Optimal decision-making with time-varying evidence reliability

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental

Authors

Jan Drugowitsch, Ruben Moreno-Bote, Alexandre Pouget

Abstract

Previous theoretical and experimental work on optimal decision-making was restricted to the artificial setting of a reliability of the momentary sensory evidence that remained constant within single trials. The work presented here describes the computation and characterization of optimal decision-making in the more realistic case of an evidence reliability that varies across time even within a trial. It shows that, in this case, the optimal behavior is determined by a bound in the decision maker's belief that depends only on the current, but not the past, reliability. We furthermore demonstrate that simpler heuristics fail to match the optimal performance for certain characteristics of the process that determines the time-course of this reliability, causing a drop in reward rate by more than 50%.