
Supplementary Material: Market Scoring Rules Act
As Opinion Pools For Risk-Averse Agents

Mithun Chakraborty, Sanmay Das
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{mithunchakraborty,sanmay}@wustl.edu

Abstract

Here, we present detailed proofs of all theorems in the main paper, as well as
some observations and experiments which we had to exclude from the main paper
owing to paucity of space.

1 Model and definitions

Here, we provide the proof of Lemma 1 from Section 2 of the main paper.

Restatement of Lemma 1. For a two-ouctome forecasting problem where an expert’s report can
be specified in terms of a single probability p ∈ [0, 1], if f2(r1, r2) and fn−1(q1, q2, . . . , qn−1)
are valid opinion pools for two probabilistic reports r1, r2 and n − 1 probabilistic reports
q1, q2, . . . , qn−1 respectively, then f(p1, p2, . . . , pn) = f2(fn−1(p1, p2, . . . , pn−1), pn) is also a
valid opinion pool for n reports.

Proof. Recall from Definition 1 in the main paper that a valid opinion pool p̂ = φ(p1, p2, . . . , pm),
where p1, p2, . . . , pm ∈ [0, 1] are reported expert probabilities of occurrence of binary event X ,
must satisfy

1. Unanimity: If pi = p ∀i = 1, 2, . . . ,m, then p̂ = p.

2. Boundedness: min{p1, p2, . . . , pm} ≤ p̂ ≤ max{p1, p2, . . . , pm}.

3. Monotonicity: p̂ increases monotonically as pi increases, pj being held constant ∀j 6= i,
i = 1, 2, . . . ,m, i.e. ∂φ

∂pi
> 0 everywhere ∀i.

By the condition of the lemma, all the above three properties are possessed by each each of f2 and
fn−1, and we need to prove that f has each of these properties, too.

To prove the unanimity of f : Let pi = p ∀i = 1, 2, . . . , n. Then,

f(p, p, . . . , p) = f2(fn−1(p, p, . . . , p), p)

= f2(p, p), by unanimity of fn−1,
= p, by unanimity of f2.
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To prove the boundedness of f : Using the upper bounds on f2 and fn−1,

f(p1, p2, . . . , pn) ≤ max{fn−1(p1, p2, . . . , pn−1), pn}
≤ max{max{p1, p2, . . . , pn−1}, pn}
= max{p1, p2, . . . , pn−1, pn}.

Similarly, using the lower bounds on f2 and fn−1, we can show that f(p1, p2, . . . , pn) ≥
min{p1, p2, . . . , pn−1, pn}.

To prove the monotonicity of f : The partial derivative of f with respect to each pi, i =
1, 2, . . . , n− 1 is given by

∂f

∂pi
=

∂

∂pi
f2(fn−1(p1, p2, . . . , pn−1), pn) =

∂f2(fn−1, pn)

∂fn−1
· ∂fn−1(p1, p2, . . . , pn−1)

∂pn
> 0

by the monotonicity of f2 and fn−1 with respect to their respective inputs. Similarly,

∂f

∂pn
=
∂f2(fn−1, pn)

∂pn
> 0

by the monotonicity of f2.

2 A general well-behaved MSR as an Opinion Pool for a general risk-averse
utility

First, we shall recapitulate the mathematical properties of a well-behaved market scoring rule (Defi-
nition 2 in the main paper): The underlying (strictly proper and regular) scoring rule for such a MSR
can be written as

sj(p) =

{
G(p) +G′(p)(j − p), j ∈ {0, 1}, p ∈ [0, 1], p 6= j,

G(p), p = j ∈ {0, 1} (1)

from (1) in the main paper, where

1. G : [0, 1]→ R is a continuous function.
2. G′(·) is real-valued in [0, 1] except possibly that G′(0) = −∞ or G′(1) =∞.
3. G′′(·) exists and is positive in [0, 1], 0 < G′′(p) <∞ for 0 < p < 1.
4. G′′′(·) exists, and |G′′′(p)| <∞ for 0 < p < 1.

Notice that the positivity of G′′(·) implies the strict convexity of G(·) and the increasing mono-
tonicity of G′(·). Property 2 ensures that sj(·) is real-valued except possibly that s0(1) = ∞ or
s1(0) =∞. G(p) = ps1(p) + (1− p)s0(1− p) is the expected score function sometimes called the
information measure or generalized entropy function associated with the scoring rule sx(·) (Gneiting
and Raftery [2007]).

For x ∈ {0, 1}, the first derivative of sx(p), ∀p ∈ (0, 1), is

s′x(p) = G′′(p)(x− p) =⇒ s′1(p) = G′′(p)(1− p) > 0, s′0(p) = −G′′(p)p < 0,

since G′′(p) > 0. Hence, s1(p) and s0(p) are strictly increasing and decreasing functions of p
respectively, which is quite intuitive since the reward for predicting a higher probability for the
outcome that actually materialized should be higher.

