
Supplementary material for:

A Fast, Universal Algorithm

to Learn Parametric Nonlinear Embeddings

Miguel Á. Carreira-Perpiñán Max Vladymyrov∗

Electrical Engineering and Computer Science, University of California, Merced

http://eecs.ucmerced.edu

September 15, 2015

Abstract

This contains extended experiments. The equation numbers referred to correspond to the main paper.

1 Experiments

Our experiments confirm that MAC finds optima as good as those of the conventional optimization based on
chain-rule gradients, but that it is faster (particularly if using N -body methods). We demonstrate this with
different embedding objectives (the elastic embedding and t-SNE) and mappings (linear and neural net).

1.1 Illustrative example: free embedding, parametric embedding and direct fit

The simple example of fig. 1 shows the different embedding types described in the paper. We use the COIL-
20 dataset [3], containing rotation sequences of 20 physical objects every 5 degrees, each a grayscale image of
128× 128 pixels, total N = 1 440 points in 16 384 dimensions; thus, each object traces a closed loop in pixel
space. We produce 2D embeddings of 3 objects, using the elastic embedding (EE) [1]. The free embedding
X∗ results from optimizing the EE objective function (1), without any limitations on the low-dimensional
projections. It gives the best visualization of the data, but no out-of-sample mapping. We now seek a linear
out-of-sample mapping F. The direct fit fits a linear mapping to map the high-dimensional images Y to
their 2D projections X∗ from the free embedding. The resulting predictions F(Y) give a quite distorted
representation of the data, because a linear mapping cannot realize the free embedding X with low error.
The parametric embedding (PE) finds the linear mapping F∗ that optimizes P (F), which for EE is eq. (2).
To optimize the PE, we used MAC, and two methods based on chain-rule gradients (which we implemented
in Matlab): gradient descent (not shown) and conjugate gradients (CG). Since the PE objective has local
optima, MAC happens to converge to a different (and better) optimum than CG, and is also faster. Both
optima produce an embedding that represents the data worse than the free embedding (since the PE is
constrained to produce embeddings that are realizable by a linear mapping), but better than the direct fit,
because the PE can search for embeddings that, while being realizable by a linear mapping, produce a lower
value of the EE objective function.

The details of the optimization are as follows. For all methods, we preprocess the data using PCA
projecting to 15 dimensions (otherwise learning a mapping would be trivial since there are more degrees
of freedom than there are points). The free embedding was optimized using the spectral direction [7] until
consecutive iterates differed by a relative error less than 10−3. The PE was optimized using CG or gradient
descent for 150 iterations. For MAC we initialized Z to the free embedding and increased µ from 0.003 to

∗Now at Yahoo Labs.

1



Free embedding Direct fit

PE (CG) PE (MAC)

10
−2

10
−1

10
0

0.5

0.6

0.7

0.8

0.9

1

 

 

Runtime (seconds)

P
(F

)

MAC

CG

GD

Figure 1: Left : 2D embeddings of 3 objects from the COIL-20 dataset using a linear mapping: a free
embedding X∗ = argminE(X), its direct fit (of F to (Y,X∗)), and the parametric embedding (PE) F∗(Y)
optimized with conjugate gradients and MAC. Right : PE learning curves for gradient descent, CG and MAC.

0.015 with a step of 0.001 (12 µ values) and did 40 iterations for each µ value. The Z step uses the spectral
direction, stopping when the relative error is less than 10−2.

In this and subsequent learning curves we plot the PE error P (F(Y)). While MAC minimizes this as
µ → ∞, each MAC iteration need not decrease the PE error monotonically (since it optimizes PQ(Z,F;µ)
instead). However, we rarely observe iterations where the PE error actually increases.

