}
≤ exp

{
− t2Ni

3

}
, (8)

if t < 1− α. Then we can bound the difference between
∫
Ak
f(θ) and

∫
Ak
f̂KD(θ) as

max
Ak

∣∣∣∣ ∫
Ak

fKD(θ)−
∫
Ak

f̂KD(θ)

∣∣∣∣ ≤ max

{ d+1∏
i=1

(α′i + t)−
d+1∏
i=1

α′i, −
d+1∏
i=1

(α′i − t) +

d+1∏
i=1

α′i

}

≤ max

[ d+1∏
i=1

α′i

{ d+1∏
i=1

(
1 +

t

α′i

)
− 1

}
,

d+1∏
i=1

α′i

{
1−

d+1∏
i=1

(
1− t

α′i

)}]

≤
d+1∏
i=1

α′i · (d+ 1)

(
1 +

t̃

1− α

)d
t

1− α
,

where t̃ ∈ (0, t). Thus if t < (1− α)/d, then we have

max
Ak

∣∣∣∣ ∫
Ak

fKD(θ)−
∫
Ak

f̂KD(θ)

∣∣∣∣ ≤ e(d+ 1)tαd+1

1− α
≤ 2et logK

(1− α)K log2 α
−1 ,

and

max
Ak

∣∣∣∣
∫
Ak
fKD(θ)∫

Ak
f̂KD(θ)

− 1

∣∣∣∣ ≤ 2et logK

1− α
.

The total variation distance follows

‖f̂KD − fKD‖1 ≤ K ·
2et logK

(1− α)K log2 α
−1 =

2et logK

1− α
K1−log2 α

−1

,

and the KL-divergence follows

DKL(f‖f̂KD)−DKL(f‖fKD) ≤
(

1 +
2et logK

1− α

)
2et logK

1− α
K1−log2 α

−1

≤ 4et logK

1− α
K1−log2 α

−1

,

if t < 1/(2e(1−α) logK). Consequently, for any δ > 0, ifN > 12e2

(1−α)2K(logK)2 log(K/δ), then
with probability at least 1− δ, we have

‖f̂KD − fKD‖1 ≤
2e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
K

δ

)
,

and

DKL(f‖f̂KD) ≤ DKL(f‖fKD) +
4e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
K

δ

)
.
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Our next result is to bound the distance between fKD and the true density f . Again, the proof
depends on the control of the smallest value of f and the longest edge of every block. One issue
now is that each partition might not happen at the midpoint, but it should not deviate from the
midpoint too much given the bound on the f ′, i.e., we have the following proposition.
Proposition 1. Assume we aim to partition an edge of length h (on dimension q) of a rectangular
region A, which has a probability of P and an area of |A|. We distinguish the resulting two regions
as the left and the right region and the corresponding edges (on dimension q) as hleft and hright (i.e.,
hleft + hright = h). Suppose the partition ensures that the left region has probability of γP , where
γ ≥ 1/2. If ‖f ′‖∞ ≤ L, then the longer edge h∗ = max{hleft, hright} satisfies that

h∗

h
≤ 1− 1− γ

1 + Lh |A|P
.

Proof. It suffices to bound hleft as γ > 1 − γ. Let g(t) =
∫
x:(t,x)∈A f(t, x), where t represents

the variable of dimension q and x stands for the other dimensions. We then have
∫
t:h
g(t) = P ,∫

x:(t,x)∈A 1dx = |A|/h and

|g(t1)− g(t2)| ≤
∫
x:(t,x)

(f(t1, x)− f(t2, x)) ≤ L|t1 − t2||A|/h.

Therefore, using the mean value theorem for the integration, we know that∣∣∣∣
∫
t:hleft

g(t)

hleft
−

∫
t:hright

g(t)

hright

∣∣∣∣ ≤ L|A|,
which implies that ∣∣∣∣ γhhleft

− (1− γ)h

hright

∣∣∣∣ ≤ L|A|h
P

.

Now if we solve the following inequality
|γ/a− (1− γ)/b| ≤ c and a+ b = 1, a ≥ 0, b ≥ 0,

with some simple algebra we can get

a ≤ 1− 1− γ
1 + c

.

Plug in the corresponding value, we have
hleft

h
≤ 1− 1− γ

1 + Lh |A|P
.

With Proposition 1, we can now obtain the upper bound for ‖f − fKD‖1 and DKL(f‖fKD).

Lemma 4. For any ε > 0, define rε = log2

(
1 + 1

2+3L/ε

)
. If N ≥ 72K log(K/δ) for any δ > 0,

then with probability at least 1− δ, we have

‖f − fKD‖1 ≤ ε+ pLK−
rε
p .

If the f is further lower bounded by some b0 > 0, the KL-divergence can be bounded as

DKL(f‖fKD) ≤ pLD

b0
K−

rb0
p ,

where rb0 = log2

(
1 + 1

2+3L/b0

)
.

