A Adaptive Rates and Achievability

Proof of Lemma 1. We first prove Eq. (3) and (4). We start from the definition of .4, (F). Our proof proceeds
“inside out” by starting with the n'" term and then working backwards by repeatedly applying the minimax
theorem. To this end on similar lines as in [24, 7, 21], we start with the inner most term as,

sup inf sup (IE%N% I:Z(g}n,yn) - ini{iz(f(l't),yt) +Bn(f;$1:n7y1:n)}])

Tp€X gneA(D) yney

sup inf  sup ( Gn~an [Zﬁ(ymyt —mf {Zf(f(xt) yt) + By (f,fvln,yln)}])

Tn€X qneA(D) pneA(Y) Yn~Pn | t=1

=sup sup  inf ( Gn~an [if(yuyf —mf{f f(f(ft),yz)+Bn(f;$1zn,y1=n)}])

Tn€X ppeA(Y) gneA(D) Yn~Pn

=sup sup inf (Eyn’“Pn [Zﬂ(g)t,yt)— i?;{zg(f(xt)ayt)+Bn(f§$1:n7y1:n)}:|)

Tn€X ppeA(Y) JneD t=1

sup  sup (Eymn [Sup{ inf Ey,,~p, [Zﬁ(ynyt ]— if(f(ﬂft%yt)—Bn(f;ml:myl:n)}]).
t=1

TneX ppeA(Y) feF \gneD

To apply the minimax theorem in step 3 above, we note that the term in the round bracket is linear in ¢,, and in
Ppn, (as it is an expectation). Hence under mild assumptions on the sets D and ), the losses, and the adaptive
rate B,,, one can apply a generalized version of the minimax theorem to swap sup,, and inf, . Compactness
of the sets and lower semi-continuity of the losses and B,, are sufficient, but see [24, 21] for milder conditions.
Proceeding backward from n to 1 in a similar fashion we end up with the following quantity:

An(F)

<<sup inf sup E >> [ié(yt,yt }r:;{ilﬁ(f(mt)ﬂt)+Bn(f;x1;n,y1;n)}:|

T1€X qreA(D) yrey Jt~qt

:<<sup sup B >> [fg{z inf Eyyop, [0 91)] —il/z(fm),yt)—Bn<f;x1m,y1m>}]

T1€X preA(Y) Yt~Pt 1 9t€D

3

feF \t=1

S<<sup sup E>> [sup{ZlEy;Npt[f(f(ﬂcz),yi)]—f(f(wt),yt)—Bn(f;xlzmyl:n)}]. (10)
e preAW) YePe[,

See [21] for more details of the steps involved in obtaining the above equality. Form this point on we split the
proof for Equations 3 and 4. To prove the bound in Equation 3, note that, By, (f; Z1:n,Y1:n) = Bn (y1:n) and so,
(this proof is similar in spirit to the one in [7])

M:

An<f>s<<sup sup E>> [sup{ p,,[af(:rz),y;)]fE(f(m,yt)}an(ylm)]
wreX preA(Y) ViPt rer | &

M:

:<<sup sup E» [wp{ m[e(f<a:z>,y;>]—af(m,yt)}
wreX pyeA (V) Yt~Pt reF 4

- 2 Ba(yin) - ;Bn@m)].

Using linearity of expectation repeatedly (since B, is independent of f and x;’s ),

A< (s, s B » [sup{ZEum () - 5.0}

w1eX preA(V) Yt~Pt feF

1 1 ’
- iBn(yln) - iEyll:anl‘” [Bn(yln):l :|

10



By Jensen’s inequality, we pull out the expectations w.r.t. y;’s to further upper bound the above quantity by

(o s B ) [s{Seceosh - seom) - 3mwa - 350k

T1€X preA(Y) Yt Yy ~Pt feF

o, 2 ) e {S e 0 -seom)| - 38w - 3]

TreX preA(Y) Yt,Yy~Dt feF (t=1

s, sup B [sup{ S (a0t - a0} - S8 - 48|

TreX yt,ygsy =1 t=1
< « sup sup E» [sup{z 26t€(f(wt)7yt)} . m(ym)]
zreX yrey feF \t=1

- upE, [sup{azetaﬂxf( D.yele >>}—Bn(ym<e)>].

feF U t=1

where the last but one step is by sub-additivity of supremum and linearity of expectation and last step is by
skolemizing the supremum interleaved with average w.r.t. Rademacher random variables in the binary tree format.

We now move to proving Eq. (4). We start from Eq. (10):

An(f)é«sup sup E >> [sup{zmm[zw(xt) yt>]—é(f(mt>,yt>—Bn<f;x1m,ym>}].

z1eX preA(Y) Yt~Pt feF

Using Jensen’s inequality to pull out the expectations w.r.t. y;’s, we get

<<<sup swp E >> [sup{iaf(m,y;)—e(fm),yt)—Bn(f;xlm,ylm)}]

@1 eX preA(Y) Yt Yy ~Dt _LfeF =1

sup sup  E sup» [sup{iaf(xtm)—af(mt),yt)—Bn(f;m,y;tn}]

T1eX preA(Y) Yt Yy ~Pt yyey feF

3

TteX preA(Y) Yt YL ~PL y ey feF

(
(s s & . sup» [sup{z (af(m,y;)—af(m,yt))—Bn<f;m,yﬁn>}]
(

sup sup Ee, sup» [Sup ia(f(f(xt)w{)—f(f(zt)wt))—Bn(f;:vlzn,yﬁn)}]

z1eX yi,yjed v/l t=1

N N T e
weexyeey  yyeyll,_ Lrer lidd

= sup E. [Sup {2 Y el(f(xi(€)),ye(e)) - Bu(f; xlin(e)yy;:rwl(e))}:l ;
Y.y’ feF U =1

where in the last step we switch to tree notation, but keep in mind that each y;’ is picked after drawing ¢;, and

thus the tree y’ appears with one index shifted.