1.2 Cost of the iterations

Fig. 2(top) shows, as a function of the number of data points N (using a 3D Swissroll dataset), the time
needed to compute the gradient of the PE objective (red curve) and the gradient of the MAC Z and F

steps (black and magenta, respectively, as well as their sum in blue). As embedding objective E(X) we
use EE (top plot) and t-SNE (bottom plot) and as mapping F we use a neural net with an architecture
3–100–500–2 with sigmoidal activations. We approximate the Z gradient in linear time for EE using a fast
multipole method [9] and for t-SNE in O(N logN) using the Barnes-Hut method [6, 10]. The log-log plot
shows asymptotically quadratic complexity for the PE gradient, but linear complexity for the Z and F steps
(O(N logN) for the Z step in t-SNE). The PE gradient runs out of memory for large N .

1.3 Quality of the local optima

For the same Swissroll dataset, fig. 2(bottom) shows, as a function of the number of data points N , the final
value of the PE objective function achieved by the chain-rule CG optimization and by MAC, both using the
same initialization. Except when using very small training sets there is practically no difference between
both optimization algorithms. We sometimes do find they converge to different local optima, as in some of
our other experiments.

1.4 Different embedding objectives and mapping families

The goal of this experiment is to show that we can easily derive a convergent, efficient algorithm for various
combinations of embeddings and mappings. We consider as embedding objective functions E(X) t-SNE and
EE, and as mappings F a neural net and a linear mapping. We apply each combination to learn a parametric
embedding for the MNIST dataset, containing N = 60 000 images of handwritten digit images. Training a
nonlinear (free) embedding on a dataset of this size was very slow until the recent introduction of N -body

2



Elastic Embedding t-SNE

10
1

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

 

 

PE

MAC

Z step

F step

R
u
n
ti
m
e
(s
ec
o
n
d
s)

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

 

 

PE

MAC

Z step

F step

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

 

 

MAC

P
E

o
b
je
ct
iv
e
fu
n
ct
io
n
P
(F

) PE

N

10
1

10
2

10
3

10
4

10
5

10
0.2

10
0.4

10
0.6

10
0.8

 

 

MAC

PE

N

Figure 2: Runtime per iteration (top) and final PE objective value (bottom) for a 3D Swissroll dataset, using
as mapping F a neural net with an architecture 3–100–500–2 with sigmoidal activations, for EE (left) and
t-SNE (right). For PE, we use CG optimization with chain-rule gradients and give the runtime needed to
compute the gradient of the PE objective. For MAC, we give the runtime needed to compute the (Z,F)
steps, separately and in combination. The gradient of the Z step is approximated with an N -body method.
The errorbars are over 5 randomly generated Swissrolls.

methods for t-SNE, EE and other methods [6, 9, 10]. We are the first to use N -body methods for PEs,
thanks to the decoupling between mapping and embedding introduced by MAC.

For each combination, we derive the MAC algorithm by reusing code available online: for the EE and
t-SNE (free) embeddings we use the spectral direction [7]; for the N -body methods to approximate the
embedding objective function gradient we use the fast multipole method for EE [9] and the Barnes-Hut
method for t-SNE [6, 10]; and for training a deep net we use unsupervised pretraining and backpropagation
[4, 5]. Fig. 3 shows the free embedding of MNIST obtained with t-SNE and EE after 100 iterations of the
spectral direction. To compute the Gaussian affinities between pairs of points, we used entropic affinities
with perplexity K = 30 neighbors [2, 8].

t-SNE and EE with a neural net We replicated the setup of van der Maaten [5]. This uses a neural net
with an architecture (28 × 28)–500–500–2000–2, initialized with pretraining as described in Salakhutdinov
and Hinton [4] and van der Maaten [5].

3



t-SNE free embedding EE free embedding

−100 −50 0 50 100

−100

−50

0

50

100 0 1 2 3 4 5 6 7 8 9

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 3: 2D free embeddings of 60 000 MNIST images with t-SNE and EE. In this and all other MNIST
embeddings plots, we show a sample of 5 000 points to avoid clutter.