Now suppose we instead partition at different quantiles, upper and lower bounded by α and 1 − α
for some α ∈ (1/2, 1). For any δ > 0, if N ≥ 27

(1−α)2K log(K/δ) then the above two bounds hold
with different rε and rb0 as

rε = log2

(
1 +

(1− α)

2α+ 3L/ε+ 1

)
and rb0 = log2

(
1 +

(1− α)

2α+ 3L/b0 + 1

)
.
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Proof. The proof for the total variation distance follows similarly as Theorem 1. For any ε > 0, we
consider B = {fKD < ε/2}. We then partition the total variation distance formula into two parts

‖fKD − f‖1 =

∫
B

|fKD − f |+
∫
Bc
|fKD − f | = M1 +M2.

It is straightforward to bound M1. B is a union of Ak’s which satisfies
∫
Ak
f(θ) ≤ ε|Ak|/2.

Therefore,

M1 ≤
∫
B

f +

∫
B

fKD =
∑

Ak:∪Ak=B

2

∫
Ak

f(θ) ≤ ε.

Now forM2, the usual analysis shows that our result depends on the longest edge of each block, i.e.,

M2 =

∫
Bc
|fKD − f | =

∑
Ak:∪Ak=Bc

∫
Ak

|fKD − f | ≤
∑

Ak:∪Ak=Bc

pLh∗k|Ak| = pL|Bc|max
Ak

h∗k ≤ pLmax
Ak

h∗k,

where h∗k is the longest edge of each block contained in Bc. Now using Proposition 1, we know for
iteration i the partitioned edge at each block follows

hi ≤
(

1− 1− γ
1 + Lh |A|P

)
hi−1 ≤

(
1− 1− γ

1 + L/ε

)
hi−1.

When K ∈ (2d, 2d+1], each dimension receives bd/pc stages of partitioning; therefore, we have for
each block, the longest edge satisfies that

h∗ ≤
(

1− 1− γ
1 + L/ε

) log2 K
p

≤ K−
rε
p ,

where rε = log2

(
1 + (1−γ)

γ+L/ε

)
. This implies

M2 ≤ pLK−
rε
p and ‖fKD − f‖1 ≤ ε+ pLK−

rε
p .

Now, according to (6), we know with probability at least 1−K exp{−t2N/(2K)},

γ ≤ 1

2
+ t.

Taking t = 1/6, we get

rε = log2

(
1 +

1

2 + 3L/ε

)
,

with probability at least 1 −K exp{−N/(72K)}. So if N > 72K log(K/δ), then the probability
is at least 1− δ. For the case when γ = α+ t, we choose t = (1− α)/3, then

rε = log2

(
1 +

(1− α)

2α+ 3L/ε+ 1

)
with probability at least 1− δ if N > 27

(1−α)2K log(K/δ).

For KL-divergence, if f is lower bounded by some constant b0 > 0, then we know that

DKL(f‖fKD) =

∫
Ω

f(θ) log
f(θ)

fKD(θ)
≤
∫

Ω

f(θ)

(
f(θ)

fKD(θ)
− 1

)
≤ max

θ

f(θ)

fKD(θ)

∫
Ω

|f(θ)− fKD(θ)| ≤ D

b0
‖f − fKD‖1.

Because f and fKD are both lower bounded by b0, we can follow the proof for ‖f − fKD‖1 with
ε = b0 and ignore M1. Thus we have

DKL(f‖fKD) ≤ pLD

b0
K−

rb0
p ,

10



where rb0 = log2

(
1+ (1−γ)

γ+L/b0

)
. Similarly, if we take γ = 2/3 and N ≥ 72K log(K/δ), then with

probability at least 1− δ, we have

rb0 = log2

(
1 +

1

2 + 3L/b0

)
.

If we take γ = (2α + 1)/3 and N > 27
(1−α)2K log(K/δ), then with probability at least 1 − δ, we

have

rb0 = log2

(
1 +

(1− α)

2α+ 3L/b0 + 1

)
.

Theorem 2 and Corollary 2 follow directly from Lemma 3 and 4.

Proof of Theorem 2 and Corollary 2. For any ε > 0, define rε and rb0 as in Lemma 4. Thus, for
any δ > 0, if N > 32e2(logK)2K log 2K

δ , then with probability 1− δ/2 we have

‖f̂KD − fKD‖1 ≤ 4e logK

√
2K

N
log

(
2K

δ

)
and

DKL(f‖f̂KD) ≤ DKL(f‖fKD) + 8e logK

√
2K

N
log

(
2K

δ

)
.

Also, with probability 1− δ/2 we have

‖f − fKD‖1 ≤ ε+ pLK−
rε
p ,

and

DKL(f‖fKD) ≤ pLD

b0
K−

rb0
p .

