Online Decision-Making in
General Combinatorial Spaces

A Supplement to Section 2| (Preliminaries and Background)

A.1 Online Mirror Descent (OMD) for Online Linear Optimization

Algorithm Online Mirror Descent (OMD) for Online Linear Optimization

Inputs:
Convex set ) C R"

Parameters:
n>0
Closed convex set IC D 2, Legendre function F' : K—R
Initialize:
x! € argmin, . F(z) (or ' = any other point in §2)
Fort=1...T:
— Receive loss vector £ € R™
— Incur loss zt - ¢¢
— Update:
T« VF*(VF(2t) — ntt)
'« argmin, o Bp(z,71)

The following bound on the regret of OMD (in the linear setting) is well known (e.g. see [[7]):
Theorem 4 (Regret bound for OMD). Let Bp(x,2') < D*Vz € Q. Let || - || be any norm in R™
such that ||| < GVt € [T, and such that the restriction of F to ) is a-strongly convex w.r.t. || -

the dual norm of || - . Then setting n* = 5/ 22 gives

Rr[OMDG)] (= i, ot € —infeq XJ_ @ £1) < DGy/2L.

*

A.2 Hedge/Naive OMD for Online Combinatorial Decision-Making

Algorithm Hedge/Naive OMD for Online Combinatorial Decision-Making [10]]

Inputs:

Finite set of combinatorial structures C

Mapping ¢ : C—R?
Parameters:

n>0
Initialize:

1_ (1 1

p = (m,,m) EAC

Fort=1...T:
— Randomly draw ¢! ~ p?

— Receive loss vector ¢¢ € [0, 1]¢
— Incur loss ¢(ct) - £t

— Update:
i _ . gt
veec: pitt o PeOl Z77t¢(c) ),

where Zt = ZC’GC pL exp(=no(c) - )
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A.3 Follow the Perturbed Leader (FPL) for Online Combinatorial Decision-Making

Algorithm Follow the Perturbed Leader (FPL) for Online Combinatorial Decision-Making [[13]]

Inputs:
Finite set of combinatorial structures C
Mapping ¢ : C—R?

Parameters:
n>0

Fort=1...T:

—~Draw z* € [0, 7] * uniformly at random
. . —1 s
— Predict ¢! € argmin o ¢(c) - (35, £° + 2)
— Receive loss vector /¢ € [0, 1]¢
— Incur loss ¢(ct) - £t

B Supplement to Section 7| (Transportation Polytopes)

The decomposition step in applying LDOMD to transportation polytopes requires finding a suitable
extreme point on each iteration. Here we give details of how one can find such an extreme point.

We start by giving a procedure which, given a matrix X € T (a, ), efficiently finds an extreme point
Q € T(a,b) such that X;; =0 = Q;; = 0 (note that such an extreme point always exists, since
X can be written as a convex combination of extreme points, all of which must necessarily have a
zero entry wherever X does). We will make use of the following characterization of extreme points
of transportation polytopes in terms of spanning forests of complete bipartite graphs (e.g. see [6]]):

Theorem 5 (Characterization of extreme points of transportation polytopes). Leta € Z'', b € Z'.
A matrix X € T (a,b) is an extreme point of T (a, b) if and only if the edges {(i,j) : X;; > 0} form
a spanning forest of the complete bipartite graph K, ,,.

The basic idea behind the procedure below is as follows: given X € T (a,b), let E = {(i,5) :
Xi; > 0}. If E forms a spanning forest of K, ,,, then by Lemma X is already an extreme point.
Otherwise, successively remove cycles from E and adjust corresponding entries in X so that X
remains in 7 (a, b) while satisfying X;; > 0 <= (4,j) € E. Eventually, E' must be a spanning
forest of K, ,, and therefore by Lemma X must be an extreme point of T (a, b).

Algorithm Procedure for finding an extreme point ) of 7 (a, b) such that
X;j =0 = Q;; = 0 for a given matrix X € 7 (a,b)

Input:
X €T(a,b) (wherea € Z7,becZh)
Initialize:

FE « {(273) : Xij > O}
While ( E does not form a spanning forest of K, ,, ) do:
—Find a cycle E' = {(i1,J1), (¢2,71), (i2,72), - - -, (is, Js), (is+1 = i1, Js)} € E for some s > 2
—Let epin € argmin,cpr Xe
0 {+1 if emin = (ir, jr) for some r € [s]
—1 if emin = (4r41, jr) for some r € [s]
—Forr=1...sdo:

Xir,jr — Xi'i').j'r' — HXem;n
XZ'T,Jrhjr <— Xi'r'+17j'r‘ —+ HXemm
- F «+ {(Z,]) :Xij > 0}
end while
QX
Output: )
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Applying the above procedure to implement decomposition step. The above procedure can be
used to implement the decomposition step for transportation polytopes in Section [/| by doing the
following on each iteration k:

o Apply the above procedure to the matrix A*, which can be verified to belong to T (yxa, xb)
for suitable v, € Ry (specifically, v, = 1 — Zf;i ), to get an extreme point Q% €
T (vra,vib) satisfying Afj =0 = Qf; =0.

. SetQF e LG

It can be verified that Q* is then an extreme point of 7 (a, b) and satisfies Af; =0 = QF; = 0 as
desired.
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