
Pre-training of Recurrent Neural Networks via
Linear Autoencoders

Luca Pasa, Alessandro Sperduti
Department of Mathematics
University of Padova, Italy

{pasa,sperduti}@math.unipd.it

Abstract

We propose a pre-training technique for recurrent neural networks based on linear
autoencoder networks for sequences, i.e. linear dynamical systems modelling the
target sequences. We start by giving a closed form solution for the definition of
the optimal weights of a linear autoencoder given a training set of sequences. This
solution, however, is computationally very demanding, so we suggest a procedure
to get an approximate solution for a given number of hidden units. The weights
obtained for the linear autoencoder are then used as initial weights for the input-
to-hidden connections of a recurrent neural network, which is then trained on the
desired task. Using four well known datasets of sequences of polyphonic music,
we show that the proposed pre-training approach is highly effective, since it allows
to largely improve the state of the art results on all the considered datasets.

1 Introduction

Recurrent Neural Networks (RNN) constitute a powerful computational tool for sequences mod-
elling and prediction [1]. However, training a RNN is not an easy task, mainly because of the well
known vanishing gradient problem which makes difficult to learn long-term dependencies [2]. Al-
though alternative architectures, e.g. LSTM networks [3], and more efficient training procedures,
such as Hessian Free Optimization [4], have been proposed to circumvent this problem, reliable and
effective training of RNNs is still an open problem.

The vanishing gradient problem is also an obstacle to Deep Learning, e.g., [5, 6, 7]. In that context,
there is a growing evidence that effective learning should be based on relevant and robust internal
representations developed in autonomy by the learning system. This is usually achieved in vectorial
spaces by exploiting nonlinear autoencoder networks to learn rich internal representations of input
data which are then used as input to shallow neural classifiers or predictors (see, for example, [8]).
The importance to start gradient-based learning from a good initial point in the parameter space has
also been pointed out in [9]. Relationship between autoencoder networks and Principal Component
Analysis (PCA) [10] is well known since late ‘80s, especially in the case of linear hidden units [11,
12]. More recently, linear autoencoder networks for structured data have been studied in [13, 14, 15],
where an exact closed-form solution for the weights is given in the case of a number of hidden units
equal to the rank of the full data matrix.

In this paper, we borrow the conceptual framework presented in [13, 16] to devise an effective pre-
training approach, based on linear autoencoder networks for sequences, to get a good starting point
into the weight space of a RNN, which can then be successfully trained even in presence of long-
term dependencies. Specifically, we revise the theoretical approach presented in [13] by: i) giving
a simpler and direct solution to the problem of devising an exact closed-form solution (full rank
case) for the weights of a linear autoencoder network for sequences, highlighting the relationship
between the proposed solution and PCA of the input data; ii) introducing a new formulation of

1

the autoencoder learning problem able to return an optimal solution also in the case of a number
of hidden units which is less than the rank of the full data matrix; iii) proposing a procedure for
approximate learning of the autoencoder network weights under the scenario of very large sequence
datasets. More importantly, we show how to use the linear autoencoder network solution to derive a
good initial point into a RNN weight space, and how the proposed approach is able to return quite
impressive results when applied to prediction tasks involving long sequences of polyphonic music.

2 Linear Autoencoder Networks for Sequences

In [11, 12] it is shown that principal directions of a set of vectors xi ∈ Rk are related to solutions
obtained by training linear autoencoder networks

oi = WoutputWhiddenxi, i = 1, . . . , n, (1)

where Whidden ∈ Rp×k, Woutput ∈ Rk×p, p� k, and the network is trained so to get oi = xi, ∀i.
When considering a temporal sequence x1,x2, . . . ,xt, . . . of input vectors, where t is a discrete time
index, a linear autoencoder can be defined by considering the coupled linear dynamical systems

yt = Axt + Byt−1 (2)

[
xt

yt−1

]
= Cyt (3)