Finally, we proceed to prove inequality (5). Here, we employ the convexity assumption £( 3¢,y ) —€(f(z¢),y:) <
£ (G, y:) (G~ f (z¢) ), where the derivative is with respect to the first argument. As before, applying the minimax
theorem,

An(}'):«sup inf sup E >> —iﬁ(g}t,yt)—}r:}f__{iﬂ(f(xt),yt)+Bn(f;x1m,y1m)}]

T1€X qreA(D) yrey Yt~qt sopLt=1

=<<sup sup inf E >> ig(gtayt)_;gi{ig(f(wt)vyt)+Bn(f§x1:n:yl=n)}:|

zeX preA(Y) §ieD Yt~Pt p=1 Lt=1

<<<Sup sup inf E >> sup{ié'(@uyt)(@z—f(wt))—Bn(f;mlzmyl:n)”

z4eX preA(Y) §reD Yt~Pt L feF (¢t=1

We may now pick i = § (p:) = argming Ey,~p, [£(g:,1:)]. By convexity (and assuming the loss allows

swapping of derivative and expectation), Ey, -p, [¢'(9¢,y:)] = 0. This (sub)optimal strategy yields an upper
bound of

<< Sup  sup E >> [sup {i (él(yA:7yt) - ]Ey;ﬁpt [zl(gt*?y;)]) (Q: = f(z)) - Bn(f?-l‘l:n,yl:n)}]'

z4eX preA(Y) Yt~Pt feF
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Since (¢ (97, yt) - Eyropt [¢'(9¢,y¢)]) §: is independent of f and has expected value of 0, the above quantity
is equal to

<<sup sup E >> [sup{i( ,~pt[f(ymyi)]—f'(z)?,yt))f(wt)—Bn(f;:m:n,ym)}]

zreX preA(@) Ve[, [ reF i3

<<<SUP sup B >> [Sup{i(f'(ﬁf,yi)—f'(?)t*,yt))f(ﬂct)—Bn(f;wlzn,ylzn)}]

T1eX preA(Y) Yt YL ~pt -1 feF =1
<<sup sup E E. >> [SHP{Z (ﬂ'(ﬁf,yi)*f'(ﬁfyyt))f(xt)*Bn(f;:clm,ylm)}}
T1€X preA(Y) Yt Yy ~Pt feF \t=1
Replacing (¢ (95 ,v:) — €' (91 ,y:)) by 2Ls; for s; € [-1, 1] and taking supremum over s; we get,
n n
< << sup sup E sup Egt» [sup{z 2Lerse f(xt) —Bn(f;xlm,y1;n)}:|
- t=1

T4 eX preA(Y) Yt Yi~Pt spe[-1,1] _LreF
n n
< << supsup sup E, >> [sup {Z 2Lessi f(xe) = Ba(f;21:m, yln)}]
z1eX Yyt sge[—1,1] =1 LfeF =1
Since the suprema over s; are achieved at {+1} by convexity, the last expression is equal to

<<supsup sup Eet» [sup{zn:QLetstf(a:t)—Bn(f;xl;n,y1;n)}]

zeX Yyt spe{-1,1} 1 LfeF (t=1

= << sup sup Ee, >> [sup {i 2Ler f(xt) = B (f; T1:m, ylm)}]

TreX Yt —1LfeF =1

X,y feF \t=1

= sup E. [sup {i 2Lef(x:(€)) - Bn(f;xl:n(ﬁ),ym(ﬁ))}] .

In the last but one step we removed s;, since for any function W, and any s € {1}, E[U(se)] =
3 (U(s) +W(=s5)) = 3 (¥(1) + ¥(-1)) =E[T(e)].

Proof of Proposition 2. Define Z; = [X; — B;0;],. Aslong as §; > 1, for any strictly positive 7 we have the
tail behavior

Bi(0: -1 ?

