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École Normale Supérieure & Université Pierre et Marie Curie
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Abstract

Restricted Boltzmann machines are undirected neural networks which have been
shown to be effective in many applications, including serving as initializations
for training deep multi-layer neural networks. One of the main reasons for their
success is the existence of efficient and practical stochastic algorithms, such as
contrastive divergence, for unsupervised training. We propose an alternative deter-
ministic iterative procedure based on an improved mean field method from statis-
tical physics known as the Thouless-Anderson-Palmer approach. We demonstrate
that our algorithm provides performance equal to, and sometimes superior to, per-
sistent contrastive divergence, while also providing a clear and easy to evaluate
objective function. We believe that this strategy can be easily generalized to other
models as well as to more accurate higher-order approximations, paving the way
for systematic improvements in training Boltzmann machines with hidden units.

1 Introduction

A restricted Boltzmann machine (RBM) [1, 2] is a type of undirected neural network with sur-
prisingly many applications. This model has been used in problems as diverse as dimensionality
reduction [3], classification [4], collaborative filtering [5], feature learning [6], and topic modeling
[7]. Also, quite remarkably, it has been shown that generative RBMs can be stacked into multi-layer
neural networks, forming an initialization for deep network architectures [8, 9]. Such deep architec-
tures are believed to be crucial for learning high-order representations and concepts. Although the
amount of training data available in practice has made pretraining of deep nets dispensable for super-
vised tasks, RBMs remain at the core of unsupervised learning, a key area for future developments
in machine intelligence [10].

While the training procedure for RBMs can be written as a log-likelihood maximization, an ex-
act implementation of this approach is computationally intractable for all but the smallest models.
However, fast stochastic Monte Carlo methods, specifically contrastive divergence (CD) [2] and per-
sistent CD (PCD) [11, 12], have made large-scale RBM training both practical and efficient. These
methods have popularized RBMs even though it is not entirely clear why such approximate methods
should work as well as they do.

In this paper, we propose an alternative deterministic strategy for training RBMs, and neural net-
works with hidden units in general, based on the so-called mean-field, and extended mean-field,
methods of statistical mechanics. This strategy has been used to train neural networks in a num-
ber of earlier works [13, 14, 15, 16, 17]. In fact, for entirely visible networks, the use of adaptive
cluster expansion mean-field methods has lead to spectacular results in learning Boltzmann machine
representations [18, 19].
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However, unlike these fully visible models, the hidden units of the RBM must be taken into account
during the training procedure. In 2002, Welling and Hinton [17] presented a similar deterministic
mean-field learning algorithm for general Boltzmann machines with hidden units, considering it a
priori as a potentially efficient extension of CD. In 2008, Tieleman [12] tested the method in detail
for RBMs and found it provided poor performance when compared to both CD and PCD. In the
wake of these two papers, little inquiry has been made in this direction, with the apparent consensus
being that the deterministic mean-field approach is ineffective for RBM training.

Our goal is to challenge this consensus by going beyond naı̈ve mean field, a mere first-order approx-
imation, by introducing second-, and possibly third-, order terms. In principle, it is even possible to
extend the approach to arbitrary order. Using this extended mean-field approximation, commonly
known as the Thouless-Anderson-Palmer [20] approach in statistical physics, we find that RBM
training performance is significantly improved over the naı̈ve mean-field approximation and is even
comparable to PCD. The clear and easy to evaluate objective function, along with the extensible
nature of the approximation, paves the way for systematic improvements in learning efficiency.

2 Training restricted Boltzmann machines

A restricted Boltzmann machine, which can be viewed as a two layer undirected bipartite neural
network, is a specific case of an energy based model wherein a layer of visible units is fully con-
nected to a layer of hidden units. Let us denote the binary visible and hidden units, indexed by i and
j respectively, as vi and hj . The energy of a given state, v = {vi}, h = {hj}, of the RBM is given
by

E(v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

viWijhj , (1)

whereWij are the entries of the matrix specifying the weights, or couplings, between the visible and
hidden units, and ai and bj are the biases, or the external fields in the language of statistical physics,
of the visible and hidden units, respectively. Thus, the set of parameters {Wij , ai, bj} defines the
RBM model.