It should be noticed that eqs. (2) and (3) extend the linear transformation defined in eq. (1) by
introducing a memory term involving matrix B ∈ Rp×p. In fact, yt−1 is inserted in the right part
of equation (2) to keep track of the input history through time: this is done exploiting a state space
representation. Eq. (3) represents the decoding part of the autoencoder: when a state yt is multiplied
by C, the observed input xt at time t and state at time t − 1, i.e. yt−1, are generated. Decoding
can then continue from yt−1. This formulation has been proposed, for example, in [17] where an
iterative procedure to learn weight matrices A and B, based on Oja’s rule, is presented. No proof
of convergence for the proposed procedure is however given. More recently, an exact closed-form
solution for the weights has been given in the case of a number of hidden units equal to the rank of
the full data matrix (full rank case) [13, 16]. In this section, we revise this result. In addition, we
give an exact solution also for the case in which the number of hidden units is strictly less than the
rank of the full data matrix.

The basic idea of [13, 16] is to look for directions of high variance into the state space of the
dynamical linear system (2). Let start by considering a single sequence x1,x2, . . . ,xt, . . . ,xn and
the state vectors of the corresponding induced state sequence collected as rows of a matrix Y =

[y1,y2,y3, · · · ,yn]
T. By using the initial condition y0 = 0 (the null vector), and the dynamical

linear system (2), we can rewrite the Y matrix as

Y =


xT
1 0 0 0 · · · 0

xT
2 xT

1 0 0 · · · 0
xT
3 xT

2 xT
1 0 · · · 0

...
...

...
...

...
...

xT
n xT

n−1 xT
n−2 · · · xT

2 xT
1


︸ ︷︷ ︸

Ξ


AT

ATBT

ATB2T

...
ATBn−1T


︸ ︷︷ ︸

Ω

where, given s = kn, Ξ ∈ Rn×s is a data matrix collecting all the (inverted) input subsequences
(including the whole sequence) as rows, and Ω is the parameter matrix of the dynamical system.

Now, we are interested in using a state space of dimension p � n, i.e. yt ∈ Rp, such that as
much information as contained in Ω is preserved. We start by factorizing Ξ using SVD, obtaining
Ξ = VΛUT where V ∈ Rn×n is an unitary matrix, Λ ∈ Rn×s is a rectangular diagonal matrix
with nonnegative real numbers on the diagonal with λ1,1 ≥ λ2,2 ≥ · · · ≥ λn,n (the singular values),
and UT ∈ Rs×n is a unitary matrix.

It is important to notice that columns of UT which correspond to nonzero singular values, apart
some mathematical technicalities, basically correspond to the principal directions of data, i.e. PCA.

If the rank of Ξ is p, then only the first p elements of the diagonal of Λ are not null, and the
above decomposition can be reduced to Ξ = V(p)Λ(p)U(p)T where V(p) ∈ Rn×p, Λ(p) ∈ Rp×p,

2

and U(p)T ∈ Rp×n. Now we can observe that U(p)TU(p) = I (where I is the identity matrix of
dimension p), since by definition the columns of U(p) are orthogonal, and by imposing Ω = U(p),
we can derive “optimal” matrices A ∈ Rp×k and B ∈ Rp×p for our dynamical system, which will
have corresponding state space matrix Y(p) = ΞΩ = ΞU(p) = V(p)Λ(p)U(p)TU(p) = V(p)Λ(p).

Thus, if we represent U(p) as composed of n submatrices U
(p)
i , each of size k × p, the problem

reduces to find matrices A and B such that

Ω =


AT

ATBT

ATB2T

...
ATBn−1T

 =


U

(p)
1

U
(p)
2

U
(p)
3

...
U

(p)
n

 = U(p). (4)