P(ZiZt):P(Xi—BieiZT)ScleXp(—( ( 5 2)+T)

o4

(3

) + 02 exp (—(Bl(el - 1) + T)Sl') .
Note that for any positive sequence (J; )ier With 0 = Y, ds,

[sup{X BG}]<E[supZ]<ZE <5+Z[ P(Zi > 7)dr.

iel iel iel iel

The sum of the integrals above is equal to

Z[ P(X; - Bif; > 7)dr

el

2
el 201‘ iel

<012f exp( W)dtwng exp (= (Bi(0; - 1) +7) 1) dr

SC’lzexp(—% (%)2 (91'—1)2)/000 2"1 dr+C2 Y exp (—Bisi (6: —1))/ e "idr

i€l el
N
< \/fcl 20'1 exp (—1 (E) (6; - 1)2) +Cs Zs{l exp (-B;si (6; — 1))
el i iel
< 7:3\\//__010'+ 702(5)_

where the last step is obtained by plugging in
0; = max {%\/Q log(0:/a) + 4log(i), (Bis:) " log (12(5/31))} +1
and using as an upper bound Z-\/2log(i20; /) +1 for 6; in the sub-gaussian part and (Bisi) " log (i2§/si) +1

for 6; in the sub-exponential part. Since d can be chosen arbitrarily small, we may over-bound the above constant
and obtain the result. O
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Proof of Lemma 5. Fix ~y > 0. For j > 0, let V; be a minimal sequential cover of G on z at scale 3; = 279~ and
with respect to empirical 2 norm. Let v/ [g, €] be an element guaranteed to be 8;-close to f at the j-th level,
for the given e. Choose N = log,(2yn), so that Sxn < 1. Let us use the shorthand N2 () = N2(G, 7, z).

Forany ee {£1}" and g € G,

n

Y erg(zi(e)) - 2ag(zi(e))’

can be written as

S (er (92 (6)) = v0[g () + 3 (erv?Lgn cl(e) - 2ag(ze(c))?)

4 =1

o

M=

< 3 (er(g(ze()) = vilg € (e))) +

t=

= i (er(g(ze(e)) - vi[g,e 1) +

t=1

(ervi[g,€)(€) —avi[g,€](e)*)

-

t

1

5> e (vEl9. €10 - v [.1(0)

1k=1

+ i (Etvt [9:€](e) - avig, E](E)Q) :

t=1

NE

o~
Il

By Cauchy-Schwartz, the first term is upper bounded by n3x < 1. The second term above is upper bounded by

N

iZ (Vg @ -vi g el©) < 3 sup Y ewh (o),

k=1wkeWy, t=1

where W}, is a set of differences of trees for levels k and k£ — 1 (see [24, Proof of Theorem 3]). Finally, the third
term is controlled by

n n
Z (etvt [g,€](€) — avy [g7 ](6)2) < su‘P Z (etvt(e) - av?(e)) .
=1 veVp ¢=1
The probability in the statement of the Lemma can now be upper bounded by
N n n ] v
P> sup D eswr (€) + sup > (etvt(e) - av?(e)) _ logNa(y) _ 12\/5/ VnlogN2(6)dé > 7.
k=1 wkFeWy, t=1 veVp t=1 « 1/n

In view of
N
V723 Brey/nlog Na(Be) < 12\/§f1/7 Vnlog N2(6)dd
k=1 n

this probability can be further upper bounded by

P(Z sup Zetwt(e)+ sup Z(etvt(e) avi (e )) - logj\f('y) —\/ﬁ;ﬂk\/nlog/\fg(ﬁk) >7‘).

k=1wkeW), t=1 velp t=1

Define a distribution p on {1,..., N} by px = Biv/nlogNo(Bk) _ Thep the above probability can be upper
SN | Bj\/nlog N2(8;)
bounded by

P(er[N]s.t. sup Zetwt(e) \/_Bk\/nlog/\/z(ﬁk)>

wkeW), t=1
V. sup Z (GtVt(e) - av?(e)) - M S %)

veVp ¢=1 @
N
<3P (sup Zetwt(e) VT 5k\/n10g/\f2(ﬂk)> )
P

wkeWy, t=1
P(sup > (etvt(e) - av?(e)) _ logN2(v) > g) .

veVp t=1 o

The second term can be upper bounded using Chernoff method by

> P(i(etvt(e)—avﬁe)) _logMo() | g)

veVp «

<Na(v) exp(—% - logNz(’Y)) < exp(—%)
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while the first sum of probabilities can be upper bounded by

P[S eowh(e) - V7281 /nlog N 7Oky/nlog N . 1
;Wgwk (’; v P mlos () > 25551 Bry/nlog Na(Br) v

For any k, the tail probability above is controlled by Hoeffding-Azuma inequality as

P netwf € en/nlog Nao(Be) | 63v/2 T
(; (e)>p g N2(8 )( + 23V n—logNz(,Bk)) )

2
1 T
<exp|-—1 6V'2 ——
<e p( 18 Og/\/Q(ﬁk)( \/_+2sz:151¢ nlOgNz(ﬁk)) )

2
T

18(25, ﬂm/nlogf\fz(ﬂk)f

because % Y wr (¢)? < 337 for any e by triangle inequality (see [24]). Then the double sum in (11) is upper
bounded by

< exp (—410gN2(/3k)) exXp| —

2
T

18 (2 >N Bk\/nlog/\f2(ﬁk))2

where I' > & N2(Bx) 2. This upper bound can be further relaxed to

I'exp| -

2

.
2(12 /], V/n log./\/z(é)dé)2

Tlexp| -

Since N = log,(2yn), we may take

logy (2vn)

r= Y Nz
k=1

Proof of Corollary 6. Let N2(v) = N2(G,~,z). Observe that

2\' 20 ) QogN(1/2))(3201) 1) = ns { LB LN g ($15, ) 41 )|

and, furthermore, the optimal « is

(logn) (log N2 (7/2))
2(Xit1 9%(ze(€)) + 1)

which is a number between d; = + / %ﬁff(w and d,, = \/(logn) (log N2(7/2)) as long as N2 (v/2) >
1. With this we get

sy [ () - 14 2002 Q022 £ 71
We[n—l’l] =1 t=1

-24\/2logn /7 Vnlog Na(8)ds + 210gn]
1/n

< sup [ Z crg(20(€)) - 2(logn) (log N2(v/2)) _Aa Z g2 (7:(€))
9¢G t=1 Q t=1
~ve[n™1,1],ce[dyg,dn ] (12)

