Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental

Authors

Robert A. Vandermeulen, Clayton Scott

Abstract

While robust parameter estimation has been well studied in parametric density estimation, there has been little investigation into robust density estimation in the nonparametric setting. We present a robust version of the popular kernel density estimator (KDE). As with other estimators, a robust version of the KDE is useful since sample contamination is a common issue with datasets. What ``robustness'' means for a nonparametric density estimate is not straightforward and is a topic we explore in this paper. To construct a robust KDE we scale the traditional KDE and project it to its nearest weighted KDE in the $L^2$ norm. Because the squared $L^2$ norm penalizes point-wise errors superlinearly this causes the weighted KDE to allocate more weight to high density regions. We demonstrate the robustness of the SPKDE with numerical experiments and a consistency result which shows that asymptotically the SPKDE recovers the uncontaminated density under sufficient conditions on the contamination.