The reason to impose Ω = U(p) is to get a state space where the coordinates are uncorrelated so
to diagonalise the empirical sample covariance matrix of the states. Please, note that in this way
each state (i.e., row of the Y matrix) corresponds to a row of the data matrix Ξ, i.e. the unrolled
(sub)sequence read up to a given time t. If the rows of Ξ were vectors, this would correspond to
compute PCA, keeping only the fist p principal directions.
In the following, we demonstrate that there exists a solution to the above equation. We start
by observing that Ξ owns a special structure, i.e. given Ξ = [Ξ1 Ξ2 · · · Ξn], where Ξi ∈

Rn×k, then for i = 1, . . . , n − 1, Ξi+1 = RnΞi =

[
01×(n−1) 01×1
I(n−1)×(n−1) 0(n−1)×1

]
Ξi , and

RnΞn = 0, i.e. the null matrix of size n × k. Moreover, by singular value decomposition, we

have Ξi = V(p)Λ(p)U
(p)
i

T
, for i = 1, . . . , n. Using the fact that V(p)TV(p) = I, and

combining the above equations, we get U
(p)
i+t = U

(p)
i Qt, for i = 1, . . . , n − 1, and t =

1, . . . , n − i, where Q = Λ(p)V(p)TRT
nV(p)Λ(p)−1. Moreover, we have that U

(p)
n Q = 0 since

U
(p)
n Q = U

(p)
n Λ(p)V(p)TRT

nV(p)Λ(p)−1= (RnΞn︸ ︷︷ ︸
=0

)TV(p)Λ(p)−1. Thus, eq. (4) is satisfied by

A = U
(p)
1

T
and B = QT. It is interesting to note that the original data Ξ can be recovered by

computing Y(p)U(p)T = V(p)Λ(p)U(p)T = Ξ, which can be achieved by running the system[
xt

yt−1

]
=

[
AT

BT

]
yt

starting from yn, i.e.
[

AT

BT

]
is the matrix C defined in eq. (3).

Finally, it is important to remark that the above construction works not only for a single sequence,
but also for a set of sequences of different length. For example, let consider the two sequences
(xa

1 ,x
a
2 ,x

a
3) and (xb

1,x
b
2). Then, we have

Ξa =

 xa
1
T 0 0

xa
2
T xa

1
T 0

xa
3
T xa

2
T xa

1
T

 and Ξb =

[
xb
1
T

0

xb
2
T

xb
1
T

]

which can be collected together to obtain Ξ =

[
Ξa

Ξb 02×1

]
, and R =

[
R4

R2 02×1

]
.

As a final remark, it should be stressed that the above construction only works if p is equal to the
rank of Ξ. In the next section, we treat the case in which p < rank(Ξ).

2.1 Optimal solution for low dimensional autoencoders

When p < rank(Ξ) the solution given above breaks down because Ξ̃i = V(p)L(p)U
(p)
i

T
6= Ξi, and

consequently Ξ̃i+1 6= RnΞ̃i. So the question is whether the proposed solutions for A and B still
hold the best reconstruction error when p < rank(Ξ).

3

In this paper, we answer in negative terms to this question by resorting to a new formulation of our
problem where we introduce slack-like matrices E

(p)
i ∈ Rk×p, i = 1, . . . , n + 1 collecting the

reconstruction errors, which need to be minimised:

min
Q∈Rp×p,E

(p)
i

n+1∑
i=1

‖E(p)
i ‖

2
F

subject to :


U

(p)
1 + E

(p)
1

U
(p)
2 + E

(p)
2

U
(p)
3 + E

(p)
3

...
U

(p)
n + E

(p)
n

Q =


U

(p)
2 + E

(p)
2

U
(p)
3 + E

(p)
3

...
U

(p)
n + E

(p)
n

E
(p)
n+1

 (5)

Notice that the problem above is convex both in the objective function and in the constraints; thus
it only has global optimal solutions E∗i and Q∗, from which we can derive AT = U