The joint probability distribution over the visible and hidden units is given by the Gibbs-Boltzmann
measure P (v,h) = Z−1e−E(v,h), where Z =

∑
v,h e

−E(v,h) is the normalization constant known
as the partition function in physics. For a given data point, represented by v, the marginal of the
RBM is calculated as P (v) =

∑
h P (v,h). Writing this marginal of v in terms of its log-likelihood

results in the difference
L = lnP (v) = −F c(v) + F, (2)

where F = − lnZ is the free energy of the RBM, and F c(v) = − ln(
∑

h e
−E(v,h)) can be inter-

preted as a free energy as well, but with visible units fixed to the training data point v. Hence, F c is
referred to as the clamped free energy.

One of the most important features of the RBM model is that F c can be easily computed as h
may be summed out analytically since the hidden units are conditionally independent of the visible
units, owing to the RBM’s bipartite structure. However, calculating F is computationally intractable
since the number of possible states to sum over scales combinatorially with the number of units in
the model. This complexity frustrates the exact computation of the gradients of the log-likelihood
needed in order to train the RBM parameters via gradient ascent. Monte Carlo methods for RBM
training rely on the observation that ∂F

∂Wij
= P (vi = 1, hj = 1), which can be simulated at a

lower computational cost. Nevertheless, drawing independent samples from the model in order
to approximate this derivative is itself computationally expensive and often approximate sampling
algorithms, such as CD or PCD, are used instead.

3 Extended mean field theory of RBMs

Here, we present a physics-inspired tractable estimation of the free energy F of the RBM. This
approximation is based on a high temperature expansion of the free energy derived by Georges and
Yedidia in the context of spin glasses [21] following the pioneering works of [20, 22]. We refer the
reader to [23] for a review of this topic.
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To apply the Georges-Yedidia expansion to the RBM free energy, we start with a general energy
based model which possesses arbitrary couplings Wij between undifferentiated binary spins si ∈
{0, 1}, such that the energy of the Gibbs-Boltzmann measure on the configuration s = {si} is
defined by E(s) = −∑i aisi −

∑
(i,j)Wijsisj

1. We also restore the role of the temperature,
usually considered constant and for simplicity set to 1 in most energy based models, by multiplying
the energy functional in the Boltzmann weight by the inverse temperature β.

Next, we apply a Legendre transform to the free energy, a standard procedure in statistical physics,
by first writing the free energy as a function of a newly introduced auxiliary external field q = {qi},
−βF [q] = ln

∑
s e−βE(s)+β

∑
i qisi . This external field will be eventually set to the value q = 0 in

order to recover the true free energy. The Legendre transform Γ is then given as a function of the
conjugate variable m = {mi} by maximizing over q,

−βΓ[m] = −βmax
q

[F [q] +
∑
i

qimi] = −β(F [q∗[m]] +
∑
i

q∗i [m]mi), (3)

where the maximizing auxiliary field q∗[m], a function of the conjugate variables, is the inverse
function of m[q] ≡ −dFdq . Since the derivative dF

dq is exactly equal to −〈s〉, where the operator 〈·〉
refers to the average configuration under the Boltzmann measure, the conjugate variable m is in fact
the equilibrium magnetization vector 〈s〉. Finally, we observe that the free energy is also the inverse
Lengendre transform of its Legendre transform at q = 0,

−βF = −βF [q = 0] = βmin
m

[Γ[m]] = −βΓ[m∗], (4)

where m∗ minimizes Γ, which yields an expression of the free energy in terms of the magnetization
vector. Following [22, 21], this formulation allows us to perform a high temperature expansion of
A(β,m) ≡ −βΓ[m] around β = 0 at fixed m,

A(β,m) = A(0,m) + β
∂A(β,m)

∂β

∣∣∣∣
β=0

+
β2

2

∂2A(β,m)

∂β2

∣∣∣∣
β=0

+ · · · , (5)

where the dependence on β of the product βq must carefully be taken into account. At infinite
temperature, β = 0, the spins decorrelate, causing the average value of an arbitrary product of spins
to equal the product of their local magnetizations; a useful property. Accounting for binary spins
taking values in {0, 1}, one obtains the following expansion

−βΓ(m) =−
∑
i

[mi lnmi + (1−mi) ln(1−mi)] + β
∑
i

aimi + β
∑
(i,j)

Wijmimj

+
β2

2

∑
(i,j)