-24v/2logn f/ﬂ/ Vnlog Na(8)dd - 2logn].
1/n
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The case of v € [1/n,2/n) will be considered separately. Let us assume ~ > 2/n. We now discretize both o and
v by defining a; = 27D, and v =27 n~', 4,5 > 1. We go to an upper bound by mapping each « to o; or
@ /2, depending on the direction of the sign. Similarly, we map -y to either +; or 2-y;. The upper bound becomes

maxsup z (cr9(2:(0)) - 206 (2:(€))) - (2log ) (lgﬁ& 1203 [ alog Na@ds+1).

tJ o geg =

Given the doubling nature of «; and ~;, the indices , j are upper bounded by O(logn). Now define a collection
of random variables indexed by (4, 7)

Xig = sup Y- erg(ze(e)) - 2cig” (ze(e))
9€G t=1

and constants .y
) -
B, = 0eN2(1) +1N§f/] mlog N2 (8)do + 1.
(073 1/n

Lemma 5 establishes that

2

T ;T
P(Xij-Bi;>71)<Dexp|-=— -
(Xiy =By >7) exp( 2U?)+exp( )

where o; = 121/2 / 1‘7 \/nlog N2(8)dé and T as specified in Lemma 5. Whenever §-entropy grows as § 7,
0; <12/2/n, ensuring log(a;/o1) < log(n). Further, we can take 1 < T' < log(2n).

Proposition 2 is used with a sequence of random variables, but we can easily put the pairs (z, 7) into a vector

of size at most log, (n)?. Observe that s; = a;/2, (B js:) " <2,0j/Bij <1, s1/si <\/2(n+ 1). Then, by
taking & = min{1/T", 01} and 5 = s1,

ijj \/210g(0'j/5') + 410g(ki7j), (Bi,jsi)_l log (kzj(§/sl))} +1
< max{\/Q log(n) + 2log(log(2n)) + 4log(k:,;),2log (k?,j\/2(n + 1))} +1

where k; ; = (logn) - (i — 1) + j. This choice of the multiplier ensures
EH}%X {Xi,j - gki,jBi,j} <3l'g + 40(11 <7

Ok, ; = max{

and 6; ; is shown to be upper bounded by 2logn. Hence

E [ selép 2etg(zt(e)) - 4\j 2lognlog Na(v/2) (ng(Zt(E)) + 1) - 24v/2logn fl; nlogNz(J)d6:|

<7+ 2logn.
Now, consider the case «y € [1/n,2/n). We upper bound (12) by

m?xs;:gi (etg(zt(e)) - Qang(zt(e))) - (2logn) (l()g'/\ﬁ# n 1) ’

which is controlled by setting v = 1/n in Lemma 5. This case is completed by invoking Proposition 2 as
before. O

Proof of Corollary 7. Assume N > e and let C' > 0. We first note that
Clog ( @ ) log N
inf

a>0 (e

+ a(; g2(zt(e)) + lOgN)

< 2log(logN§;gQ(z(e)) +e)\J C(logNng(z(e)) +e)

. . . . . * _ Clog N . s & Clog N
with the inequality obtained using o™ = \/Z;;l 72 (2(0)) e/ Tog N’ which is a number between d; £  / Tre/logN

and d,, \/g log N. Subsequently,

sué) i €:g(z:(€)) - 210g(10gN igz(z(e)) + e)\' C(logN igz(z(e)) + e)

€G =1

< sug [;Z:Etg(zt(e))_05292(275(6))_

aeldg,dy]

C'log N log(\/alogN):I.
@

(%
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Let L = [logz(\/ "logN + 1) + 1. We discretize the range of a by defining a; = d,2” ") for i € [L]. The
following upper bound holds:

sup[zetg(zde))——zg (2(0)) -

i€[L]

mogN1 (ﬁlogN)].

(%]
Define a collection of random variables indexed by i € [ L] with
n a; I
X, =sup| S aag(au(e) - 3267 )|
9¢G L t=1 t=1
and let B; = %. Applying Lemma 5 with v = 1/n establishes
;T )
< )

We now set s; = «;/8 and § = s1, and apply Proposition 2, yielding

P(Xi—Bi>T)SeXp(—

E{X, - Bzal} < %\/g

It remains to relate this quantity to the rate we are trying to achieve. Note that our bound on P(X; - B; > 7)
has a pure exponential tail, so we only need to consider 8; = (B;s;) ' log(i*(5/s;)) + 1. Taking C > 32 and
observing that (B;s;)™" < 2, we obtain

0, = (Bysi) ' log(i%(5/s:)) + 1 < 21log(i*(5/s:)) + 1 = 2log(i°2"") + 1 < 2log (:°2")
< ilOg(\/Eng)