Moreover, if pi−1 and pi denote respectively the instantaneous price of a MSR immediately before
and after agent i interacts with it, then by the design of a MSR, the agent’s ex post compensation
from the market for any outcome x ∈ {0, 1} is given by

cx(pi, pi−1) = sx(pi)− sx(pi−1).

We can readily obtain the following properties of cx:

c1(p, pi−1)− c0(p, pi−1) = G′(p)−G′(pi−1); (2)
∂

∂p
cx(p, pi−1) = s′x(p) = G′′(p)(x− p), ∀pi−1 ∈ (0, 1), x ∈ {0, 1}. (3)
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Hence, c1(p, pi−1) and c0(p, pi−1) are also strictly increasing and decreasing in p respectively, re-
gardless of pi−1, as expected.

Next, we shall enumerate, from Section 3 in the main paper, the criteria that an agent utility function
ui(·) must meet in our setting:

1. Continuity: ui(·) is continuous over [cmin
i ,∞] where cmin

i can attain any value in [−∞, 0].
2. Increasing monotonicity (Non-satiation): u′i(·) is continuous and positive real-valued

over [cmin
i ,∞] except possibly that u′i(cmin) =∞ or u′i(∞) = 0.

3. Strict concavity (Risk aversion): u′′i (·) is continuous and negative real-valued over
[cmin
i ,∞] except possibly that u′′i (cmin) = −∞ or u′′i (∞) = 0.

The following is the proof of Lemma 2 from Section 3 of the main paper.

Restatement of Lemma 2 If |cmin
i | < ∞, then there exist upper and lower bounds, pmin

i ∈
[0, pi−1] and pmax

i ∈ [pi−1, 1] respectively, on the feasible values of the price pi to which agent i can
drive the market from pi−1 ∈ (0, 1) regardless of her belief πi, where pmin

i = s−11 (cmin
i + s1(pi−1))

and pmax
i = s−10 (cmin

i + s0(pi−1)).

Proof. Agent i’s ex post wealth for trading in such a way as to revise the market price from pi−1 to
any p̃ ∈ [0, 1] is cx(p̃, pi−1) for outcome x but, from the constraints imposed by the utility function,
this wealth cannot be smaller than cmin

i for any x.Thus,

c1(p̃, pi−1) ≥ cmin
i

⇒ s1(p̃)− s1(pi−1) ≥ cmin
i

⇒ s1(p̃) ≥ cmin
i + s1(pi−1)

⇒ p̃ ≥ s−11 (cmin
i + s1(pi−1)) = pmin

i ,

since s1(·) is strictly increasing (hence invertible). Also, since cmin
i ≤ 0,

s1(pmin
i ) = cmin

i + s1(pi−1) =⇒ s1(pmin
i ) ≤ s1(pi−1) =⇒ pmin

i ≤ pi−1.

Similarly, from the inequality c0(p̃, pi−1) ≥ cmin
i and the decreasing monotonicity of s0(·), we can

show that p̃ ≤ s−10 (cmin
i + s0(pi−1)) = pmax

i ≥ pi−1.

We shall now provide a detailed, joint proof of Lemmas 3 and 4, for completing the proof of Theo-
rem 1 in Section 3 of the main paper.

Restatement of Lemma 3. If a myopic agent with subjective probability πi and a risk-averse
utility function of wealth ui(·), possessing properties 1, 2, and 3 above, trades with a well-behaved
market scoring rule for a single Arrow-Debreu security, and updates the market’s instantaneous
price from pi−1 ∈ (0, 1) to pi in the process, then pi is the unique solution in (0, 1) to the following
fixed-point equation:

pi =
πiu
′
i(c1(pi, pi−1))

πiu′i(c1(pi, pi−1)) + (1− πi)u′i(c0(pi, pi−1))
. (4)

Restatement of Lemma 4. The implicit function pi(pi−1, πi) described by (4) has the following
properties:

1. pi = πi if and only if πi = pi−1.
2. 0 < min{pi−1, πi} < pi < max{pi−1, πi} < 1 whenever πi 6= pi−1, 0 < πi, 6= pi−1 < 1.
3. For any given pi−1 (resp. πi), pi is a strictly increasing function of πi (resp. pi−1).

Proof. If agent i’s subjective probability of {X = 1} is πi ∈ (0, 1) and her utility function is ui(·),
her expected myopic utility for taking a trading action that updates the market price pi−1 to any
p ∈ [0, 1] is given by

ũ(p; pi−1, πi) = πiui(c1(p, pi−1)) + (1− πi)ui(c0(p, pi−1)).
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The first and second derivatives of the above with respect to p respectively simplify to

ũ′(p; pi−1, πi) = G′′(p)f(p; pi−1, πi);

ũ′′(p; pi−1, πi) = G′′′(p)f(p; pi−1, πi) +G′′(p)f ′(p; pi−1, πi),

where

f(p; pi−1, πi) = πi(1− p)u′i(c1(p, pi−1))− (1− πi)pu′i(c0(p, pi−1)) so that

f ′(p; pi−1, πi) = − [πiu
′
i(c1(p, pi−1)) + (1− πi)u′i(c0(p, pi−1))]