W 2
ij(mi −m2

i )(mj −m2
j )

+
2β3

3

∑
(i,j)

W 3
ij(mi −m2

i )

(
1

2
−mi

)
(mj −m2

j )

(
1

2
−mj

)
+ β3

∑
(i,j,k)

WijWjkWki(mi −m2
i )(mj −m2

j )(mk −m2
k) + · · · 1 (6)

The zeroth-order term corresponds to the entropy of non-interacting spins with constrained mag-
netizations values. Taking this expansion up to the first-order term, we recover the standard naı̈ve
mean-field theory. The second-order term is known as the Onsager reaction term in the TAP equa-
tions [20]. The higher orders terms are systematic corrections which were first derived in [21].

Returning to the RBM notation and truncating the expansion at second-order for the remainder of
the theoretical discussion, we have

Γ(mv,mh) ≈ S(mv,mh)−
∑
i

aim
v
i −

∑
j

bjm
h
j

−
∑
i,j

Wijm
v
im

h
j +

W 2
ij

2
(mv

i − (mv
i )

2)(mh
j − (mh

j )2), (7)

1The notation
∑

(i,j) and
∑

(i,j,k) refers to the sum over the distinct pairs and triplets of spins, respectively.
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where S is the entropy contribution, mv and mh are introduced to denote the magnetization of the
visible and hidden units, and β is set equal to 1. Eq. (7) can be viewed as a weak coupling expansion
in Wij . To recover an estimate of the RBM free energy, Eq. (7) must be minimized with respect to
its arguments, as in Eq. (4). Lastly, by writing the stationary condition dΓ

dm = 0, we obtain the self-
consistency constraints on the magnetizations. At second-order we obtain the following constraint
on the visible magnetizations,

mv
i ≈ sigm

ai +
∑
j

Wijm
h
j −W 2

ij

(
mv
i −

1

2

)(
mh
j − (mh

j )2
) , (8)

where sigm[x] = (1 + e−x)−1 is a logistic sigmoid function. A similar constraint must be satisfied
for the hidden units, as well. Clearly, the stationarity condition for Γ obtained at order n utilizes
terms up to the nth order within the sigmoid argument of these consistency relations. Whatever
the order of the approximation, the magnetizations are the solutions of a set of non-linear coupled
equations of the same cardinality as the number of units in the model. Finally, provided we can
define a procedure to efficiently derive the value of the magnetizations satisfying these constraints,
we obtain an extended mean-field approximation of the free energy which we denote as FEMF.

4 RBM evaluation and unsupervised training with EMF

4.1 An iteration for calculating FEMF

Recalling the log-likelihood of the RBM, L = −F c(v) + F , we have shown that a tractable ap-
proximation of F , FEMF, is obtained via a weak coupling expansion so long as one can solve the
coupled system of equations over the magnetizations shown in Eq. (8). In the spirit of iterative
belief propagation [23], we propose that these self-consistency relations can serve as update rules
for the magnetizations within an iterative algorithm. In fact, the convergence of this procedure has
been rigorously demonstrated in the context of random spin glasses [24]. We expect that these con-
vergence properties will remain present even for real data. The iteration over the self-consistency
relations for both the hidden and visible magnetizations can be written using the time index t as

mh
j [t+ 1]← sigm

[
bj +

∑
i

Wijm
v
i [t]−W 2

ij

(
mh
j [t]− 1

2

)(
mv
i [t]− (mv

i [t])
2
)]
, (9, 10)

mv
i [t+ 1]← sigm

ai +
∑
j

Wijm
h
j [t+ 1]−W 2

ij

(
mv
i [t]−

1

2

)(
mh
j [t+ 1]− (mh

j [t+ 1])2
) ,

where the time indexing follows from application of [24]. The values of mv and mh minimizing
Γ(mv,mh), and thus providing the value of FEMF, are obtained by running Eqs. (9, 10) until they
converge to a fixed point. We note that while we present an iteration to find FEMF up to second-order
above, third-order terms can easily be introduced into the procedure.