%)

Finally, we have

\S

sup[zetg(zxe))— ELCIOR E(X. - B.0:) <

i€[L]

3210gN1 (\/3210gN)]
Qg

O

Proof of Corollary 8. We prove the corollary for convex Lipschitz loss where we remove the loss function
using the symmetrization lemma shown earlier. However even if we consider non-convex classes, the loss is
readily removed in the step in the proof below where we apply Lemma 4 where the Lipchitz constant is removed
when we move to covering numbers. However this is a well known technique and to make the proof simpler we
simply assume convexity of loss as well. Our starting point to proving the bounds is Lemma 1, Eq. (4). To show
achievability it suffices to show that

L 3/2 R (F(2R(f)))
Besup 37t (x()) - KR (F2R(1)) g 14 J log(m) +log(log(2R(f)))

< KoT R (F(1))log®? n

where T is the constant that will be inherited from Lemma 4. Define R; = 2¢ and note that since the Rademacher
complexity of the class F(R) is non-decreasing with R,

n(F(2R(/)))

2 3/2
igj}g;eﬁf(xt(ﬁ))*Kan(}—@R(f)))lOg n 1+\J Ro(F(1))

) < log(log(2R(f)))

Rn(F(2R))

log(
=sup sup Zn: e f(x1(€)) - KiRn(F(2R))log** n|1+ \l log( R (F (D) ) + log(log(QR)))
1+ log

R21 feF(R) t=1

Ru(F(R:))

R (F(D) ) +log(log(R;))

(13)

<max sup Zetf(xt(e)) Kan(]:(Rl))log
€N feF(R;) t=1
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Denote a shorthand C', = 1/96 log®(en?) and D, = R (F(R;)). Now note that by Lemma 4 we have that for
every ¢ and every 0 > 1,

n

> erf (xi(e))

t=1

PE( sup >8(1+9Cn).D;))g2re*392.

feF(R;)

Let X; = Sup s r(g,) | Xie1 €tf (x¢(€))| and let B; = 8 (1 + Cp) - D, In this case rewriting the above one sided
tail bound appropriately (with @ = 1 + 7/(8C,, D},)) we see that for any 7 > 0,

2T 2
P(X;-Bi>1)< —exp| - " .
e3 281og”(en?)R2(F(R;))
This establishes one-sided subgaussian tail behavior. Now applying Proposition 2 and setting 0; as suggested by
the proposition we conclude that

. e Ra(F(R)\ 1o

< Kol R (F(1)) log*? n.
This concludes the proof by appealing to Eq. (13). O

Proof of Achievability for Example 4.2.

Lemma 10. The following bound is achievable in the setting of Example 4.2:

B(f) = Dv/n(8]£1(1 +/iog(2[ f]) + loglog (2] 1)) + 12).

This proof specializes the proof of Corollary 8 to the regime where Lemma 3 applies.

Recall our parameterization of F: F(R) = {f € F : | f| < R}. It was shown in [26] that C,, (F(R)) = 2RD+\/n
is an upper bound for R, (F(R)). We consider the rate

Ba() - 2Cn(f(2R(f)))(1 : \j g T 2D loglog2(2R(f)))-

We begin by applying Lemma 1 (5), yielding

& Cn(F(2R(f)))
Ay, < Snge Sl;PQt;&s(ﬁ yi(€)) - QCn(}—(QR(f)))(l + \' 10g(w) + loglogQ(QR(f))).

We now discretize the range of R via R; = 2°. By analogy with the proof of Corollary 8 we get the upper bound,

SBPEG SzlelI\II) fi_li}})%fg;et(f, yi(e)) - 2Cn(]:(Ri))(1 + \‘ log(%) + loglogQ(Ri))

=sup E. sup[ZRi
Y €N

2etyt(e) —4D/nRi/log(Ro) + log(i):|.

Fix a YV-valued tree y and define a set of random variables X; = 2R;| Y1, exy+(€)|,. Let B; = 2D\/nR;.
Lemma 3 shows that

2
T
P(XZ - B'L > T) < 2eXp(*W).

So we have o; = 2D R;+/n, and it will be sufficient to set & = 2D+/n. Since our tail bound is purely sub-gaussian,
we apply Proposition 2 with 0; = 2-\/2log(c:/5) + 4log(i) + 1, yielding the following bound:

- 4D/nRi\/log(R;) + log(i)] < 12D+/n.

sup E. sup[QRi Z ety (€)
y ieN t=1

O

Proof of Achievability for Example 4.5. Unfortunately, the general symmetrization proof in Lemma 1 does not
suffice for this problem. In what follows we use a more specialized symmetrization technique to prove the
lemma.
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Lemma 11. For any countable class of experts, when we consider F to be the class of all distributions over the
set of experts, the following adaptive bound is achievable:

Bn(fiyin) = \I 50 (KL(f|r) +log(n)) Z fsye) + 50 (KL(f|m) +log(n)) + 1.
To show that the rate is achievable we need to show that A,, < 0. Since each ¢, is a distribution over experts and

we are in the linear setting, we do not need to randomize in the definition of the minimax value. Let us use the

shorthand
C(f) = KL(f|r) +log(n),
and take constants K7, K> to be determined later. Define

