Supplementary Materials: M-Best-Diverse Labelings
for Submodular Energies and Beyond

Proof of Theorem 1. Let us consider the operation order({y}, 4, j), which takes a set of labelings
{y} € (Ly)M, two indices i < j € 1,..., M and replaces labelings y* and y’ by their node-wise
minimum y° A y’/ and maximum y° V y7 respectively. As a result, this operation returns the new set
of labelings:

W'y Ty Ay YTy Ty vy g Ly, (17)

In what follows we will show that
EM (order({y},4,5)) < EM({y}). (18)
Let {y'} = order({y},%,j). Then {y'}, is equal either to (y3,...,y5,...,y5,...,y)") or to

J
(yly.o oy, o yi, .. yM). Since each A, is permutation invariant, AM ({¢'}) = AM({g}).
Summing it up with the following inequality, which follows from the submodularity of F,

M M M
SBEW )= Y BN+ E@ Ay + By vy) <> B, (19)
k=1 k=1 k=1

k#i, k#j

one obtains (18).

Assume the set of labelings {§} = (¢',...,9™) is a solution to (4):

{g} = argmin E ({y}). (20)
{y}

Let us iteratively apply the operation {g} := order({y},4,j) such, that indexes ¢ and j follow the
bubble-sort algorithm [1]. Each operation performs sorting for a single pair % < j of indexes and
due to (18) the energy EM {4} does not increase after the operation. As a result of the algorithm we
obtain the ordered labeling set {¢} satisfying

EM({g}) < min EM({y}), @1

which finalizes our proof.

O

Proof of Lemma 1. Since E is submodular and each A is permutation invariant we can apply
Theorem 1 for EM. This implies that £ has an ordered minimizer {y*} and EM ({y*}) =
EM({y*}).

Since the diversity controlling parameter A > 0, the value of —AAM (y*, ..., y™) is equal to +o0
for an unordered set (y!, ..., y*). Therefore, E™ ({y}) can be represented as follows:
. E]W ; 1l a2 <. < yM
EM({y}) — { ({y}) Yy = y = Y ) (22)
00, otherwise
This implies arg ming,, EM({y}) C arg ming, EM ({y}), which finalizes the proof. O
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Proof of Lemma 2. Let us consider f(y) = — Zfil E?; 41 (3’11?‘X(07yi_yj) — 1). This potential

is a sum of pairwise potentials f;;(y’, y’) = — (3max(0’yi_yj) — 1). They are supermodular, which
can be checked directly by definition. Moreover, by construction

flyvz)+flynz)=fly) + f(2) (23)

if either (i) both ¢ and z are ordered vectors or (i) ¥ and z are comparable, i.e. (y V z,y A z) is
either equal to (y, z) or to (y, z). Let us verify supermodularity of (15) by definition, i.e. for any
y € (L,)™ and z € (L,)™, the following inequality has to be satisfied:

AjyVvz)+A(ynz) > Ay) + Au(z). 24)

For any ordered y € (L, ) it holds f(y) = 0. Therefore, taking into account (14), the inequality
(24) holds for any ordered y and z. For any comparable y and z the inequality (24) is trivial. For

any other y and z the following strict inequality holds f(y V z) + f(y A z) > f(y) + f(z). This
implies that for a sufficiently big C., the inequality (24) holds for arbitrary A, (y',...,y™). O

Proof of Theorem 2. Since energy E and diversity measure AM satisfy conditions of Lemma 1, the
ordering enforcing problem (12) delivers solution to the M -best-diverse problem (13). Moreover,

since each component AM of AM satisfies conditions of Lemma 2, the function AM is supermod-
ular and —AM is submodular. Since energy E is submodular either, the ordering enforcing energy
EM is submodular as sum of submodular functions. O
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