For the chain-rule PE optimization we used the code from van der Maaten [5]. Because of memory
limitations, van der Maaten [5] actually solved an approximate version of the PE objective function, where
rather than using all N2 pairwise point interactions, only BN interactions are used, corresponding to using
minibatches of B = 5 000 points. Therefore, the solution obtained is not a minimizer of the PE objective, as
can be seen from the higher objective value in fig. 4(bottom). However, we did also solve the exact objective
by using B = N (i.e., one minibatch containing the entire dataset). Each minibatch was trained with 3 CG
iterations and a total of 30 epochs.

For MAC, we used µ ∈ {10−7, 5·10−7, 10−6, 5·10−6, 10−5, 5·10−5}, optimizing until the objective function
decrease (before the Z step and after the F step) was less than a relative error of 10−3. The rest of the
optimization details concern the embedding and neural net, and are based on existing code. The initialization
for Z is the free embedding. The Z step (like the free embedding) uses the spectral direction with a fixed step
size γ = 0.05, using 10 iterations of linear conjugate gradients to solve the linear system (L + µ

2
I)P = −G,

and using warm-start (i.e., initialized from the the previous iteration’s direction). The gradient G of the free
embedding is approximated in O(N logN) using the Barnes-Hut method with accuracy θ = 1.5. Altogether
one Z iteration took around 5 seconds. We exit the Z step when the relative error between consecutive
embeddings is less than 10−3. For the F step we used stochastic gradient descent with minibatches of 100
points, step size 10−3 and momentum rate 0.9, and trained for 5 epochs for the first three values of µ and
for 3 epochs for the rest.

Fig. 4 shows the final t-SNE parametric embedding for MAC (left panel) and the learning curves (right
panel). MAC is considerably faster than the chain-rule optimization: almost 5× faster than using minibatch
(the approximate PE objective) and 20× faster than the exact, batch mode. This is partly thanks to the use
of N -body methods in the Z step. The runtimes were (excluding the time taken by pretraining, 40’): MAC:
42’; PE (minibatch): 3.36 h; PE (batch): 15 h; free embedding: 63”. Without using N -body methods, MAC
is 4× faster than PE (batch) and comparable to PE (minibatch).

The neural-net t-SNE embedding preserves the overall structure of the free t-SNE embedding but both
embeddings do differ. For example, the free embedding creates small clumps of points and the neural net,
being a continuous mapping, tends to smooth them out.

4



−100 −50 0 50 100

−100

−50

0

50

100
0 1 2 3 4 5 6 7 8 9

t-SNE neural net embedding

10
2

10
3

10
4

18.5

19

19.5

20

 

 

P
E

o
b
je
ct
iv
e
fu
n
ct
io
n
P
(F

)

Runtime (seconds)

MAC

PE (minibatch)

PE (batch)

Figure 4: Left : 2D parametric embedding of 60 000 MNIST images using t-SNE with a neural net, optimized
with MAC. Right : learning curves for different optimization algorithms. Each marker indicates one iteration.
For MAC, the solid markers indicate iterations where µ increased.

t-SNE and EE with a linear mapping Now we use a linear mapping F(y) = Ay. We used the
same affinity matrix and free embedding as with the neural net. In MAC, we used 10 µ values spaced
logarithmically from 10−2 to 102, optimizing at each µ value until the objective function decrease was less
than a relative error of 10−4. Both the Z step and the free embedding use the spectral direction with a fixed
step size γ = 0.01. We stop optimizing them when the relative error between consecutive embeddings is less
than 10−4. The gradient is approximated using fast multipole methods with accuracy p = 6 (the number
of terms in the truncated series). In the F step, the linear system to find A was solved using 10 iterations
of linear conjugate gradients with warm start. We implemented our own chain-rule PE optimizer (for EE
only) with gradient descent and backtracking line search for 30 iterations.