+G′′(p)
[
πiu
′′
i (c1(p, pi−1))(1− p)2 + (1− πi)u′′i (c0(p, pi−1))p2

]
< 0, ∀p ∈ (0, 1), given any πi, pi−1 ∈ (0, 1),

since G′′(·) > 0, u′i(·) > 0, and u′′i (·) < 0 everywhere. Hence, f(·) is strictly decreasing every-
where, its values at pi−1 and πi being given by

f(pi−1; pi−1, πi) = (πi − pi−1)u′i(0); (5)

f(πi; pi−1, πi) = πi(1− πi) [u′i(c1(πi, pi−1))− u′i(c0(πi, pi−1))] . (6)

Case I pi−1 < πi: From (2),

c1(πi, pi−1)− c0(πi, pi−1) = G′(πi)−G′(pi−1) > 0

due to the increasing monotonicity of G′(·). But

c1(πi, pi−1) > c0(πi, pi−1) =⇒ u′i(c1(πi, pi−1)) < u′i(c0(πi, pi−1))

due to the decreasing monotonicity of u′i(·). Hence, from (6), f(πi; pi−1, πi) < 0.

Also, from (5), since u′i(0) > 0, f(pi−1; pi−1, πi) > 0.

These values, along with the decreasing monotonicity of f(·), imply that f(p; pi−1, πi) has
a unique zero in (pi−1, πi).

Case II pi−1 = πi: From (5) or (6),

f(πi; pi−1, πi) = f(pi−1; pi−1, πi) = 0,

and πi = pi−1 is the unique zero of f(p; pi−1, πi) due to its monotonic nature.

Case III pi−1 > πi: By symmetry, we can argue exactly as for Case I that f(p; pi−1, πi) has a
unique zero in (πi, pi−1).

Thus for any πi, pi−1, there exists a unique solution in (0, 1), say p∗, to the equation f(p; pi−1, πi) =
0. Since |G′′(p∗)|, |G′′′(p∗)| <∞, we must have

ũ′(p∗; pi−1, πi) = 0;

ũ′′(p∗; pi−1, πi) = G′′(p∗)f ′(p∗; pi−1, πi) < 0,

since G′′(p∗) > 0 and f ′(p∗; pi−1, πi) < 0. In other words, rational risk-averse agent i’s price-
update pi = arg maxp∈[0,1] ũ(p; pi−1, πi) is given by pi = p∗ so that

f(pi; pi−1, πi) = 0

⇒ πi(1− pi)u′i(c1(pi, pi−1)) = (1− πi)piu′i(c0(pi, pi−1)), from definition

⇒ pi
1− pi

=
πi

1− πi
· u
′
i(c1(pi, pi−1))

u′i(c0(pi, pi−1))
(7)

⇒ pi =
πiu
′
i(c1(pi, pi−1))

πiu′i(c1(pi, pi−1)) + (1− πi)u′i(c0(pi, pi−1))

The last step facilitates the interpretation of pi as a risk-neutral probability. However, for most
subsequent proofs, we shall recall the more convenient odds ratio formulation provided in (7).
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Moreover, it is easy to see that the findings in Case I, Case II, and Case III above jointly imply
properties 1 and 2 in the theorem statement. To prove property 3, first note that, for x ∈ {0, 1},

∂

∂πi
cx(pi(pi−1, πi), pi−1) = s′x(pi)

∂pi
∂πi

= G′′(pi)(x− pi)
∂pi
∂πi

,

∂

∂pi−1
cx(pi(pi−1, πi), pi−1) = s′x(pi)

∂pi
∂pi−1

− s′x(pi−1)

= G′′(pi)(x− pi)
∂pi
∂πi
−G′′(pi−1)(x− pi−1)

Now, taking the partial derivative with respect to πi of both sides of (7),

1

(1− pi)2
∂pi
∂πi

=
1

(1− πi)2
u′i(c1)

u′i(c0)
+

(
πi

1− πi

)
u′′i (c1) ∂c1∂πi

u′i(c0)− u′i(c1)u′′i (c0) ∂c0∂πi

(u′i(c0))2

⇒ v1
∂pi
∂πi

= v2 + u′′i (c1)u′i(c0)G′′(pi)(1− pi)
∂pi
∂πi

+ u′i(c1)u′′i (c0)G′′(pi)pi
∂pi
∂πi

where v1 =

(
1− πi
πi

)(
u′i(c0)

1− pi

)2

, v2 =
u′i(c0)u′i(c1)

πi(1− πi)
,

⇒ ∂pi
∂πi

=
v2

v1 −G′′(pi) [u′′i (c1)u′i(c0)(1− pi) + u′i(c1)u′′i (c0)pi]

> 0.

This is because 0 < πi, pi < 1, u′i(c1), u′i(c0), G′′(pi) > 0, and u′′i (c1), u′′i (c0) < 0 in our model
so that v1, v2 > 0, hence both the numerator and denominator are positive.