(p)
1 + E∗1 and

BT = Q∗. Specifically, when p = rank(Ξ), RT
s,kU(p) is in the span of U(p) and the optimal

solution is given by E∗i = 0k×p ∀i, and Q∗ = U(p)TRT
s,kU(p), i.e. the solution we have already

described. If p < rank(Ξ), the optimal solution cannot have ∀i, E∗i = 0k×p. However, it is not
difficult to devise an iterative procedure to reach the minimum. Since in the experimental section we
do not exploit the solution to this problem for reasons that we will explain later, here we just sketch
such procedure. It helps to observe that, given a fixed Q, the optimal solution for E

(p)
i is given by

[Ẽ
(p)
1 , Ẽ

(p)
2 , . . . , Ẽ

(p)
n+1] = [U

(p)
1 Q−U

(p)
2 ,U

(p)
1 Q2 −U

(p)
3 ,U

(p)
1 Q3 −U

(p)
4 , . . .] M+

Q

where M+
Q is the pseudo inverse of MQ =


−Q −Q2 −Q3 · · ·
I 0 0 · · ·
0 I 0 · · ·
0 0 I · · ·
...

...
...

...

 .

In general, Ẽ(p) =
[
Ẽ

(p)T

1 , Ẽ
(p)T

2 , Ẽ
(p)T

3 , · · · , Ẽ(p)T

n

]T
can be decomposed into a component in the

span of U(p) and a component E(p)⊥ orthogonal to it. Notice that E(p)⊥ cannot be reduced, while
(part of) the other component can be absorbed into Q by defining Ũ(p) = U(p) + E(p)⊥ and taking

Q̃ = (Ũ(p))+
[
Ũ

(p)T

2 , Ũ
(p)T

3 , · · · , Ũ(p)T

n ,E
(p)T

n+1

]T
.

Given Q̃, the new optimal values for E
(p)
i are obtained and the process iterated till convergence.

3 Pre-training of Recurrent Neural Networks

Here we define our pre-training procedure for recurrent neural networks with one hidden layer of p
units, and O output units:

ot = σ(Woutputh(xt)) ∈ RO, h(xt) = σ(Winputxt + Whiddenh(xt−1)) ∈ Rp (6)

where Woutput ∈ RO×p, Whidden ∈ Rp×k, for a vector z ∈ Rm, σ(z) = [σ(z1), . . . , σ(zm)]
T,

and here we consider the symmetric sigmoid function σ(zi) = 1−e−zi

1+e−zi
.

The idea is to exploit the hidden state representation obtained by eqs. (2) as initial hidden state repre-
sentation for the RNN described by eqs. (6). This is implemented by initialising the weight matrices
Winput and Whidden of (6) by using the matrices that jointly solve eqs. (2) and eqs. (3), i.e. A and
B (since C is function of A and B). Specifically, we initialize Winput with A, and Whidden with
B. Moreover, the use of symmetrical sigmoidal functions, which do give a very good approximation
of the identity function around the origin, allows a good transferring of the linear dynamics inside

4

RNN. For what concerns Woutput, we initialise it by using the best possible solution, i.e. the pseu-
doinverse of H times the target matrix T, which does minimise the output squared error. Learning
is then used to introduce nonlinear components that allow to improve the performance of the model.
More formally, let consider a prediction task where for each sequence sq ≡ (xq

1,x
q
2, . . . ,x

q
lq

)

of length lq in the training set, a sequence tq of target vectors is defined, i.e. a training se-
quence is given by 〈sq, tq〉 ≡ 〈(xq

1, t
q
1), (xq

2, t
q
2), . . . , (xq

lq
, tqlq)〉, where tqi ∈ RO. Given a train-

ing set with N sequences, let define the target matrix T ∈ RL×O, where L =
∑N

q=1 lq , as

T =
[
t11, t

1
2, . . . , t

1
l1
, t21, . . . , t

N
lN

]T
. The input matrix Ξ will have size L × k. Let p∗ be the de-

sired number of hidden units for the recurrent neural network (RNN). Then the pre-training proce-
dure can be defined as follows: i) compute the linear autoencoder for Ξ using p∗ principal direc-
tions, obtaining the optimal matrices A∗ ∈ Rp∗×k and B∗ ∈ Rp∗×p∗

; i) set Winput = A∗ and
Whidden = B∗; iii) run the RNN over the training sequences, collecting the hidden activities vec-
tors (computed using symmetrical sigmoidal functions) over time as rows of matrix H ∈ RL×p∗

;
iv) set Woutput = H+T, where H+ is the (left) pseudoinverse of H.

