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A Matrix Projection
In this section, we summarize the algorithm proposed in [1] for solving the matrix projection prob-
lem (3.3). Let

Ω1 :=
{
x = vec(X) : X ∈ Sλ

}
Ω2 :=

{
z = vec(Z) : Z ∈ Rd×d,Z = ZT,

d∑
i,j=1

|Zij | ≤ 1
}
.

For any symmetric matrix V ∈ Rd×d and v = vec(V), define the projection of v onto Ωi as

PΩi(v) = arg min
x∈Ωi

∥∥∥x− v
∥∥∥2

2
, (A.1)

for i = 1, 2. The algorithm for solving (3.3) builds on solutions to the problems in (A.1). Solving
for PΩ1(v) is straightforward. It’s well known that

PΩ1(v) = vec(UΛ̃UT), (A.2)

where V = UΛUT is a spectral decomposition of V, Λ̃ = diag(Λ̃11, . . . , Λ̃dd) and Λ̃ii =

min
{

max{Λii, λmin}, λmax

}
for i = 1, . . . , d.

Next we solve for PΩ2
(v). Let sign(v) = {sign(v1), . . . , sign(vd)}T be a vector of the signs of v’s

entries. Denote |v| = sign(v) ◦ v and ṽ = T|v|(|v|), where T|v| is a permutation transformation
that sorts the elements of |v| in descending order. Now, if 1Tṽ ≤ 1, we set (x̃, ỹ) = (ṽ, 0). If
1Tṽ > 1, let ∆v := (ṽ1 − ṽ2, . . . , ṽd−1 − ṽd, ṽd)T ∈ Rd. Note that ∆vi ≥ 0 for i = 1, . . . , d and∑d
i=1 i∆vi = 1Tṽ > 1. Thus, there exists a smallest integer K such that

∑K
i=1 i∆vi ≥ 1. In this

case, we set

ỹ =
1

K

( K∑
i=1

ṽi − 1
)

and x̃ = (ṽ1 − ỹ, . . . , ṽK − ỹ, 0, . . . , 0)T ∈ Rd.

Now we can express PΩ2(v) as

PΩ2(v) = sign(v) ◦ T−1
|v| (x̃). (A.3)
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Algorithm 1 Solving matrix projection problem (3.3)

R̃Q ←MatrixProjection(R̂Q, λmin, λmax, x0, z0, γ, ε, N )
r ← vec(R̂Q)
for k = 0, . . . , N do

ekx ← xk − PΩ1
(xk − zk)

ekz ← zk − PΩ2
(zk + xk − r)

ek ← (ekx, e
k
z)T

if ‖ek‖max < ε, then
break

else
xk+1 ← xk − γ(ekx − ekz)/2
zk+1 ← zk − γ(ekx + ekz)/2

end if
end for
return R̃Q = mat(xk)

Next we solve the matrix projection problem in (3.3). Recall that R̂Q is the matrix to be projected to
Sλ. Since for any vector y ∈ Rd, we have ‖y‖max = maxc∈Rd,‖c‖1≤1 c

Ty, it follows that problem
(3.3) can be reformulated as the following mini-max problem:

min
x∈Ω1

max
z∈Ω2

zT
{
x− vec

(
R̂Q
)}
. (A.4)

If (xopt, zopt) is a solution to problem (A.4), then mat(xopt) is a solution to problem (3.3). Al-
gorithm 1 gives the pseudo code for solving problem (A.4), and thus (3.3). Recall that 0 ≤ λmin <
λmax ≤ ∞ are the lower and upper bounds of the eigenvalues of the projection. x0 ∈ Ω1 and
z0 ∈ Ω2 are arbitrary initial points. γ ∈ (0, 2) is a parameter controlling the step lengths of every
iteration. ε > 0 is a prespecified tolerance level. N ∈ N is the maximum number of iterations
desired. The convergence of Algorithm 1 is guaranteed by the following theorem.

Theorem A.1 ([1]). Let uopt := (xopt, zopt) be a solution to (A.4). Denote uk := (xk
T

, zk
T

)T

and eku := (ek
T

x , e
kT

z )T. Then Algorithm 1 produces a sequence {uk} satisfying∥∥uk+1 − uopt
∥∥2 ≤

∥∥uk − uopt
∥∥2

+
γ(2− γ)

2

∥∥eku∥∥2
.
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