Similarly, taking the partial derivative with respect to pi−1 of both sides of (7),

1

(1− pi)2
∂pi
∂pi−1

=

(
πi

1− πi

) u′′i (c1) ∂c1
∂pi−1

u′i(c0)− u′i(c1)u′′i (c0) ∂c0
∂pi−1

(u′i(c0))2

⇒ v1
∂pi
∂pi−1

= u′′i (c1)u′i(c0)

[
G′′(pi)(1− pi)

∂pi
∂πi
−G′′(pi−1)(1− pi−1)

]
+ u′i(c1)u′′i (c0)

[
G′′(pi)pi

∂pi
∂πi
−G′′(pi−1)pi−1

]
⇒ ∂pi

∂pi−1
=
−G′′(pi−1) [u′′i (c1)u′i(c0)(1− pi−1) + u′i(c1)u′′i (c0)pi−1]

v1 −G′′(pi) [u′′i (c1)u′i(c0)(1− pi) + u′i(c1)u′′i (c0)pi]

> 0

for the same reasons as ∂pi
∂πi

.

Hence pi(pi−1, πi) is increasing in each of pi−1 and πi, the other remaining constant.

Corollary 1. If πi > pi−1 (resp. πi < pi−1), then pi−1 < pi < πi (resp. πi < pi < pi−1), i.e. a
myopic risk-averse agent moves the market price in the direction of her belief but not all the way.

This intuitive result follows from the analysis in Case I and Case III of the above proof.
Corollary 2. The agents’ beliefs as well as the market’s initial price put bounds on the instantaneous
price at the end of every episode:

min{p0, π1, π2, . . . , πi} ≤ pi ≤ max{p0, π1, π2, . . . , πi}, ∀i = 1, 2, . . . .

For the logarithmic market scoring rule (LMSR),

c1(pi, pi−1) = b ln

(
pi
pi−1

)
, c0(pi, pi−1) = b ln

(
1− pi

1− pi−1

)
so that equation (7) can becomes

pi
1− pi

=
πi

1− πi
·
u′i

(
b ln

(
pi
pi−1

))
u′i

(
b ln

(
1−pi

1−pi−1

)) . (8)
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2.1 LMSR as LogOP for CARA utility agents

The following is the proof of Theorem 2 from Section 3.1 of the main paper.

Restatement of Theorem 2. If myopic rational agent i, having a subjective belief πi ∈ (0, 1) and
a risk-averse utility function satisfying criteria 1, 2, and 3 in Section 2 above, trades with a LMSR
market with parameter b and current instantaneous price pi−1, then the market’s updated price pi is
identical to a logarithmic opinion pool between the current price and the agent’s subjective belief,
i.e.

pi = παii p
1−αi
i−1

/ [
παii p

1−αi
i−1 + (1− πi)αi(1− pi−1)1−αi

]
, αi ∈ (0, 1), (9)

if and only if agent i’s utility function is of the form

ui(c) = τi (1− exp (−c/τi)) , c ∈ R ∪ {−∞,∞}, for some constant τi ∈ (0,∞),
(10)

the aggregation weight being given by αi = τi/b
1+τi/b

.

Proof. Sufficiency: If agent i’s utility is of the form specified in the theorem, then the first and
second derivatives of the utility function are respectively

u′i(c) = exp (−c/τi) > 0, and

u′′i (c) = − exp (−c/τi) /τi < 0 ∀c ∈ [−∞,∞].

Hence, Lemma 3 is applicable. Making appropriate substitutions in (8),

pi
1− pi

=
πi

1− πi
·

exp
(
− b
τi

ln
(

pi
pi−1

))
exp

(
− b
τi

ln
(

1−pi
1−pi−1

)) =

(
πi

1− πi

)(
pi
pi−1

)−b/τi ( 1− pi
1− pi−1

)b/τi

Thus,
(

pi
1− pi

)1+b/τi

=

(
πi

1− πi

)(
pi−1

1− pi−1

)b/τi
Exponentiating both sides by 1

1+b/τi
,

pi
1− pi

=

(
πi

1− πi

) 1
1+b/τi

(
pi−1

1− pi−1

) b/τi
1+b/τi

=

(
πi

1− πi

)αi ( pi−1
1− pi−1

)1−αi
,

where αi = 1
1+b/τi

= τi/b
1+τi/b

. Simplifying, we get the required LogOP formulation in the theorem
statement; alternatively, by taking the logarithm on both sides, we obtain the equivalent additive
log-odds ratio formulation.

Necessity: Since we have restricted ourselves to the class of utility functions satisfying criteria 1,
2, and 3, a utility function that results in a logarithmic opinion pool on interacting with LMSR must
satisfy Lemma 3 with

pi = παii p
1−αi
i−1

/ [
παii p

1−αi
i−1 + (1− πi)αi(1− pi−1)1−αi

]
for some constant αi ∈ (0, 1),

or, equivalently, with

πi
1− πi

=

(
pi

1− pi

) 1
αi
(

1− pi−1
pi−1

) 1−αi
αi

.

