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Proof of Theorem 1. Let us consider the operation order({y}, i, j), which takes a set of labelings
{y} ∈ (LV)M , two indices i < j ∈ 1, . . . ,M and replaces labelings yi and yj by their node-wise
minimum yi ∧yj and maximum yi ∨yj respectively. As a result, this operation returns the new set
of labelings:

(y1, . . . ,yi−1,yi ∧ yj ,yi+1, . . . ,yj−1,yi ∨ yj ,yj+1, . . . ,yM ). (17)

In what follows we will show that

EM (order({y}, i, j)) ≤ EM ({y}) . (18)

Let {y′} = order({y}, i, j). Then {y′}v is equal either to (y1v , . . . , y
i
v, . . . , y

j
v, . . . , y

M
v ) or to

(y1v , . . . , y
j
v, . . . , y

i
v, . . . , y

M
v ). Since each ∆v is permutation invariant, ∆M ({ŷ′}) = ∆M ({ŷ}).

Summing it up with the following inequality, which follows from the submodularity of E,

M∑

k=1

E(y′
k
) =

M∑

k=1
k 6=i,k 6=j

E(yk) + E(yi ∧ yj) + E(yi ∨ yj) ≤
M∑

k=1

E(yk). (19)

one obtains (18).

Assume the set of labelings {ŷ} = (ŷ1, . . . , ŷM ) is a solution to (4):

{ŷ} = argmin
{y}

EM ({y}). (20)

Let us iteratively apply the operation {ŷ} := order({ŷ}, i, j) such, that indexes i and j follow the
bubble-sort algorithm [1]. Each operation performs sorting for a single pair i < j of indexes and
due to (18) the energy EM{ŷ} does not increase after the operation. As a result of the algorithm we
obtain the ordered labeling set {ŷ} satisfying

EM ({ŷ}) ≤ min
{y}

EM ({y}) , (21)

which finalizes our proof.

Proof of Lemma 1. Since E is submodular and each ∆M
v is permutation invariant we can apply

Theorem 1 for EM . This implies that EM has an ordered minimizer {y∗} and ÊM ({y∗}) =
EM ({y∗}).
Since the diversity controlling parameter λ > 0, the value of −λ∆̂M

v (y1, . . . , yM ) is equal to +∞
for an unordered set (y1, . . . ,yM ). Therefore, ÊM ({y}) can be represented as follows:

ÊM ({y}) =
{
EM ({y}), y1 ≤ y2 ≤ · · · ≤ yM
∞, otherwise

. (22)

This implies argmin{y} Ê
M ({y}) ⊆ argmin{y}E

M ({y}), which finalizes the proof.
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Proof of Lemma 2. Let us consider f(y) = −∑M
i=1

∑M
j=i+1

(
3max(0,yi−yj) − 1

)
. This potential

is a sum of pairwise potentials fij(yi, yj) = −
(
3max(0,yi−yj) − 1

)
. They are supermodular, which

can be checked directly by definition. Moreover, by construction

f(y ∨ z) + f(y ∧ z) = f(y) + f(z) (23)

if either (i) both y and z are ordered vectors or (ii) y and z are comparable, i.e. (y ∨ z,y ∧ z) is
either equal to (y, z) or to (y, z). Let us verify supermodularity of (15) by definition, i.e. for any
y ∈ (Lv)

M and z ∈ (Lv)
M , the following inequality has to be satisfied:

∆̂v(y ∨ z) + ∆̂v(y ∧ z) ≥ ∆̂v(y) + ∆̂v(z). (24)

For any ordered y ∈ (Lv)
M it holds f(y) = 0. Therefore, taking into account (14), the inequality

(24) holds for any ordered y and z. For any comparable y and z the inequality (24) is trivial. For
any other y and z the following strict inequality holds f(y ∨ z) + f(y ∧ z) > f(y) + f(z). This
implies that for a sufficiently big C∞, the inequality (24) holds for arbitrary ∆v(y

1, . . . , yM ).

Proof of Theorem 2. Since energyE and diversity measure∆M satisfy conditions of Lemma 1, the
ordering enforcing problem (12) delivers solution to the M -best-diverse problem (13). Moreover,
since each component ∆M

v of ∆M satisfies conditions of Lemma 2, the function ∆̂M is supermod-
ular and −∆̂M is submodular. Since energy E is submodular either, the ordering enforcing energy
ÊM is submodular as sum of submodular functions.
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