3.1 Computing an approximate solution for large datasets

In real world scenarios the application of our approach may turn difficult because of the size of
the data matrix. In fact, stable computation of principal directions is usually obtained by SVD de-
composition of the data matrix Ξ, that in typical application domains involves a number of rows
and columns which is easily of the order of hundreds of thousands. Unfortunately, the computa-
tional complexity of SVD decomposition is basically cubic in the smallest of the matrix dimensions.
Memory consumption is also an important issue. Algorithms for approximate computation of SVD
have been suggested (e.g., [18]), however, since for our purposes we just need matrices V and Λ
with a predefined number of columns (i.e. p), here we present an ad-hoc algorithm for approximate
computation of these matrices. Our solution is based on the following four main ideas: i) divide Ξ
in slices of k (i.e., size of input at time t) columns, so to exploit SVD decomposition at each slice
separately; ii) compute approximate V and Λ matrices, with p columns, incrementally via truncated
SVD of temporary matrices obtained by concatenating the current approximation of VΛ with a new
slice; iii) compute the SVD decomposition of a temporary matrix via either its kernel or covariance
matrix, depending on the smallest between the number of rows and the number of columns of the
temporary matrix; iv) exploit QR decomposition to compute SVD decomposition.

Algorithm 1 shows in pseudo-code the main steps of our procedure. It maintains a temporary matrix
T which is used to collect incrementally an approximation of the principal subspace of dimension p
of Ξ. Initially (line 4) T is set equal to the last slices of Ξ, in a number sufficient to get a number
of columns larger than p (line 2). Matrices V and Λ from the p-truncated SVD decomposition of
T are computed (line 5) via the KECO procedure, described in Algorithm 2, and used to define a
new T matrix by concatenation with the last unused slice of Ξ. When all slices are processed, the
current V and Λ matrices are returned. The KECO procedure, described in Algorithm 2 , reduces
the computational burden by computing the p-truncated SVD decomposition of the input matrix
M via its kernel matrix (lines 3-4) if the number of rows of M is no larger than the number of
columns, otherwise the covariance matrix is used (lines 6-8). In both cases, the p-truncated SVD
decomposition is implemented via QR decomposition by the INDIRECTSVD procedure described in
Algorithm 3. This allows to reduce computation time when large matrices must be processed [19].
Finally, matrices V and S

1
2 (both kernel and covariance matrices have squared singular values of

M) are returned.

We use the strategy to process slices of Ξ in reverse order since, moving versus columns with larger
indices, the rank as well as the norm of slices become smaller and smaller, thus giving less and less
contribution to the principal subspace of dimension p. This should reduce the approximation error
cumulated by dropping the components from p + 1 to p + k during computation [20]. As a final
remark, we stress that since we compute an approximate solution for the principal directions of Ξ,
it makes no much sense to solve the problem given in eq. (5): learning will quickly compensate
for the approximations and/or sub-optimality of A and B obtained by matrices V and Λ returned
by Algorithm 1. Thus, these are the matrices we have used for the experiments described in next
section.