Making the requisite substitutions in (8) and simplifying, we see that u′i(·) must satisfy(
pi
pi−1

) 1−αi
αi

u′i

(
b ln

(
pi
pi−1

))
=

(
1− pi

1− pi−1

) 1−αi
αi

u′i

(
b ln

(
1− pi

1− pi−1

))
∀pi, pi−1 ∈ (0, 1) (11)

since, owing to the fact that each of πi and pi−1 is allowed to attain any value in (0, 1), pi defined
as the LogOP above can lie anywhere in (0, 1) as well.
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Since 0 < pi−1

πi
, 1−pi−1

1−πi <∞, we claim that relation (11) is true if and only u′i(·) satisfies

y
1−αi
αi u′i(b ln(y)) = Mi, ∀y ∈ (0,∞), where constant Mi = u′i(0). (12)

The sufficiency is obvious. To establish the necessity, suppose there exists a risk-averse utility
function satisfying (11) but not (12). Then, there must exist y1, y2 ∈ (0,∞), such that y1 > y2
without loss of generality, and

h(y1) 6= h(y2), where h(y) = y
1−αi
αi u′i(b ln(y)) ∀y ∈ (0,∞).

But, if 0 < y2 < 1 < y1 < ∞, we can obtain π̃ = y2(y1 − 1)/(y1 − y2) ∈ (0, 1) and p̃ =
(y1 − 1)/(y1 − y2) ∈ (0, 1) for which (11) is violated, giving us a contradiction. Thus, any ui(·)
satisfying (11) must also obey

h(y1) = h(y2) ∀y1, y2 : 0 < y2 < 1 < y1 <∞.

This also means that for any two values y1, y3 ∈ (1,∞), and any given y2 ∈ (0, 1), we must have
h(y1) = h(y2) as well as h(y3) = h(y2), implying that h(y1) = h(y3) ∀y1, y3 ∈ (1,∞). By similar
reasoning, we can deduce that h(y2) = h(y4) ∀y2, y4 ∈ (0, 1). Finally, by the continuity of h(y)
at y = 1, which in turn follows from the continuity of u′i(c) at c = 0 in our model and the obvious

continuity of y
1−αi
αi at y = 1, we arrive at (12).

Now, applying the transformation c = b ln(y), we obtain the first-order ordinary differential equation

u′i(c) = Mi exp

(
−1− αi

αib
c

)
, −∞ ≤ c ≤ ∞

where the extreme values of c have been included for continuity. Solving the above, we get

ui(c) = −Miαib

1− αi
exp

(
−1− αi

αib
c

)
+ Ci, Ci being the constant of integration

= −Miτi exp(−c/τi) + Ci, where τi =
αib

1− αi
=⇒ αi =

τi/b

1 + τi/b

≡ τi (1− exp(−c/τi))

since a utility function is strategically equivalent to any positive-affine transformation of itself.

2.2 LMSR as LinOP for an atypical utility with decreasing absolute risk aversion

Here, we present the proof of Theorem 3 from Section 3.2 of the main paper.

Restatement of Theorem 3. If myopic rational agent i, having a subjective belief πi ∈ (0, 1) and
a risk-averse utility function satisfying criteria 1, 2, and 3 in Section 2 above, trades with a LMSR
market with parameter b and current instantaneous price pi−1, then the market’s updated price pi
is identical to a linear opinion pool between the current price and the agent’s subjective belief, i.e.

pi = βiπi + (1− βi)pi−1, for some constant βi ∈ (0, 1) (13)

if and only if agent i’s utility function is of the form

ui(c) = ln(exp((c+Bi)/b)− 1), c ≥ −Bi, (14)

where Bi > 0 represents agent i’s budget, with the aggregation weight being given by βi = 1 −
exp(−Bi/b).
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Proof. If agent i’s utility is of the form specified in the theorem, then by Lemma 2, we can obtain
the lower and upper bounds on the feasible values of pi as follows:

s1(pmin
i ) = cmin

i + s1(pi−1)

⇒ b ln(pmin
i ) = −Bi + b ln(pi−1)

= b ln(pi−1 exp(−Bi/b))
= b ln(pi−1(1− βi)), since βi = 1− exp(−Bi/b)

⇒ pmin
i = pi−1(1− βi), from the monotonicity of ln(·); (15)

s0(pmin
i ) = cmin

i + s0(pi−1)

⇒ b ln(1− pmax
i ) = −Bi + b ln(1− pi−1) = b ln((1− pi−1) exp(−Bi/b))

⇒ 1− pmax
i = (1− pi−1) exp(−Bi/b) = (1− pi−1)(1− βi)

⇒ pmax
i = 1− (1− pi−1)(1− βi) = βi + (1− βi)pi−1 (16)

Sufficiency: For −Bi ≤ c <∞,

u′i(c) =
exp((c+Bi)/b)

b (exp((c+Bi)/b)− 1)
> 0, and

u′′i (c) = − exp((c+Bi)/b)

b2 (exp((c+Bi)/b)− 1)
2 < 0.

