Provable Tensor Factorization with Missing Data

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental

Authors

Prateek Jain, Sewoong Oh

Abstract

We study the problem of low-rank tensor factorization in the presence of missing data. We ask the following question: how many sampled entries do we need, to efficiently and exactly reconstruct a tensor with a low-rank orthogonal decomposition? We propose a novel alternating minimization based method which iteratively refines estimates of the singular vectors. We show that under certain standard assumptions, our method can recover a three-mode $n\times n\times n$ dimensional rank-$r$ tensor exactly from $O(n^{3/2} r^5 \log^4 n)$ randomly sampled entries. In the process of proving this result, we solve two challenging sub-problems for tensors with missing data. First, in analyzing the initialization step, we prove a generalization of a celebrated result by Szemer\'edie et al. on the spectrum of random graphs. Next, we prove global convergence of alternating minimization with a good initialization. Simulations suggest that the dependence of the sample size on dimensionality $n$ is indeed tight.