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1 Proofs

Before we prove Theorem 2, we need the following lemma for comparing two curves.

Lemma 4 Let S1, S2 be two bounded smooth curves in Rd. Let π12 : S1 7→ S2 and π21 : S2 7→ S1

be the projections between them. For a ∈ S1 and b ∈ S2, define g1(a) and g2(b) as the unit tangent
vectors for S1 and S2 at a and b respectively. Assume S1 and S2 are similar in the following sense:

(S1) π12 and π21 are one-one and onto,

(S2) the projections are similar:

max

{
sup
x∈S1

‖π12(x)− π−121 (x)‖, sup
x∈S2

‖π21(x)− π−112 (x)‖
}

= O(ε1),

(S3) the tangent vectors are similar:

max

{
sup
x∈S1

|g1(x)T g2(π12(x))|, sup
x∈S2

|g2(x)T g1(π21(x))|
}

= 1 +O(ε2),

(S4) the length are similar:
length(S1)− length(S2) = O(ε3)

with ε1, ε2, ε3 being very small. Let I1 =
∫
S1
‖x − π12(x)‖2dx and I2 =

∫
S2
‖y − π21(y)‖2dy.

Then we have
|I1 − I2| =

√
I2O(ε1) + I2O(ε2 + ε3).

Moreover, if we further assume

(S5) the Hausdorff distance Haus(S1, S2) = O(ε4) is small,

then for any function ξ : Rd 7→ R that has bounded continuous derivative, we have∫ 1

0

ξ(γ1(t))dt =

∫ 1

0

ξ(γ2(t))dt(1 +O(ε2 + ε3 + ε4)).
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PROOF. Since S1 and S2 are two bounded, smooth curves. We may parametrized them by γ1 :
[0, 1] 7→ S1 and γ2 : [0, 1] 7→ S2 with

γ′1(t) = g̃1(γ1(t)), γ1(0) = s1,

γ′2(t) = g̃2(γ2(t)), γ2(0) = s2 = π12(γ1(0)),
(1)

where g̃1 = `1g1 and g̃2 = `2g2 for `1, `2 being the length of S1 and S2 and s1 one of the end point
of S1. The constant `j works as a normalization constant since gj is an unit vector; it is easy to
verify that

length(Sj) =

∫ 1

0

‖g̃j(t)‖dt =

∫ 1

0

`j‖gj(t)‖dt = `j .

The starting point s2 ∈ S2 must be the projection π12(s1) otherwise the condition (S1) will not hold.

Let

I1 =

∫ 1

0

‖γ1(t)− π12(γ1(t))‖2dt, I2 =

∫ 1

0

‖γ2(t)− π21(γ2(t))‖2dt. (2)

Then the goal is to prove I1 − I2 = O(ε21) +O(ε22).

Now we consider another parametrization for S2. Let η2 : [0, 1] 7→ S2 such that η2(t) = π12(γ1(t)).
By (S1), η2 is a parametrization for S2. The parametrization η2(t) has the following useful proper-
ties:

η2(0) = π12(γ1(0)) = s2,

η′2(t) = g2(η2(t))g2(η2(t))T γ′1(t) = g2(η2(t))g2(π12(γ1(t)))T g̃1(γ1(t)).
(3)

By condition (S3) and (S4), we have

g2(π12(γ1(t)))T g̃1(γ1(t)) = `1g2(π12(γ1(t)))T g1(γ1(t))

= `1(1 +O(ε2))

= `2(1 +O(ε2) +O(ε3))

(4)

uniformly for all t ∈ [0, 1]. Now apply this result to η′2(t), we obtain that

η′2(t) = g2(η2(t))(1 +O(ε2) +O(ε3)). (5)

Together with η2(0) = γ2(0), we have

sup
t∈[0,1]

‖η2(t)− γ2(t)‖ = O(ε2) +O(ε3). (6)

Now by definition of I1 and the fact that π−112 (η2(t)) = γ1(t), we have

I1 =

∫ 1

0

‖γ1(t)− π12(γ1(t))‖2dt

=

∫ 1

0

‖π−112 (η2(t))− η2(t)‖2dt

=

∫ 1

0

‖π21(η2(t)) +O(ε1)− η2(t)‖2dt by (S2)

= I ′2 +
√
I ′2O(ε1),

(7)

where I ′2 =
∫ 1

0
‖π21(η2(t))− η2(t)‖2dt.