Hence we can invoke Lemma 3. Now,

exp

(
c1(pi, pi−1) +Bi

b

)
= exp

(
ln

(
pi
pi−1

)
+
Bi
b

)
= exp

(
ln

(
pi

pi−1 exp(−Bi/b)

))
=

pi
pi−1(1− βi)

⇒ exp

(
c1(pi, pi−1) +Bi

b

)
=

pi
pmin
i

from (15).

Similarly, exp

(
c0(pi, pi−1) +Bi

b

)
=

1− pi
1− pmax

i

from (16).

(17)

Hence,
u′i(c1(pi, pi−1))

u′i(c0(pi, pi−1))
=

1
b ·

pi/p
min
i

pi/pmin
i −1

1
b ·

(1−pi)/(1−pmax
i )

(1−pi)/(1−pmax
i )−1

=
pi

1− pi
· p

max
i − pi
pi − pmin

i

.

It is precisely for obtaining the above ratio that we require the scaling factor of 1/b, dependent on
the market maker parameter, in the exponential in the utility function. Substituting in (8), and noting
that pi/(1− pi) 6= 0 for 0 < pi−1 < 1, we get

1 =
πi

1− πi
· p

max
i − pi
pi − pmin

i

⇐⇒ pi = (1− πi)pmin
i + πip

max
i

⇐⇒ pi = βiπi + (1− βi)pi−1,

on plugging in the expressions for pmin
i and pmax

i from (15) and (16), and simplifying.

Necessity: Since we have restricted ourselves to the class of utility functions satisfying criteria 1, 2,
and 3, a utility function that results in a linear opinion pool on interacting with LMSR must satisfy
Lemma 3 with pi = βiπi + (1 − βi)pi−1 for some constant βi ∈ (0, 1). Making the requisite
substitutions in (8) and simplifying, we see that u′i(·) must satisfy

u′i

(
b ln

(
βi

(
πi
pi−1

)
+ 1− βi

))
βi + (1− βi)pi−1

πi

=
u′i

(
b ln

(
βi

(
1−πi

1−pi−1

)
+ 1− βi

))
βi + (1− βi)

( 1−pi−1

1−πi

)
∀pi−1, πi ∈ (0, 1). (18)
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Since 0 < pi−1

πi
, 1−pi−1

1−πi <∞, we claim that relation (18) is true if and only u′i(·) satisfies

u′i(b ln(βiy + 1− βi)) = Ki

(
βi +

1− βi
y

)
, ∀y ∈ (0,∞), (19)

where constant Ki = u′i(0), and the (negative) lower bound on the domain of ui(·) is given by
−Bi = b ln(1− βi) with u′i(−Bi) =∞1.

The sufficiency is obvious. To establish the necessity, suppose there exists a risk-averse utility
function satisfying (18) but not (19). Then, there must exist y1, y2 ∈ (0,∞), such that y1 > y2
without loss of generality, and

g(y1) 6= g(y2), where g(y) =
u′i(b ln(βiy + 1− βi))

βi + 1−βi
y

∀y ∈ (0,∞).

But, if 0 < y2 < 1 < y1 < ∞, we can obtain π̃ = y2(y1 − 1)/(y1 − y2) ∈ (0, 1) and p̃ =
(y1 − 1)/(y1 − y2) ∈ (0, 1) for which (18) is violated, giving us a contradiction. Thus, any ui(·)
satisfying (18) must also obey

g(y1) = g(y2) ∀y1, y2 : 0 < y2 < 1 < y1 <∞.

This also means that for any two values y1, y3 ∈ (1,∞), and any given y2 ∈ (0, 1), we must have
g(y1) = g(y2) as well as g(y3) = g(y2), implying that g(y1) = g(y3) ∀y1, y3 ∈ (1,∞). By similar
reasoning, we can deduce that g(y2) = g(y4) ∀y2, y4 ∈ (0, 1). Finally, by the continuity of g(y) at
y = 1, which in turn follows from the continuity of u′i(c) at c = 0 in our model and the obvious
continuity of (βi + (1− βi)/y) at y = 1, we arrive at (19).

Now, applying the transformation c = b ln(βiy + 1 − βi), we obtain the first-order ordinary differ-
ential equation

u′i(c) =
Kiβi exp(c/b)

exp(c/b)− (1− βi)
, b ln(1− βi) ≤ c ≤ ∞

where the extreme values of c have been included for continuity. Solving the above, we get

ui(c) = Kiβi(b ln(exp(c/b)− (1− βi)) + Ci), Ci being the constant of integration
= Kiβi(b ln(exp(c/b)− exp(−Bi/b)) + Ci), since −Bi = b ln(1− βi)
= Kiβib ln(exp((c+Bi)/b)− 1) +Kiβi(Ci −Bi)
≡ ln(exp((c+Bi)/b)− 1)

since a utility function is strategically equivalent to any positive-affine transformation of itself.