Putting the two equations together we have

‖f̂KD − fKD‖1 ≤ ε+ pLK−
rε
p + 4e logK

√
2K

N
log

(
2K

δ

)
,

and

DKL(f‖f̂KD) ≤ pLD

b0
K−

rb0
p + 8e logK

√
2K

N
log

(
2K

δ

)
.

Using the same argument on random quantiles, if N > 12e2

(1−α)2K(logK)2 log(2K/δ), then with
probability at least 1− δ we have

‖f̂KD − fKD‖1 ≤ ε+ pLK−
rε
p +

2e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
2K

δ

)
and

DKL(f‖f̂KD) ≤ pLD

b0
K−

rb0
p +

4e logK

1− α
K1−log2 α

−1

√
3K

N
log

(
2K

δ

)
,

where rε and rb0 are defined as

rε = log2

(
1 +

(1− α)

2α+ 3L/ε+ 1

)
and rb0 = log2

(
1 +

(1− α)

2α+ 3L/b0 + 1

)
.
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Appendix E: Proof of Theorem 3 and 4

Lemma 5. Assume ‖f‖∞ ≤ D. Under the same condition as Theorems 1 and 2, if

√
N ≥ 32c−1

0

√
2(p+ 1)K

3
2 + 1

2p

√
log

(
3eN

K

)
log

(
8

δ

)
,

then we have ‖f̂ML‖∞ ≤ 2D and if

N > 128e2K(logK)2 log(K/δ),

we have ‖f̂KD‖∞ ≤ 2D.

Proof. Assume ‖f‖∞ ≤ D. We want to bound ‖f̂ML‖∞ and ‖f̂KD‖∞. Define

f̃ =
∑
AK

∫
Ak
f(θ)dθ

|Ak|
1Ak(θ),

which clearly satisfies f̃ ≤ D. Notice that if there exists some ε such that

max
Ak
|P (Ak)− P̂ (Ak)| ≤ ε,

where P (Ak) = E 1Ak and P̂ (Ak) = Ê 1Ak , then we have

‖f̃ − f̂‖∞ = max
Ak

∣∣∣∣P (Ak)

|Ak|
− P̂ (Ak)

|Ak|

∣∣∣∣ = max
Ak

1

|Ak|
|P (Ak)− P̂ (Ak)|

≤ max
Ak

εf̃(θ)

P (Ak)
≤ max

Ak

εD

P̂ (Ak)− ε
.

Now if we can pick ε = minAk P̂ (Ak)/2, then the upper bound becomes 2D. We deduce the
corresponding condition for ML-cut and KD-cut respectively. For maximum likelihood partition,
plug in ε = K−1−1/(2p)/2 into (3). Under the condition of Theorem 1, if

√
N ≥ 32c−1

0

√
2(p+ 1)K

3
2 + 1

2p

√
log

(
3eN

K

)
log

(
8

δ

)
,

then with probability at least 1− δ/2, we have

‖f̂ML‖∞ ≤ 2D.

For median partition, choose ε = K−1/2 and apply (7). Under the condition of Theorem 2, if

N > 128e2K(logK)2 log(K/δ),

then with probability at least 1− δ, we have

‖f̂KD‖∞ ≤ 2D.

Proof of Theorem 3. Assume the average total variation distance between f̂ (i) and f (i) is ε. It can
be calculated directly as∫ ∣∣∣∣∣∏

i∈I
f (i)(θ)−

m∏
i∈I

f̂ (i)(θ)

∣∣∣∣∣ dθ ≤
m∑
i=1

∫
|f (i)(θ)− f̂ (i)(θ)|

i−1∏
j=1

f (j)(θ)

m∏
l=i+1

f̂ (l)(θ)

≤ (2D)m−1
m∑
i=1

∫
|f (i)(θ)− f̂ (i)(θ)|dθ

≤ m(2D)m−1ε.
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Letting ẐI =
∫ ∏

i∈I f
(i), we have

|ZI − ẐI | =

∣∣∣∣∣
∫ ( m∏

i=1

f (i)(θ)−
m∏
i=1

f̂ (i)(θ)

)
dθ

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣

m∏
i=1

f (i)(θ)−
m∏
i=1

f̂ (i)(θ)

∣∣∣∣∣ dθ ≤ m(2D)m−1ε.

Thus

‖fI − f̂I‖1 =

∫ ∣∣∣∣∣ 1

ZI

m∏
i=1

f (i)(θ)− 1

ẐI

m∏
i=1

f̂ (i)(θ)

∣∣∣∣∣ dx =

∫ ∣∣∣∣∣ ẐI
∏
i∈I f

(i) − ZI
∏
i∈I f̂

(i)

ZI ẐI

∣∣∣∣∣ dθ
=

∫ ∣∣∣∣∣ ẐI
∏
i∈I f

(i) − ẐI
∏
i∈I f̂

(i) + ẐI
∏
i∈I f̂

(i) − ZI
∏
i∈I f̂

(i)

ZI ẐI

∣∣∣∣∣ dθ
≤ 1

ZI

∫ ∣∣∣∣∣∏
i∈I

f (i) −
∏
i∈I

f̂ (i)

∣∣∣∣∣ dθ +
1

ZI
|ẐI − ZI |

≤ 2

ZI
m(2D)m−1ε.