Now we bound the difference between I ′2 and I2. Let U be an uniform distribution over [0, 1] and
define h(x) : [0, 1] 7→ R as h(x) = ‖π21(γ2(x))− γ2(x)‖. Note that it is easy to see that h(x) has
bounded derivative. Then,

I2 = E‖π21(γ2(U))− γ2(U)‖2 = Eh(U). (8)
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Since both γ2 and η2 are parametrization for the curve S2, γ−12 is well defined for all image of η2.
We define the random variable W = γ−12 (η2(U)). Then by definition of I ′2,

I ′2 = E‖π21(η2(U))− η2(U)‖2 = Eh(W ). (9)

Since supt∈[0,1] ‖γ′2(t) − η′2(t)‖ = O(ε2) + O(ε3), we have γ−12 (η2(x)) = x + O(ε2) + O(ε3).
Thus, the pW (t)−pU (t) = O(ε2)+O(ε3), where pW and pU are the probability density for random
variable W and U . Since U is uniform distribution, pU = 1 so that

Eh(W ) =

∫ 1

0

h(t)pW (t)dt

=

∫ 1

0

h(t)(pU (t) +O(ε2) +O(ε3))dt

=

∫ 1

0

h(t)(1 +O(ε2) +O(ε3))dt

= Eh(U)(1 +O(ε2) +O(ε3)).

(10)

This implies I ′2 = I2(1 +O(ε2) +O(ε3)). Therefore, by (7) we conclude

I1 = I ′2 +
√
I ′2O(ε1)

= I2 +
√
I2O(ε1) + I2(O(ε2) +O(ε3)),

(11)

which completes the proof for the first assertion.

Now we prove the second assertion, here we will assume (S5). Since ξ has bounded first derivative,∫ 1

0

ξ(γ1(t))dt =

∫ 1

0

ξ(π12(γ1(t)))dt(1 +O(Haus(S1, S2)))

=

∫ 1

0

ξ(η2(t))dt(1 +O(ε4)).

(12)

Again, let U be the uniform distribution and W = γ−12 (η2(U)). We now define the function
h̃(t) = ξ(γ2(t)) for t ∈ [0, 1]. Since both ξ and γ2 are bounded differentiable, h̃ is also bounded
differentiable. Then it is easy to see that∫ 1

0

ξ(η2(t))dt = ξ(γ2(t)γ−12 (η2(t)))dt = Eh̃(W )∫ 1

0

ξ(γ2(t))dt = Eh̃(U).

(13)

Now by the same derivation of (10), we conclude∫ 1

0

ξ(η2(t))dt = Eh̃(W ) = Eh̃(U)(1 +O(ε2) +O(ε3)). (14)

Thus, by (12) and (14), we conclude∫ 1

0

ξ(γ1(t))dt =

∫ 1

0

ξ(γ2(t))dt(1 +O(ε2) +O(ε3) +O(ε4)), (15)

which completes the proof.

�

The following Lemma bounds the rate of convergence for the kernel density estimator and will be
used frequently in the following derivation.
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Lemma 5 (Lemma 10 of [1]; see also [3]) Assume (K1–K2) and that log n/n ≤ hd ≤ b for some
0 < b < 1. Then we have

||p̂n − p||k,max = O(h2) +OP

(√
log n

nhd+2k

)
(16)

for k = 0, · · · , 3. Moreover,

E||p̂n − p||k,max = O(h2) +O

(√
log n

nhd+2k

)
. (17)

PROOF FOR THEOREM 2. Here we prove the case for density ridges. The case for density level
set can be proved by the similar method. We will use Lemma 4 to obtain the rate. Our strategy is
that first we derive E(d(UR, R̂n)2) and then show that the other part E(d(UR̂n

, R)2) is similar to
the first part.

Part 1. We first introduce the concept of reach [2]. For a smooth set A, the reach is defined as

reach(A) = inf{r : every point in A⊕ r has an unique projection onto A.}. (18)

The reach condition is essential to establish a one-one projection between two smooth sets.

By Lemma 2, property 7 of [1],

reach(R) ≥ min

{
δR
2
,

β2
2

A2(‖p(3)‖max + ‖p(4)‖max)

}
(19)

for some constant A2. Note that δR and β2 are the constants in condition (R).