Fig. 5 shows the results for EE and t-SNE. The chain-rule optimization (for EE) was again quite slower
than MAC. The runtimes were: MAC: 12.7’; PE: 63’; direct fit: 40”. The resulting parametric linear
embedding for both EE and t-SNE distorts the corresponding free embedding considerably more than if
using a neural net. This is because a linear mapping has a much harder time at approximating the complex
mapping from the high-dimensional data into 2D that the free embedding implicitly demands. Fig. 6 shows
a PCA embedding for comparison. All embeddings (EE, t-SNE, PCA) have been rotated and scaled using
Procrustes alignment so they can be more easily compared.

References

[1] M. Á. Carreira-Perpiñán. The elastic embedding algorithm for dimensionality reduction. In J. Fürnkranz
and T. Joachims, editors, Proc. of the 27th Int. Conf. Machine Learning (ICML 2010), pages 167–174,
Haifa, Israel, June 21–25 2010.

[2] G. Hinton and S. T. Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems (NIPS), volume 15, pages 857–864. MIT
Press, Cambridge, MA, 2003.

[3] S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (COIL-20). Technical Report
CUCS–005–96, Dept. of Computer Science, Columbia University, Feb. 1996.

[4] R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by preserving class neighbourhood
structure. In M. Meilă and X. Shen, editors, Proc. of the 11th Int. Conf. Artificial Intelligence and
Statistics (AISTATS 2007), San Juan, Puerto Rico, Mar. 21–24 2007.

5



−4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

5
EE linear embedding

10
2

10
36

7

8

9

10

11

12

13x 10
4

 

 

P
E

o
b
je
ct
iv
e
fu
n
ct
io
n
P
(F

)

Runtime (seconds)

MAC

PE

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3 0 1 2 3 4 5 6 7 8 9 t-SNE linear embedding

10
1

10
2

10
319.8

19.9

20

20.1

20.2

 

 

P
E

o
b
je
ct
iv
e
fu
n
ct
io
n
P
(F

)

Runtime (seconds)

MAC

Figure 5: Parametric embedding of 60 000 MNIST images, using EE (top) or t-SNE (bottom) with a linear
mapping, optimized with MAC. Left : 2D embedding. Right : learning curves, as in fig. 4.

[5] L. J. P. van der Maaten. Learning a parametric embedding by preserving local structure. In D. van Dyk
and M. Welling, editors, Proc. of the 12th Int. Conf. Artificial Intelligence and Statistics (AISTATS
2009), pages 384–391, Clearwater Beach, FL, Mar. 21–24 2009.

[6] L. J. P. van der Maaten. Barnes-Hut-SNE. In Int. Conf. Learning Representations (ICLR 2013),
Scottsdale, AZ, May 2–4 2013.

[7] M. Vladymyrov and M. Á. Carreira-Perpiñán. Partial-Hessian strategies for fast learning of nonlinear
embeddings. In J. Langford and J. Pineau, editors, Proc. of the 29th Int. Conf. Machine Learning
(ICML 2012), pages 345–352, Edinburgh, Scotland, June 26 – July 1 2012.

[8] M. Vladymyrov and M. Á. Carreira-Perpiñán. Entropic affinities: Properties and efficient numerical
computation. In S. Dasgupta and D. McAllester, editors, Proc. of the 30th Int. Conf. Machine Learning
(ICML 2013), pages 477–485, Atlanta, GA, June 16–21 2013.

[9] M. Vladymyrov and M. Á. Carreira-Perpiñán. Linear-time training of nonlinear low-dimensional em-

6



PCA (linear) embedding

−2 −1 0 1 2 3

−1

0

1

2

3

Figure 6: Linear embedding of 60 000 MNIST images using PCA.

beddings. In S. Kaski and J. Corander, editors, Proc. of the 17th Int. Conf. Artificial Intelligence and
Statistics (AISTATS 2014), pages 968–977, Reykjavik, Iceland, Apr. 22–25 2014.

[10] Z. Yang, J. Peltonen, and S. Kaski. Scalable optimization for neighbor embedding for visualization. In
S. Dasgupta and D. McAllester, editors, Proc. of the 30th Int. Conf. Machine Learning (ICML 2013),
pages 127–135, Atlanta, GA, June 16–21 2013.

7