Proof of Theorem 4. Assuming m ∈ [2s, 2s+1), then after s+ 1 iterations, we will obtain our final
aggregated density. At iteration l, each true density is some aggregation of the original m densities,
which can be represented by fI′ , where I ′ is the set of indices of the original densities. Let ε(I1,I2)

l
be the total variation distance between the true density and the approximation for the pair (I1, I2)
caused by combining. For example, when l = 1, I1, I2 contain only a single element, i.e., I1 = {i1}
and I2 = {i2}. Recall that C0 = maxI′′⊂I′⊆I ZI′′ZI′\I′′/ZI′ , using the result from Theorem 3, we
have

ε
(I1,I2)
1 =

∥∥∥∥ f (i1)f (i2)∫
f (i1)f (i2)

− f̂ (i1)f̂ (i2)∫
f̂ (i1)f̂ (i2)

∥∥∥∥
1

≤ 2∫
f (i1)f (i2)

2Dε =
2
∫
f (i1)

∫
f (i2)∫

f (i1)f (i2)
2Dε ≤ 4C0Dε.

We prove the result by induction. Assuming we are currently at iteration l + 1, and the paired two
densities are fI1 and fI2 where I1, I2 ⊆ I . By induction, the approximation obtained at iteration l
are f̂I1 and f̂I2 which satisfies that

‖fI1 − f̂I1‖1 ≤ (4C0D)lε, ‖fI2 − f̂I2‖1 ≤ (4C0D)lε.

Using Theorem 3 again, we have that

ε
(I1,I2)
l+1 =

∥∥∥∥ fI1fI2∫
fI1fI2

− f̂I1 f̂I2∫
f̂I1 f̂I2

∥∥∥∥
1

≤ 2∫
fI1fI2

(2D)

{
‖fI1 − f̂I1‖1 + ‖fI2 − f̂I2‖1

2

}
≤
∫ ∏

i∈I1 f
(i)
∫ ∏

i∈I2 f
(i)∫ ∏

i∈I1∪I2 f
(i)

(4D) · (4C0D)lε ≤ (4C0D)l+1ε

Consequently, the final approximation satisfies that

‖fI − f̂I‖1 ≤ (4C0D)s+1ε ≤ (4C0D)log2m+1ε.

Appendix D: Supplement to Two Toy Examples

Bimodal Example Figure 2 compares the aggregated density of PART-KD/PART-ML for several
alternative combination schemes to the true density. This complements the results from one-stage
combination with uniform block-wise distribution presented in Figure 1 of the main text.
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Figure 2: Bimodal posterior combined from 10 subsets. The results from PART-KD/PART-ML mul-
tiscale histograms are shown for (1) one-stage combination with local Gaussian smoothing (2) pair-
wise combination with local Gaussian smoothing.

Rare Bernoulli Example The left panel of Figure 3 shows additional results of posteriors aggre-
gated from PART-KD/PART-ML random tree ensemble with several alternative combination strate-
gies, which complement the results presented in Figure 2 of the main text. All of the produced
posteriors correctly locate the posterior mass despite the heterogeneity of subset posteriors. The
fake “ripples” produced by pairwise ML aggregation are caused by local Gaussian smoothing.

Also, the right panel of Figure 3 shows that the posteriors produced by nonparametric and semipara-
metric methods miss the right scale.
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Figure 3: Posterior of the probability θ of a rare event combined from M = 15 subsets of in-
dependent Bernoulli trials. Left: the results from KD/ML multiscale histograms are shown for (1)
one-stage combination with local Gaussian smoothing (2) pairwise combination with local Gaussian
smoothing. Right: posterior aggregated from nonparametric and semiparametric methods.

Appendix F: Supplement to Bayesian Logistic Regression

Figure 4 additionally plots the prediction accuracy against the length of subset chains supplied to
the aggregation algorithms, for Bayesian logistic regression on two real datasets. For simplicity,
the same number of posterior samples from all subset chains are aggregated, with the first 20%
discarded as burn-in. As a reference, we also show the result for running the full chain. As can
be seen from Figure 4, the performance of PART-KD/ML agrees with that of the full chain as the
number of posterior samples increase, validating the theoretical results presented in Theorem 1 and
Theorem 2 in the main text.
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Figure 4: Prediction accuracy versus the length of subset chains on the covertype and the MiniBooNE
dataset.
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