Thus, as long as R̂n is close to R, every point on R̂n has an unique projection onto R. Similarly,
reach(R̂n) will have a similar bound to reach(R) whenever ‖p̂n − p‖∗4,max is small (reach only
depends on fourth derivatives). Hence, every point on R will have an unique projection onto R̂n.
The projections between R and R̂n will be one-one and onto except for points near the end points
for R and R̂n. That is, when ‖p̂n− p‖∗4,max is sufficiently small, there exists R† ⊂ R and R̂†n ⊂ R̂n

such that the projection between R† and R̂†n are one-one and onto. Moreover, the length difference

length(R)− length(R†) = O(Haus(R̂n, R)),

length(R̂n)− length(R̂†n) = O(Haus(R̂n, R)).
(20)

Note that by Theorem 6 in [3],

Haus(R̂n, R) = O(‖p̂n − p‖∗2,max). (21)

Let x ∈ R†, and let x′ = πR̂n
(x) ∈ R̂†n be its projection onto R̂n. Then by Theorem 3 in [1] (see

their derivation in the proof, the empirical approximation, page 30-32 and equation (79)), we have

x′ − x = W2(x)(ĝn(x)− g(x))(1 +O(‖p̂n − p‖∗3,max)), (22)

where
W2(x) = N(x)H−1N (x)N(x)

HN (x) = N(x)TH(x)N(x)
(23)

and N(x) is a d× (d− 1) matrix called the normal matrix for R at x whose columns space spanned
the normal space for R at x. The existence for N(x) is given in Section 3.2 and Lemma 2 in [1].
Thus, we have

E
(
d(x, R̂n)2

)
= E

(
‖x− x′‖2

)
= E ‖W2(x)(ĝn(x)− g(x))‖2 + ∆n, (24)
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where ∆n is the remaining term and by Cauchy-Schwartz inequality,

∆n ≤ E ‖W2(x)(ĝn(x)− g(x))‖2O(E‖p̂n − p‖∗3,max).

Thus,

E
(
d(x, R̂n)2

)
= E ‖W2(x)(ĝn(x)− g(x))‖2 + ∆n

= E ‖W2(x)(ĝn(x)− E(ĝn(x)) + E(ĝn(x))− g(x))‖2 + ∆n

= Tr(Cov(W2(x)ĝn(x))) + ‖W2(x)(E(ĝn(x))− g(x))‖2 + ∆n

=
1

nhd+2
Tr(Σ(x)) + h4b(x)T b(x) + o

(
1

nhd+2

)
+ o

(
h4
)
,

(25)

where
Σ(x) = W2(x)Σ(K)W2(x)p(x),

b(x) = c(K)W2(x)∇(∇2p(x))
(26)

are related to the variance and bias for nonparametric gradient estimation (Σ(K)p(x) is the asymp-
totic covariance matrix for p̂n and c(K)∇(∇2p(x)) is the asymptotic bias for p̂n). Σ(K) is a matrix
and c(K) is a scalar; they both depends only on the kernel function K. ∇2 = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

is
the Laplacian operator.

Now we compute E(d(UR, R̂n)2). Note that since the length difference between R and R† is
bounded by (20) and (21):

P(UR ∈ R†) = 1−O(E(‖p̂n − p‖∗2,max))

= 1−O(h2)−O

(√
log n

nhd+4

)
.

(27)

Note that we use Lemma 5 to convert the norm into probability bound. By tower property (law of
total expectation),

E(d(UR, R̂n)2) = E(E(d(UR, R̂n)2|UR))

= E(E(d(UR, R̂n)2|UR, UR ∈ R†))P(UR ∈ R†)
+ E(E(d(UR, R̂n)2|UR, UR /∈ R†))P(UR /∈ R†)

= E
(

1

nhd+2
Tr(Σ(UR)) + h4b(UR)T b(UR)

)
+ o

(
1

nhd+2

)
+ o

(
h4
)
.

(28)

Note that by (27), the contribution from P(UR /∈ R†) is smaller than the main effect in (25) so we
absorb it into the small o terms. Defining B2

R = E(b(UR)T b(UR)) and σ2
R = E(Tr(Σ(UR))), we

obtain

E(d(UR, R̂n)2) = B2
Rh

4 +
σ2
R

nhd+2
+ o

(
1

nhd+2

)
+ o

(
h4
)
. (29)

Part 2. We have proved the first part for the L2 coverage risk. Now we prove the result for
E(d(UR̂n

, R)2); this will apply Lemma 4. If we think of R† as S1 and R̂†n as S2 in Lemma 4,
then

E(d(UR† , R̂†n)2|X1, · · · , Xn) =

∫ 1

0

‖γ1(t)− π12(γ1(t))‖2dt = I1

E(d(UR̂†
n
, R†)2|X1, · · · , Xn) =

∫ 1

0

‖γ2(t)− π21(γ2(t))‖2dt = I2.
(30)

Thus, E(d(UR̂†
n
, R†)2) is approximated by E(d(UR† , R̂†n)2) if the ε1, ε2, ε3 in Lemma 4 is small.