5

Algorithm 1 Approximated V and Λ with p components
1: function SVFORBIGDATA(Ξ, k, p)
2: nStart = dp/ke . Number of starting slices
3: nSlice = (Ξ.columns/k)− nStart . Number of remaining slices
4: T = Ξ[:, k ∗ nSlice : Ξ.columns]
5: V,Λ =KECO(T, p) . Computation of V and Λ for starting slices
6: for i in REVERSED(range(nSlice)) do . Computation of V and Λ for remaining slices
7: T = [Ξ[:, i ∗ k:(i+ 1) ∗ k],VΛ]
8: V,Λ =KECO(T, p)
9: end for

10: return V,Λ
11: end function

Algorithm 2 Kernel vs covariance computation
1: function KECO(M, p)
2: if M.rows <= Ξ.columns then
3: K = MMT

4: V,Ssqr,U
T =INDIRECTSVD(K, p)

5: else
6: C = MTM
7: V,Ssqr,U

T =INDIRECTSVD(C, p)

8: V = MUTS
− 1

2
sqr

9: end if
10: return V,S

1
2
sqr

11: end function

Algorithm 3 Truncated SVD by QR
1: function INDIRECTSVD(M, p)
2: Q,R =QR(M)
3: Vr,S,U

T =SVD(R)
4: V = QVr

5: S = S[1 : p, 1 : p]
6: V = V[1 : p, :]
7: UT = UT[:, 1 : p]
8: return V,S,UT

9: end function

4 Experiments

In order to evaluate our pre-training approach, we decided to use the four polyphonic music se-
quences datasets used in [21] for assessing the prediction abilities of the RNN-RBM model. The
prediction task consists in predicting the notes played at time t given the sequence of notes played
till time t − 1. The RNN-RBM model achieves state-of-the-art in such demanding prediction task.
As performance measure we adopted the accuracy measure used in [21] and described in [22]. Each
dataset is split in training set, validation set, and test set. Statistics on the datasets, including largest
sequence length, are given in columns 2-4 of Table 1. Each sequence in the dataset represents a song
having a maximum polyphony of 15 notes (average 3.9); each time step input spans the whole range
of piano from A0 to C8 and it is represented by using 88 binary values (i.e. k = 88).

Our pre-training approach (PreT-RNN) has been assessed by using a different number of hidden
units (i.e., p is set in turn to 50, 100, 150, 200, 250) and 5000 epochs of RNN training1 using the
Theano-based stochastic gradient descent software available at [23].

Random initialisation (Rnd) has also been used for networks with the same number of hidden units.
Specifically, for networks with 50 hidden units, we have evaluated the performance of 6 different
random initialisations. Finally, in order to verify that the nonlinearity introduced by the RNN is
actually useful to solve the prediction task, we have also evaluated the performance of a network
with linear units (250 hidden units) initialised with our pre-training procedure (PreT-Lin250).

To give an idea of the time performance of pre-training with respect to the training of a RNN, in
column 5 of Table 1 we have reported the time in seconds needed to compute pre-training matrices
(Pre-) (on Intel c© Xeon c© CPU E5-2670 @2.60GHz with 128 GB) and to perform training of a
RNN with p = 50 for 5000 epochs (on GPU NVidia K20). Please, note that for larger values of p,
the increase in computation time of pre-training is smaller than the increment in computation time
needed for training a RNN.

1Due to early overfitting, for the Muse dataset we used 1000 epochs.

6

Dataset Set # Samples Max length (Pre-)Training Time Model ACC% [21]
Training 195 641 seconds RNN (w. HF) 62.93 (66.64)

Nottingham (39165× 56408) (226) 5837 RNN-RBM 75.40
Test 170 1495 p = 50 PreT-RNN 75.23 (p = 250)

Validation 173 1229 5000 epochs PreT-Lin250 73.19
Training 87 4405 seconds RNN (w. HF) 19.33 (23.34)

Piano-midi.de (70672× 387640) (2971) 4147 RNN-RBM 28.92
Test 25 2305 p = 50 PreT-RNN 37.74 (p = 250)

Validation 12 1740 5000 epochs PreT-Lin250 16.87
Training 524 2434 seconds RNN (w. HF) 23.25 (30.49)

MuseData (248479× 214192) (7338) 4190 RNN-RBM 34.02
Test 25 2305 p = 50 PreT-RNN 57.57 (p = 200)