4.2 Deterministic EMF training

By using the EMF estimation of F , and the iterative algorithm detailed in the previous section to
calculate it, it is now possible to estimate the gradients of the log-likelihood used for unsupervised
training of the RBM model by substituting F with FEMF. We note that the deterministic iteration
we propose for estimating F is in stark contrast with the stochastic sampling procedures utilized in
CD and PCD to the same end. The gradient ascent update of weight Wij is approximated as

∆Wij ∝
∂L
∂Wij

≈ − ∂F c

∂Wij
+
∂FEMF

∂Wij
, (11)

where ∂FEMF

∂Wij
can be computed by differentiating Eq. (7) at fixed mv and mh and computing the

value of this derivative at the fixed points of Eqs. (9, 10) obtained from the iterative procedure. The
gradients with respect to the visible and hidden biases can be derived similarly. Interestingly, ∂F

EMF

∂ai
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and ∂FEMF

∂bj
are merely the fixed-point magnetizations of the visible and hidden units, mv

i and mh
j ,

respectively.

A priori, the training procedure sketched above can be used at any order of the weak coupling
expansion. The training algorithm introduced in [17], which was shown to perform poorly for RBM
training in [12], can be recovered by retaining only the first-order of the expansion when calculating
FEMF. Taking FEMF to second-order, we expect that training efficiency and performance will be
greatly improved over [17]. In fact, including the third-order term in the training algorithm is just
as easy as including the second-order one, due to the fact that the particular structure of the RBM
model does not admit triangles in its corresponding factor graphs. Although the third-order term in
Eq. (6) does include a sum over distinct pairs of units, as well as a sum over coupled triplets of units,
such triplets are excluded by the bipartite structure of the RBM. However, coupled quadruplets do
contribute to the fourth-order term and therefore fourth- and higher-order approximations require
much more expensive computations [21], though it is possible to utilize adaptive procedures [19].

5 Numerical experiments

5.1 Experimental framework

To evaluate the performance of the proposed deterministic EMF RBM training algorithm1, we per-
form a number of numerical experiments over two separate datasets and compare these results with
both CD-1 and PCD. We first use the MNIST dataset of labeled handwritten digit images [25]. The
dataset is split between 60 000 training images and 10 000 test images. Both subsets contain approx-
imately the same fraction of the ten digit classes (0 to 9). Each image is comprised of 28×28 pixels
taking values in the range [0, 255]. The MNIST dataset was binarized by setting all non-zero pixels
to 1 in all experiments.

Second, we use the 28 × 28 pixel version of the Caltech 101 Silhouette dataset [26]. Constructed
from the Caltech 101 image dataset, the silhouette dataset consists of black regions of the primary
foreground scene objects on a white background. The images are labeled according to the object in
the original picture, of which there are 101 unevenly represented object labels. The dataset is split
between a training (4 100 images), a validation (2 264 images), and a test (2 304 images) sets.

For both datasets, the RBM models require 784 visible units. Following previous studies evaluating
RBMs on these datasets, we fix the number of RBM hidden units to 500 in all our experiments. Dur-
ing training, we adopt the mini-batch learning procedure for gradient averaging, with 100 training
points per batch for MNIST and 256 training points per batch for Caltech 101 Silhouette.

We test the EMF learning algorithm presented in Section 4.2 in various settings. First, we com-
pare implementations utilizing the first-order (MF), second-order (TAP2), and third-order (TAP3)
approximations of F . Higher orders were not considered due to their greater complexity. Next,
we investigate training quality when the self-consistency relations on the magnetizations were not
converged when calculating the derivatives of FEMF, instead iterated for a small, fixed (3) number
of times, an approach similar to CD. Furthermore, we also evaluate a “persistent” version of our
algorithm, similar to [12]. As in PCD, the iterative EMF procedure possesses multiple initialization-
dependent fixed-point magnetizations. Converging multiple chains allows us to collect proper statis-
tics on these basins of attraction. In this implementation, the magnetizations of a set of points,
dubbed fantasy particles, are updated and maintained throughout the training in order to estimate
F . This persistent procedure takes advantage of the fact that the RBM-defined Boltzmann measure
changes only slightly between parameter updates. Convergence to the new fixed point magnetiza-
tions at each minibatch should therefore be sped up by initializing with the converged state from
the previous update. Our final experiments consist of persistent training algorithms using 3 itera-
tions of the magnetization self-consistency relations (P-MF, P-TAP2 and P-TAP3) and one persistent
training algorithm using 30 iterations (P-TAP2-30) for comparison.