Here we bound εj .

The bound for ε1 is simple. For all x ∈ S1, let θ be the angle between the two vectors v1 =

π12(x) − x and v2 = π−121 (x) − x. By the property of projection, v1 is normal to R̂n at π12(x)

5



and v2 is normal to R at x. Thus, by Lemma 2 properties 5 and 6 of [1], the angle θ is bounded by
O(‖p̂n − p‖∗3,max). Note that their Lemma proves the normal matrices N(x) and N̂n(π12(x)) are
close which implies the canonical angle between two subspace are close so that θ is bounded. Now
by the fact that both ‖π12(x) − x‖ and ‖π−121 (x) − x‖ are bounded by Haus(R̂n, R), we conclude
ε1 ≤ Haus(R̂n, R)× θ = O(‖p̂n − p‖∗23,max).

For ε2, we will use the property of normal matrix N(x). Let N̂n(x) be the normal matrix for R̂n at
x. By Lemma 2, properties 5 and 6 of [1],

‖N(x)N(x)T − N̂n(πR̂n
(x))N̂n(πR̂n

(x))T ‖max = O(Haus(R̂n, R)) +O(‖p̂n − p‖∗3,max)

= O(‖p̂n − p‖∗3,max).

N(x)N(x)T is the projection matrix onto normal space; so the tangent vector is perpendicular to
that projection. The bounds for the two projection matrix implies the bound to the two tangent
vectors. Thus, ε2 = O(‖p̂n − p‖∗3,max).

For ε3, since the smoothness for R̂n is similar to R (the normal direction is similar by ε2) and their
Hausdorff distance is bounded by O(‖p̂n − p‖∗2,max). The length difference is at the same rate of
Hausdorff distance. Thus, we may pick ε3 = O(‖p̂n − p‖∗2,max).

Let I1 = E(d(UR† , R̂†n)2|X1, · · · , Xn) and I2 = E(d(UR̂†
n
, R†)2|X1, · · · , Xn). By Lemma 4 and

the above choice for εj , we conclude

I1 = I2(1 +O(‖p̂n − p‖∗3,max)) +
√
I2O(‖p̂n − p‖∗23,max). (31)

Thus, by tower property again (taking expectation over both side) and Lemma 5 E‖p̂n − p‖∗3,max =

O(h2) +O

(√
logn
nhd+6

)
= o(1),

E(d(UR† , R̂†n)2) = E(I1) = E(I2) + o(1) = E(d(UR̂†
n
, R†)2) + o(1). (32)

Now since by (20) and the fact that EHaus(R̂n, R) = o(1), we have

E(d(UR† , R̂†n)2) = E(d(UR, R̂n)2)(1 + o(1))

E(d(UR̂†
n
, R†)2) = E(d(UR̂n

, R)2)(1 + o(1)).
(33)

Combining by (29), (32) and (33), we conclude

Risk2,n =
E(d(UR, R̂n)2) + E(d(UR̂n

, R)2)

2

= E(d(UR, R̂n)2) + o(1)

= B2
Rh

4 +
σ2
R

nhd+2
+ o

(
1

nhd+2

)
+ o

(
h4
)
,

(34)

where B2
R = E(b(UR)T b(UR)) and σ2

R = E(Tr(Σ(UR))). Note that all the above derivation works
only when

E‖p̂n − p‖∗3,max = O(h2) +O

(√
log n

nhd+6

)
= o(1). (35)

This requires h→ 0 and logn
nhd+6 → 0, which constitutes the conditions on h we need.

�

PROOF FOR THEOREM 3. Since we are proving the bootstrap consistency, we assumeX1, · · · , Xn

are given.
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By Theorem 2, the estimated risk R̂iskn,2 has the following asymptotic behavior

R̂iskn,2 = B̂2
Rh

4 +
σ̂2
R

nhd+2
+ o

(
1

nhd+2

)
+ o

(
h4
)
, (36)

where

B̂2
R = E

(
b̂n(UR̂n

)T b̂n(UR̂n
)|X1, · · · , Xn

)
,

σ̂2
R = E

(
Tr(Σ̂n(UR̂n

))|X1, · · · , Xn

) (37)

with b̂n(x) = c(K)W2(x)∇(∇2p̂n(x)) and Σ̂n(x) = W2(x)Σ(K)W2(x)p̂n(x) from (26). To
prove the bootstrap consistency, it is equivalent to prove that B̂2

R and σ̂2
R converges to BR and σ2

R.