Validation 135 2523 5000 epochs PreT-Lin250 3.56
Training 229 259 seconds RNN (w. HF) 28.46 (29.41)

JSB Chorales (27674× 22792) (79) 6411 RNN-RBM 33.12
Test 77 320 p = 50 PreT-RNN 65.67 (p = 250)

Validation 76 289 5000 epochs PreT-Lin250 38.32

Table 1: Datasets statistics including data matrix size for the training set (columns 2-4), computa-
tional times in seconds to perform pre-training and training for 5000 epochs with p = 50 (column
5), and accuracy results for state-of-the-art models [21] vs our pre-training approach (columns 6-7).
The acronym (w. HF) is used to identify an RNN trained by Hessian Free Optimization [4].

Training and test curves for all the models described above are reported in Figure 1. It is evident that
random initialisation does not allow the RNN to improve its performance in a reasonable amount of
epochs. Specifically, for random initialisation with p = 50 (Rnd 50), we have reported the average
and range of variation over the 6 different trails: different initial points do not change substantially
the performance of RNN. Increasing the number of hidden units allows the RNN to slightly increase
its performance. Using pre-training, on the other hand, allows the RNN to start training from a quite
favourable point, as demonstrated by an early sharp improvement of performances. Moreover, the
more hidden units are used, the more the improvement in performance is obtained, till overfitting is
observed. In particular, early overfitting occurs for the Muse dataset. It can be noticed that the linear
model (Linear) reaches performances which are in some cases better than RNN without pre-training.
However, it is important to notice that while it achieves good results on the training set (e.g. JSB and
Piano-midi), the corresponding performance on the test set is poor, showing a clear evidence of over-
fitting. Finally, in column 7 of Table 1, we have reported the accuracy obtained after validation on
the number of hidden units and number of epochs for our approaches (PreT-RNN and PreT-Lin250)
versus the results reported in [21] for RNN (also using Hessian Free Optimization) and RNN-RBM.
In any case, the use of pre-training largely improves the performances over standard RNN (with
or without Hessian Free Optimization). Moreover, with the exception of the Nottingham dataset,
the proposed approach outperforms the state-of-the-art results achieved by RNN-RBM. Large im-
provements are observed for the Muse and JSB datasets. Performance for the Nottingham dataset
is basically equivalent to the one obtained by RNN-RBM. For this dataset, also the linear model
with pre-training achieves quite good results, which seems to suggest that the prediction task for
this dataset is much easier than for the other datasets. The linear model outperforms RNN without
pre-training on Nottingham and JSB datasets, but shows problems with the Muse dataset.

5 Conclusions

We have proposed a pre-training technique for RNN based on linear autoencoders for sequences.
For this kind of autoencoders it is possible to give a closed form solution for the definition of the
“optimal” weights, which however, entails the computation of the SVD decomposition of the full
data matrix. For large data matrices exact SVD decomposition cannot be achieved, so we proposed
a computationally efficient procedure to get an approximation that turned to be effective for our
goals. Experimental results for a prediction task on datasets of sequences of polyphonic music
show the usefulness of the proposed pre-training approach, since it allows to largely improve the
state of the art results on all the considered datasets by using simple stochastic gradient descend for
learning. Even if the results are very encouraging the method needs to be assessed on data from
other application domains. Moreover, it is interesting to understand whether the analysis performed
in [24] on linear deep networks for vectors can be extended to recurrent architectures for sequences
and, in particular, to our method.

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u
ra

c
y

Epoch

Nottingham Test Set

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u
ra

c
y

Epoch

Piano-Midi.de Training Set

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u
ra

c
y

Epoch

Piano-Midi.de Test Set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

A
c
c
u
ra

c
y

Epoch

Muse Dataset Training Set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

A
c
c
u
ra

c
y

Epoch

Muse Dataset Test Set

Figure 1: Training (left column) and test (right column) curves for the assessed approaches on the
four datasets. Curves are sampled at each epoch till epoch 100, and at steps of 100 epochs afterwards.

8