For comparison, we also train RBM models using CD-1, following the prescriptions of [27], and
PCD, as implemented in [12]. Given that our goal is to compare RBM training approaches rather
than achieving the best possible training across all free parameters, neither momentum nor adaptive
learning rates were included in any of the implementations tested. However, we do employ a weight

1Available as a Julia package at https://github.com/sphinxteam/Boltzmann.jl
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Figure 1: Estimates of the per-sample log-likelihood over the MNIST test set, normalized by the
total number of units, as a function of the number of training epochs. The results for the different
training algorithms are plotted in different colors with the same color code used for both panels. Left
panel : Pseudo log-likelihood estimate. The difference between EMF algorithms and contrastive
divergence algorithms is minimal. Right panel : EMF log-likelihood estimate at 2nd order. The
improvement from MF to TAP is clear. Perhaps reasonably, TAP demonstrates an advantage over
CD and PCD. Notice how the second-order EMF approximation of L provides less noisy estimates,
at a lower computational cost.

decay regularization in all our trainings to keep weights small; a necessity for the weak coupling
expansion on which the EMF relies. When comparing learning procedures on the same plot, all free
parameters of the training (e.g. learning rate, weight decay, etc.) were set identically. All results are
presented as averages over 10 independent trainings with standard deviations reported as error bars.

5.2 Relevance of the EMF log-likelihood

Our first observation is that the implementations of the EMF training algorithms are not overly
belabored. The free parameters relevant for the PCD and CD-1 procedures were found to be equally
well suited for the EMF training algorithms. In fact, as shown in the left panel of Fig. 1, and the
right inset of Fig. 3, the ascent of the pseudo log-likelihood over training epochs is very similar
between the EMF training methods and both the CD-1 and PCD trainings.

Interestingly, for the Caltech 101 Silhouettes dataset, it seems that the persistent algorithms tested
have difficulties in ascending the pseudo-likelihood in the first epochs of training. This contradicts
the common belief that persistence yields more accurate approximations of the likelihood gradients.
The complexity of the training set, 101 classes unevenly represented over only 4 100 training points,
might explain this unexpected behavior. The persistent fantasy particles all converge to similar non-
informative blurs in the earliest training epochs with many epochs being required to resolve the
particles to a distribution of values which are informative about the pseudo log-likelihood.

Examining the fantasy particles also gives an idea of the performance of the RBM as a generative
model. In Fig. 2, 24 randomly chosen fantasy particles from the 50th epoch of training with PCD,
P-MF, and P-TAP2 are displayed. The RBM trained with PCD generates recognizable digits, yet
the model seems to have trouble generating several digit classes, such as 3, 8, and 9. The fantasy
particles extracted from a P-MF training are of poorer quality, with half of the drawn particles
featuring non-identifiable digits. The P-TAP2 algorithm, however, appears to provide qualitative
improvements. All digits can be visually discerned, with visible defects found only in two of the
particles. These particles seem to indicate that it is indeed possible to efficiently persistently train
an RBM without converging on the fixed point of the magnetizations.

The relevance of the EMF log-likelihood for RBM training is further confirmed in the right panel
of Fig. 1, where we observe that both CD-1 and PCD ascend the second-order EMF log-likelihood,
even though they are not explicitly constructed to optimize over this objective. As expected, the
persistent TAP2 algorithm with 30 iterations of the magnetizations (P-TAP2-30) achieves the best
maximization of LEMF . However, P-TAP2, with only 3 iterations of the magnetizations, achieves
very similar performance, perhaps making it preferable when a faster training algorithm is desired.
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PCD-1

P-MF

P-TAP

Figure 2: Fantasy particles generated by a 500 hidden unit RBM after 50 epochs of training on
the MNIST dataset with PCD (top two rows), P-MF (middle two rows) and P-TAP2 (bottom two
rows). These fantasy particles represent typical samples generated by the trained RBM when used as
a generative prior for handwritten numbers. The samples generated by P-TAP2 are of similar subjec-
tive quality, and perhaps slightly preferable, to those generated by PCD, while certainly preferable
to those generated by P-MF.