3 LMSR with logarithmic utility agents

In this section, we shall explore our idea, mentioned in Section 3.2 of the main paper, that agents
with logarithmic utility induce an approximate linear opinion pool in a LMSR market under certain
conditions.

Comparison of utility function (14) with logarithmic utility: The two utility functions under
consideration are

uatyp(c;B, b) = ln(exp((c+B)/b)− 1), c ≥ B,
ulog(c;w) = ln(c+ w), c ≥ w

where constantsB,w ∈ (0,∞) are the respective budgets. First note that both are strictly increasing
and strictly concave functions with decreasing absolute risk aversion. Moreover, uatyp(c) behaves
approximately as a logarithmic utility for small values of (c + B)/b and as a linear utility (corre-
sponding to risk-neutrality) for large values thereof.

(c+B)/b� 1 =⇒ uatyp(c;B, b) ≈ ln(1 + (c+B)/b− 1) = ln(c+B)− ln b ≡ ln(c+B);

(c+B)/b� 1 =⇒ uatyp(c;B, b) ≈ ln exp((c+B)/b) = (c+B)/b ≡ c,

9
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Figure 1: Comparison of a logarithmic utility function ulog(c;B) = ln(c + B), c ≥ −B, where
B = 1 is the (positive) budget, with various instances of the atypical decreasing absolute risk
aversion utility function (14) uatyp(c;B, b) = ln(exp((c+B)/b)− 1) with the same budget B = 1
but different scaling factors b = 0.1, 1, 10. Note that for b = B = 1, the two functions are very
close to each other for small (negative and close to −B) values of wealth c. From the graphs, it
appears to be a reasonable conjecture that the two utility functions are most similar, in the sense that
the switch in the nature of (14) from approximately logarithmic to approximately linear occurs at a
higher value of wealth, for values of b that are comparable to B.

using first order approximations, and applying the fact that a utility function is (strategically) equiv-
alent to any positive affine transformation of itself. We provide a visual contrast of the above utility
functions in Figure 1.
Proposition 1. For a myopic agent with a subjective probability πi ∈ (0, 1) and a logarithmic utility
function with budget wi ∈ (0,∞), i.e.

ui(c) = ln(wi + c), c ≥ −wi,

the updated instantaneous price of a LMSR market with loss parameter b after interaction with the
agent can be written as

pi = p̂i + ∆, (20)

where p̂i is a LinOP of πi and pi−1 given by

p̂i = (1− exp(−w̃i))πi + exp(−w̃i)pi−1, w̃i = wi/b,

and the error term is

∆ = πi(1− pi)
∑∞
j=2

1
j

(
pmax
i −pi
1−pi

)j
− (1− πi)pi

∑∞
j=2

1
j

(
pi−pmin

i

pi

)j
,

with pmin
i = pi−1 exp(−w̃i) and pmax

i = 1 − (1 − pi−1) exp(−w̃i) being the lower and upper
bounds on the price pi imposed by the budget constraint.

Proof. Proceeding exactly as in the proof of Theorem 3 in Section 2.2, we can deduce the bounds
pmin
i = pi−1 exp(−w̃i) and pmax

i = 1 − (1 − pi−1) exp(−w̃i), w̃i = wi/b on the feasible market
price at the end of trading episode i, and hence rewrite

p̂i = (1− πi)pmin
i + πip

max
i .

For the logarithmic utility, u′i(c) = 1/(c+wi) > 0 and u′i(c) = −1/(c+wi)
2 < 0 for−wi ≤ c <∞

so that Lemma 3 can be invoked, and from (8), we can show that

(1− πi)pi ln

(
pi
pmin
i

)
= πi(1− pi) ln

(
1− pi

1− pmax
i

)
. (21)

1This constraint is necessary since limy→0+ Ki

(
βi +

1−βi
y

)
= ∞; also note that Ki is positive real-

valued since u′i(c) ∈ (0,∞) for c ∈ (−Bi,∞).
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Since 0 <
pi−pmin

i

pi
,
pmax
i −pi
1−pi < 1, we can use the well-known Maclaurin series expansion of the

logarithmic function

ln(1 + x) =

∞∑
j=1

(−1)j+1xj

j
, −1 < x ≤ 1

to obtain the following:

ln

(
pi
pmini

)
= − ln

(
1− pi − pmini

pi

)
=
pi − pmini

pi
+ δi;

ln

(
1− pi

1− pmaxi

)
= − ln

(
1− pmax

i − pi
1− pi

)
=
pmaxi − pi

1− pi
+ δi,

where δi =
∑∞
j=2

1
j

(
pi−pmini

pi

)j
, and δi =

∑∞
j=2

1
j

(
pmaxi −pi

1−pi

)j
.

Substituting in Equation (21) and simplifying,

pi = p̂i + ∆i,

where p̂i = (1− πi)pmin
i + πip

max
i , and ∆i = πi(1− pi)δi − (1− πi)piδi.