An:<< inf Sup>> [Zn:@t,yt mf{i Frye) \jKc(f)iEi~f(€i,yt)2+\/Fc(f)},

JreA yeeY || 41| t=1

Using repeated minimax swap, this expression is equal to

<< sup inf» [iyt,yt mf{if,yt \‘Kc(f)§Ei~f<ei,yt>2+ﬁc(f>}

pteA(Y) Gl 4| t=1

(- [z inf Eypepe [(G0,10)]

pteA(Y) t=1| t=19teA

_inf{i foye) \lKC’(f)iEiNf(ei,yt)2+\/FC’(f)}.

feA | t=1

By sub-additivity of square-root we pass to an upper bound,

«upE >> [supi 0f Eypen, [(G0291)] = Eerey [{erryr)]

feF t=1 Gt

_\I C(f) (KgEiJ[(ei,yt)Q] + K'C(f))J~

We now split the square root according to the formula \/ab = inf ., {a/2a + ab/2} and note the range of the
optimal value:

1 J C(f) L1
Vn© (K Sy Eivg[(ei,ye)?] + K'C(f)) ~ VK’

Let us discretize the interval by setting o; = \/FQ (=D for i =1,..., N and note that we only need to take
N = O(log(n)) elements. Write I = {a1,...,an}. Observe that

Vab = inf {a/2a + ab/2} > miP {a/da + ab/2} .
a>0 ac

(14)

For the rest of the proof, the maximum over « is taken within the set I. We have

A<<up1a>> [supi inf By, [(5196)] - Eevey [{er, )]

Dt feA,at=1§teA(F)

7%(KiEiNfl:<ei,yt>2]+K’C(f))*%C{) . (15)

Dropping some negative terms, we upper bound the last expression by

n

<<8;1tp1Eyt~pt >>j1[ sup zn:(f,JE[yZ] —y) - % S Eip[(enw)?] - % :

feF,at=1 t=1

Adding and subtracting § 3i_; E,/ [Ei~f[<ei> y2)2”

$<<szl;1tpEytht»j_1|: sup 3 (L E[v] - ve) - = ZEM[ €iye) ]— ZE s [fenwi)]]

feF,at=1

Ko (S et ] - i) - <2

18



Using Jensen’s inequality to pull out expectations, we obtain an upper bound,
" 2 Ka & 2
«m%m»[mZ@%w 23 Ees[tennl?] - 52 3B [feni)’)
Pt t=1 t=1 t=1

feF,at=1 e
KT(:I e“yt)Q]_Ei~f[(6i7yt>2])—C4(CJ:) '

Next, we introduce Rademacher random variables:

e[ s St 52 o] -t

feF,at=1
K v K n C
- S e (o) 5 SB[ (ent)] - G2
n Ka K . o
< <<S;J;p]Eet>>t_1 [fil;paget( f7yt 9 ]Ez~f[<ei7yt)2:|) — TOét:lEiNf[(ei,yt)Z] _ % )

Moving to the tree notation, we have

supe sup | 35 (207,3:(0) + 5B sy (0)])

y feF,al t=1

-%EMWWMﬂfﬁﬁﬂ%}

Noting that the convex conjugate of ZKL( f|) is given by ¥*(X) = £ log (Ei~rexp (a{ei, X))), we express
the last quantity as

sup E.max % log (]EiNTr exp (Z et(8a(ei, yvie(e)) + 2Ko¢2(ei7yt(e))2) - 2Ko¢2(ei,yt(6))2)) - l(lgn'
y o an t=1 o

Define a random variable indexed by a:

Xo = 35108 (Eivr [exp (ZiLy eo(80er, y1(e)) + 2Ka’ (es, y1(e))*) - 2K 0’ (es,y1(e))*)])
Our goal is to bound E [maxq{Xa — log(n)/4a}]. Now notice that
P(Xa>t)< iI;fE [e/\X"*M]

&

A t=

_inf{ ( 1Nﬂexp(ijet(Soz ez,yt(e))+2Ko¢ (el,yt(e)) ) 2Koa2(ei,yt(e))2))

M}
(&

M=

< EEEiNnexp( et(8a(ei,yt(e)> +2Kao* (e, yz(e))Q) - 2Ka*(e;, yt(e))2)674at

~
I
=

M=

< EEEiNnexp( (8aei, yi(e)) + 2Ka’ (e, yt(e))2)2 -2Ka* (e, yt(e))2)ef4at

~

3l
-

< EcE;.rexp (Z da(4+ Ka)(ei,yi(€))? - 2Ka* (e, yt(e))2)674°‘t.

t=1

The above term is upper bounded by exp(—4at) as soon as 402 (4 + Ka)? < 2K a?, which happens when

0<a<(VK2-4)/K. (16)

In view of (14), we know that o < \/% Thus, to ensure (16), it is sufficient to take K = 50 and K’ = 50°.
Other choices lead to a different balance of constants. We thus have

P(Xa >t) <exp(-4at).

Now that we have the tail bound, we appeal to Proposition 2. Setting s; = 4«; and B; = 1/4«;, we obtain that

IE[ max {Xai - M}] < 10.
i=1,...,N 4o
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B Relaxations and Algorithms

Proof of Admissibility for Example 5.1.