Here we prove the consistency for B̂R. The consistency for σ̂R can be proved in the similar way.
We define the following two functions

Ω̂n(x) = ‖c(K)W2(x)∇(∇2p̂n(x))‖2,
Ω(x) = ‖c(K)W2(x)∇(∇2p(x))‖2.

(38)

It is easy to see that B̂2
R = E

(
Ω̂n(UR̂n

)|X1, · · · , Xn

)
and B2

R = E (Ω(UR)).

Similarly as in the proof for Theorem 2, we define R̂†n ⊂ R̂n that has one-one and onto projection
to R†. By (27), we can replace UR̂n

by UR̂†
n

and UR by UR† at the cost of probability O(h2) +

O

(√
logn
nhd+4

)
.

Now we will apply Lemma 4 again to prove the result. Again, we think of R† as S1 and R̂†n as
S2. Let U be an uniform distribution over [0, 1]. Then the random variable UR† = γ1(U) and
UR̂†

n
= γ2(U). Thus,

E (Ω(UR†)) =

∫ 1

0

Ω(γ1(t))dt, E
(

Ω̂n(UR̂†
n
)|X1, · · · , Xn

)
=

∫ 1

0

Ω̂n(γ2(t))dt. (39)

By the second assertion in Lemma 4,

E (Ω(UR†)) =

∫ 1

0

Ω(γ1(t))dt

=

∫ 1

0

Ω(γ2(t))dt(1 +O(ε2) +O(ε3) +O(ε4))

=

∫ 1

0

Ω(γ2(t))dt(1 +O(‖p̂n − p‖∗3,max)).

(40)

Note that we use the fact that Haus(R̂n, R) = O(‖p̂n − p‖∗2,max). Since Ω only involves third
derivative for the density p, we have supx∈Rd ‖Ω(x)− Ω̂n(x)‖ = O(‖p̂n − p‖3,max). This implies

∫ 1

0

Ω(γ2(t))dt =

∫ 1

0

Ω̂n(γ2(t))dt+O(‖p̂n − p‖3,max). (41)
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Now combining all the above and the definition for B̂R, we conclude

B̂2
R = E

(
Ω̂n(UR̂n

)|X1, · · · , Xn

)
= E

(
Ω̂n(UR̂†

n
)|X1, · · · , Xn

)
+O(Haus(R̂n, R))

=

∫ 1

0

Ω̂n(γ2(t))dt+O(Haus(R̂n, R)) (by (39))

=

∫ 1

0

Ω(γ2(t))dt+O(‖p̂n − p‖3,max) (by (41))

= E (Ω(UR†)) +O(‖p̂n − p‖3,max) (by (40))
= E (Ω(UR)) +O(‖p̂n − p‖3,max)

= B2
R +O(‖p̂n − p‖3,max).

(42)

Therefore, as along as we have ‖p̂n − p‖3,max = oP (1), we have

B̂2
R −B2

R = oP (1). (43)

Similarly, we the same condition implies

σ̂2
R − σ2

R = oP (1). (44)

Now recall from (36) and Theorem 2, the risk difference is

R̂iskn,2 − Riskn,2 = (B̂2
R −B2

R)h4 +
σ̂2
R − σ2

R

nhd+2
+ o

(
h4
)

+ o

(
1

nhd+2

)
= oP

(
h4
)

+ oP

(
1

nhd+2

)
(by (43) and (44)).

(45)

Since Theorem 2 implies Riskn,2 = O
(
h4
)

+O
(

1
nhd+2

)
, by (45) we have

R̂iskn,2 − Riskn,2
Riskn,2

= oP (1) (46)

which proves the theorem.

Note that in order (46) to hold, we need ‖p̂n − p‖3,max = oP (1). By Lemma 5,

‖p̂n − p‖3,max = O(h2) +OP

(√
log n

nhd+6

)
. (47)

Thus, a sufficient condition to ‖p̂n− p‖3,max = oP (1) is to pick h such that logn
nhd+6 → 0 and h→ 0.

This gives the restriction for the smoothing parameter h.

�
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