Approximation of actual pi by p̂i: If, instead of the Maclaurin series in the above proof of
Proposition 1, we had used the first-order approximation − ln(1 − x) ≈ x, which is reasonable for
|x| � 1,2 we would have obtained pi ≈ p̂i. Informally, the smaller the agent’s normalized budget
w̃i, the smaller the range

[
pmin
i , pmax

i

]
of feasible values of pi, hence the smaller the fractions

(pi − pmin
i )/pi and (pmax

i − pi)/(1− pi) are, hopefully leading to a better approximation. But this
might not even be necessary for achieving a small magnitude of ∆i which is the difference of two
terms of comparable orders. On eyeballing the expression for ∆i, it appears to be roughly two orders
of magnitude smaller than p̂i. Since the exact dependence of the approximation error on the value
of w̃i is hard to figure out analytically, we adopt a simulation-based approach towards exploring
this relationship, described in Section 3.1. But, before that, we perform a quick sanity check on the
approximation under consideration. From (21), it is evident that

lim
πi↘0

pi = pmin
i = lim

πi↘0
p̂i; lim

πi↗1
pi = pmax

i = lim
πi↗1

p̂i,

indicating that the actual and approximate updated market prices coincide for extreme agent beliefs.

3.1 Simulations with LMSR and logarithmic utility agents

We ran 5 × 9 sets of 1000 simulations each for getting a rough idea about the quality of the
approximation pi ≈ p̂i. For each simulation, we generated a sequence of n = 100 agents
defined by their time-invariant belief-budget pairs {(πi, wi)}ni=1. Since the parameter of inter-
est is the normalized budget w̃i, the exact value of the LMSR loss parameter b is immaterial,
and we set it to 1. We sampled the w̃i’s uniformly at random from the interval [0, w̃max],
w̃max ∈ {0.1, 0.2, 0.25, 0.5, 0.75}. The beliefs were random samples from the distribution
BETA(ptrue, 1 − ptrue), ptrue ∈ {0.1, 0.2, . . . , 0.9}. Thus our knowledge model was that there
was a “true” underlying distibution, Pr(X = 1) = ptrue, according to which nature would decide
the forecast event X in the future, and each agent had some idiosyncratic noisy version πi of this
ptrue, the variability of the agents’ beliefs being represented by the above BETA distribution with
mean α

α+β = ptrue and pseudo-sample size (confidence) parameter (α+β) held constant at 1 (α and
β denote standard parameters of a BETA distribution). Over the n trading episodes, we computed
two price trajectories starting at p0 = 0.5 each, one induced by each agent maximizing her myopic
expected logarithmic utility3, and the other by the approximate price update equation that always

2Note that the relative error of the linear approximation of the logarithmic function, i.e.
∣∣∣x−f(x)f(x)

∣∣∣, where

f(x) = − ln(1− x), is at most 10% for x ≤ 0.193.
3For agent i, we discretized the possible range of pi, i.e. [pmin

i , pmax
i ] in steps of 10−4, computed the vector

of expected logarithmic utility values for these discrete pi values, and chose the pi-value corresponding to the
maximum entry in this vector as the updated price.
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Figure 2: Panel (a): The error measure increases with increasing difference between ptrue and p0 =
0.5 for any fixed w̃max, and also with an increase in w̃max for any given ptrue-value; nevertheless,
the error appears to be small even for higher values of w̃max (less than 0.03 for 0.1 ≤ ptrue ≤
0.9, w̃max ≤ 0.75). Error bars are not shown since standard errors are consistently two orders of
magnitude smaller than corresponding sample means. Panels (b) and (c): Price trajectories for two
sample simulations with w̃max = 0.2 and w̃max = 2 respectively are displayed, ptrue = 0.7 for
both. On eyeballing, the path of approximate prices (dashed black) seems quite close to the path
of true prices (solid green), more so for the lower value of w̃max, as expected. Also note the high
price volatility in panel (c) corresponding to the higher agent budgets, which is also understandable
since the agent is now closer to being risk-neutral. “Lower bound” (dashed blue curve) and “Upper
bound” (dashed red curve) for each trading epsiode i correspond to price bounds pmin

i and pmax
i

respectively.

rejects the error term in (20). At the end of each simulation, we evaluated the root-mean-squared
deviation between these two price trajectories, and averaged these values over all 1000 simulations
in the set to obtain the “mean RMSD between true and approximate price processes” which serves
as our error measure for the approximation. We report our results in Figure 2. The main takeaway
message is that the approximation seems reasonable for a wide range of values of ptrue and w̃max.

We also studied the dependence of the error measure on the parameter (α + β) which is inversely
related to the variance of the traders’ beliefs. We fixed ptrue = 0.7 and varied (α + β) over
{0.1, 0.25, 0.5, 1, 1.5, 2.5, 5, 7.5, 10}. The results are reported in Figure 3. For both w̃max = 0.2
and 0.5, we see that this error measure peaks at 1 and then drops off slowly as (α + β) increases
further.
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Figure 3: Variation of the approximation error measure in our simulations with respect to the pseudo-
sample size (confidence) parameter of the distribution of agent beliefs.
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