Lemma 12. The following bound is achievable in the setting given in example 5.1:

Bo(f) = 3v/2nmax{KL(f | 7),1} + 4/n. (17)

This algorithm can be interpreted as running a “low-level” instance of the exponential weights algorithm for
each complexity radius R;, then combining the predictions of these algorithms with a “high-level” instance. The
high-level distribution ¢; differs slightly from the usual exponential weights distribution in that it incorporates a
prior whose weight decreases as the complexity radius increases. The prior distribution prevents the strategy
from incurring a penalty that depends on the range of values the complexity radii take on, which would happen
if the standard exponential weights distribution were used.

Following the analysis style of Corollary 8, we directly consider an upper bound based on KL(f | 7) but
instead use a complexity-radius-based upper bound with the KL divergence controlling the complexity radius:
F(R) ={f:KL(f|m) < R}. Concretely, we move from (17) to the bound

Bo.(i) = 3v/nR; + 4/n

for R; = 2! with i € N. To keep the analysis as tidy as possible, we will study the achievability of By, (i) =

D~/ R;n, setting D and including additive constants only when we reach a point in the analysis where it becomes
necessary to do so. The relaxation we consider is

7

Rel, (y1:t) = ;E(f)[i log(z exp(—A[Zi;(qfi (y1;s_1),ys) -2VnR; + Bn(z)])) +2X(n - t)]

Initial Condition: This inequality follows from Lemma 13 and an application of the softmax function as an
upper bound on the supremum over %:

—inf[ inf ig(.ﬂyt) +Bn(i):|

i LfeF(R;) t=1

7 s=1

= Sup|:— i(qgi (y1:s-1), ys) +2vVnR; - Bn (z):|

<inf % log(zi: exp(_,\[z(qfi (Y1:5-1),¥s) - 2VnR; + Bn(i)]))

A>0 s=1

= Reln (yl:n ) .

Admissibility Condition: Define a strategy ¢; via

exp(-N [ X1 {af (y1:s-1), ys) — 2v/nRi + B (i)])

(g:): = ¥ exp(—)\t*[ ij(qg—ij (ylzs—1)7y5> - 2\/nR; + B"(Rj)]y

where we have set

i = argmin[% log(z exp(—/\[t_i(qfi (Y1:5-1),¥s) — 2VnR; + Bn(z)])) +2X(n—-t+ 1)]

A>0

We proceed to demonstrate admissibility:

inf sup[(qe, y¢) + Reln (y1)]

qt Yt

= infsup[(qt,yt) + ;Iig[i IOg(;eXP(—A[Z(Qf"’(yLs1),y5> -2vVnR; + Bn(z)])) +2A(n - t)”

qt Yt s=1

We now plug in ¢; and A} as described above:

1 \ v 1 "
< sup[; log(exp( N Eivgy (01" (wr:0-1). %)) ) + 57 108 (Eivgs oxp(-A7 {0 (y1-1), we)))
Yt t t

+ % log(Zexp(—)\Z [E(qf’ (y1:5-1), ys) - 2vnR; + Bn(z)])) +2X; (n - t)]

s=1

20



We combine the first two terms in the expression and apply Jensen’s inequality to arrive at an upper bound:

< Sup[)\l* 10g(Ei,y~q; exp()\:(qtR"’ (yre-1) —a, " (yl:t—l)»yt)))

Yt t

+— log(ZeXp( [tf(qfi (Y1:s-1),ys) - 2V/nRi + Bn(i)])) +2)] (n - t)].

The first term is now bounded using sub-gaussianity.

< F log(z exp( [Z;(qfi(ylzs,l),yg -2VnR; + Bn(z)])) +2X\ (n—-t+1)

_ inf[% log(zi:exp(—)\[;(q?i (Y1), ys) — 2/nEs + Bn(i)])) FoN(n—t+ 1)]

A>0

= Rel, (y1:z—1 )
Having shown that Rel,, is an admissible relaxation, it remains to show that the relaxation’s final value,

Rel, () = ;r:f h log(z exp(A[2VnR; - D\/n_Ri])) + 2)\n:|

is not too large. Setting D = 3,
= iAnf log(z exp( /\\/_)) + 2)\n]

The complexity radius R; is discretized such that R; — R;—1 > 1, yielding

< inf ilog(exp( A/n) + Z(R -Ri-1) exp( \/nRi)) + 2)\n:|

A>0 =2

< inf llog(exp(—)\\/ﬁ)+ fl exp(—AM)dR)wAn].