Moreover, we note that although P-TAP2 demonstrates improvements with respect to the P-MF, the
P-TAP3 does not yield significantly better results than P-TAP2. This is perhaps not surprising since
the third order term of the EMF expansion consists of a sum over as many terms as the second order,
but at a smaller order in {Wij}.
Lastly, we note the computation times for each of these approaches. For a Julia implementation of
the tested RBM training techniques running on a 3.2 GHz Intel i5 processor, we report the 10 trial
average wall times for fitting a single 100-sample batch normalized against the model complexity.
PCD, which uses only a single sampling step, required 14.10±0.97 µs/batch/unit. The three EMF
techniques, P-MF, P-TAP2, and P-TAP3, each of which use 3 magnetization iterations, required
21.25 ± 0.22 µs/batch/unit, 37.22 ± 0.34 µs/batch/unit, and 64.88 ± 0.45 µs/batch/unit,
respectively. If fewer magnetization iterations are required, as we have empirically observed in
limited tests, then the run times of the P-MF and P-TAP2 approaches are commesurate with PCD.

5.3 Classification task performance

We also evaluate these RBM training algorithms from the perspective of supervised classification.
An RBM can be interpreted as a deterministic function mapping the binary visible unit values to
the real-valued hidden unit magnetizations. In this case, the hidden unit magnetizations represent
the contributions of some learned features. Although no supervised fine-tuning of the weights is
implemented, we tested the quality of the features learned by the different training algorithms by
their usefulness in classification tasks. For both datasets, a logistic regression classifier was cal-
ibrated with the hidden units magnetizations mapped from the labeled training images using the
scikit-learn toolbox [28]. We purposely avoid using more sophisticated classification algo-
rithms in order to place emphasis on the quality of the RBM training, not the classification method.

In Fig. 3, we see that the MNIST classification accuracy of the RBMs trained with the P-TAP2
algorithms is roughly equivalent with that obtained when using PCD training, while CD-1 training
yields markedly poorer classification accuracy. The slight decrease in performance of CD-1 and
TAP2 along as the training epochs increase might be emblematic of over-fitting by the non-persistent
algorithms, although no decrease in the EMF test set log-likelihood was observed.

Finally, for the Caltech 101 Silhouettes dataset, the classification task, shown in the right panel of
Fig. 3, is much more difficult a priori. Interestingly, the persistent algorithms do not yield better
results on this task. However, we observe that the performance of deterministic EMF RBM training
is at least comparable with both CD-1 and PCD.
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Figure 3: Test set classification accuracy for the MNIST (left) and Caltech 101 Silhouette (right)
datasets using logistic regression on the hidden-layer marginal probabilities as a function of the num-
ber of epochs. As a baseline comparison, the classification accuracy of logistic regression performed
directly on the data is given as a black dashed line. The results for the different training algorithms
are displayed in different colors, with the same color code being used in both panels. (Right inset:)
Pseudo log-likelihood over training epochs for the Caltech 101 Silhouette dataset.

6 Conclusion

We have presented a method for training RBMs based on an extended mean field approximation.
Although a naı̈ve mean field learning algorithm had already been designed for RBMs, and judged
unsatisfactory [17, 12], we have shown that extending beyond the naı̈ve mean field to include terms
of second-order and above brings significant improvements over the first-order approach and allows
for practical and efficient deterministic RBM training with performance comparable to the stochastic
CD and PCD training algorithms.

The extended mean field theory also provides an estimate of the RBM log-likelihood which is easy
to evaluate and thus enables practical monitoring of the progress of unsupervised learning through-
out the training epochs. Furthermore, training on real-valued magnetizations is theoretically well-
founded within the presented approach, paving the way for many possible extensions. For instance,
it would be quite straightforward to apply the same kind of expansion to Gauss-Bernoulli RBMs, as
well as to multi-label RBMs.

The extended mean field approach might also be used to learn stacked RBMs jointly, rather than
separately, as is done in both deep Boltzmann machine and deep belief network pre-training, a
strategy that has shown some promise [29]. In fact, the approach can be generalized even to non-
restricted Boltzmann machines with hidden variables with very little difficulty. Another interesting
possibility would be to make use of higher-order terms in the series expansion using adaptive cluster
methods such as those used in [19]. We believe our results show that the extended mean field
approach, and in particular the Thouless-Anderson-Palmer one, may be a good starting point to
theoretically analyze the performance of RBMs and deep belief networks.
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