)\>0»)\

The integral is a routine calculation.

fl exp(-\VnR)dR = - exp( )\\/_)[)\\/_+1]

)‘ 1
Finally, set A = 1/\/n yielding
Rel,(-) <4v/n.
Note that instead of setting A\; = A; as described above, we could have set A; = 1/y/n and achieved the same
regret bound. O

Lemma 13. Consider the experts setting from Example 4.5, but with hypothesis class F(R) =
{f:KL(f | ) < R}. The following inequality holds:

— inf i(yt,f)s—i(yt,qR(yl;t_1))+2@.

feF(R) t=1 t=1

Proof. Our strategy is to move to an upper bound based on the Kullback-Leibler divergence and exploit convex
duality:

— inf i(yt,f)

feF(R) t=1

<— inf {i yi, f +aKL(f\7T)}+aR

feF(R)

< - inf{E(yt,f) +aKL(f | 71)} +aR.

feF \t=1

We use U* to denote the Fenchel conjugate of KL(- | 7):

=al* (_7 Zyt)\ll +aR.

t=1
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The function KL(- | ) is 1-strongly convex, which implies that U* is 1-strongly smooth. We peel off one term
at a time:

1 7= 1 1 n—1
ol L) LEn) frore L5
t=1 t=1 Qo1

This obtains the following upper bound:

n . 1 t-1
_Z<yt’v\1} (—Zys)>+ n+aR.
=1 e |
Setting « = \/n/ R and noting that V¥* ( \/_ZS 1 yg) = ¢®(y1.4-1) yields the result. O

Proof of Lemma 9. Recall the form of the Ada,, relaxation, where we have abbreviated Rel’f to R™:

Ada, (yi:t) 7supE sup[R (Y1) — R" O(R )+2 Z € Eys~qs (U165 s 11y (€ ))K(ys,ys(e))

vy’ s=t+1

Initial Condition: This directly follows from the fact that R™ satisfy the initial condition:
Ada, (y1) = sup[R™(y1:) - RTO(R™)]
R

> Sup[— inf S 0(f) - RRG(RR)]

R feF(R) t=1
= —inf inf [Z O(f,ye) + RRH(RR)].
R fer(m)lizt
Therefore, playing the strategy corresponding to Ada,, yields an adaptive regret bound of the form B, (R) =
RelZ()0(RelZ()) + Ada,(-).
Admissibility Condition: We obtain the following equalities using the same minimax swap technique as
in the Lemma 1 proof:
infsup E@tNQt [‘g(ytv yt) +Ada, (yl:t )]

qt Yt

= infsupEg,q, sup E bup[f(ynyt%R (1) - REO(RT)

qt Yt ¥y’

+2 ) €sBgemaP (yry .. 1(e>>£(ys»ys( ))]

s=t+1

= supEytht supIE Sup[lnny;Npté(gjt, e RR(ylzt) - RRG(RR)

vy’ R

s=t+1

+2 Z ESEAL‘NQS (Y1:t5Y 106 1(6))Z(y57y5(6))]
Note that

qteA(D

i?nybpté(gtyy;) - inf )Eyt qt yt~pf£(yt7yt)
Yt

and we may replace the infimizing distribution with the randomized strategy ¢;i® corresponding to Rel?. The
fact that this strategy depends on y1:¢—1 is left implicit. This yields an upper bound,

supEyrpt sup E. sup[]E rep Bgpgn (G, 91) + R (1) - RTO(RT)

Yt~qy
vy’

2 3 B, YD)

s=t+1

which we can write by adding and subtracting E@tNQ;%f(Qt, yt) as
sup Ey, ~p, sup Ec Sl}l%pl:]EyQNPtEgthth(ﬁt, yi) - IE@M?Z(&, ye) + IEQM?E(Z%, Yt)
Pt .y’

+ RR(yI:t) _ RRG(RR) +2 Zl eSIE@Sng(yl:t7y;+1:571(6))€(735, ys(e)):l.

s=t+
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Now, using the fact that RE are admissible,

<supEy,p, SUPE SUP[E ~ptEy’t~qth(ﬁt7 y) - Egt~q§£(gt: Yt)

pt ¥y’

+R (ylt 1) R Q(R )+2 Z € EyGNqR(ylf’yHls 1(5))€(y57y5(6))

s=t+1

By Jensen’s inequality, we upper bound the last expression by

Sup Ey, y;-p, Sup Ee sgPl:Egthfg(Qt: Y1) = By, qnl(, ) + R (yre1) - R7O(R™)
t Y,y

+2 Z el G~ B (Y1:6,¥ ]y 1.0 1 (€ ))E(ys,ys(e))]

s=t+1

We now replace each choice 3; in the last sum by a worst-case choice y; :

Yt,Yy~Pt v
uy vy

<supE sup supE sup[E qgraé(gjt, yi) - Egthfﬁ(g)h y) + RR(yl;t,1) — RRG(RR)
Pt

+2 Z esB 9s~q 2 (Y1:-1.9) ¥} 1 qiee 1(6))€(y57y5(6)):|.

s=t+1

We then introduce €; since v, y; can be renamed. The last expression is equal to

S;}PEyt,y;%Eq sup sup Ee sup[Egt ~qr e (E(Ge,yt) (G, )]+ R (yre-1) - RTO(RT)
t yy vy’

n

+2 Z &R s~a B (y1:6-1,9) ¥} 1,51 (€ ))K(ys,ys(e))].
s=t+1

By splitting into two terms we arrive at an upper bound of

/(0G0 y)] + R (y141) - RFO(RT)

yth

supEy, ~p, Ee, sup sup Ec sup |:2et]E

Pt vy vy’

F2 3 B2 0 9]

s=t+1

=supE,, sup supE sup|:2etIEyt g r [0, ye)] + R (y1:-1) - REO(RT)
vt vy vy’

n
+2 Z 65 Js~qg Byie- lvyt yt+15‘ 1( ))é(ys,ys(d)]

s=t+1

= Adan (y1:t-1).
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