
Supplementary Material

In this appendix, we collect some auxiliary results and we provide proofs of the results stated in the
main body of the paper.

A Auxiliary Results

Recall that a subset A of a real vector space X is called balanced if ↵A ⇢ A whenever |↵|  1.
Furthermore, A is called absorbing if for any x 2 X , x 2 �A for some �(x) > 0. For a proof of
the following lemma see e.g. [27, §1.35].
Lemma A.1. Let X be a real vector space and let A ⇢ X be a convex, balanced, and absorbing
set. The Minkowski functional µ

A

of A, given, for every x 2 X , by the formula

µ

A

(x) = inf{� > 0 : x 2 �A}
defines a seminorm on X . In addition, if µ

A

(x) > 0 for every x 6= 0, then µ

A

defines a norm on X .

The next result is due to von Neumann [10], see also [23].
Theorem A.2 (Von Neumann’s trace inequality). For any d⇥m matrices X and Y ,

tr(XY

>
)  h�(X),�(Y )i.

Equality holds if and only if X and Y admit a simultaneous singular value decomposition, that is

X = Udiag(�(X))V

>
, Y = Udiag(�(Y ))V

>
,

where U 2 Rd⇥d and V 2 Rm⇥m are orthogonal matrices.

The following result, which is presented in [6, Section 2] is key for the proof of Theorem 3.5.
Proposition A.3. The unit ball of the vector k-support norm is equal to the convex hull of the set
{w 2 Rd

: card(w)  k, kwk
2

 1}.

Theorems 4.1 and 4.3 make use of the following result, which follows from [17], Theorem 3.1.

Lemma A.4. Let w 2 R,� > 0, and define g(✓) =

w

2

✓

+ �

2

✓(✓ > 0). For 0 < a  b, the unique
solution to the problem min{g(✓) : a  ✓  b} is given by

✓ =

8

>

<

>

:

a, if |w|
�

< a,

|w|
�

, if a  |w|
�

 b,

b, if |w|
�

> b.

Proof. For fixed w, the objective function is strictly convex on Rd

++

and has a unique minimum on
(0,1) (see Figure 1.b in [17] for a one-dimensional illustration). The derivative of the objective
function is zero for ✓ = ✓

⇤
:= |w|/�, strictly positive below ✓

⇤ and strictly increasing above ✓

⇤.
Considering these three cases we recover the expression in statement of the lemma.

B Proofs

Proof of Proposition 2.2. Consider the expression for the dual norm. The function k · k
⇥

is a norm
since it is a supremum of norms. Recall that the Fenchel conjugate h

⇤ of a function h : Rd ! R is
defined for every u 2 Rd as h⇤

(u) = sup

�hu,wi � h(w) : w 2 Rd

 

. It is a standard result from
convex analysis that for any norm k · k, the Fenchel conjugate of the function h :=

1

2

k · k2 satisfies
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h

⇤
=

1

2

k · k2⇤, where k · k⇤ is the corresponding dual norm (see, e.g. [23]). By the same result, for
any norm the biconjugate is equal to the norm, that is (k · k⇤)⇤ = k · k. Applying this to the dual
norm we have, for every w 2 Rd,

h(w) = sup

u2Rd

{hw, ui � h

⇤
(u)} = sup

u2Rd

inf

✓2⇥

(

d

X

i=1

✓

w

i

u

i

� 1

2

✓

i

u

2

i

◆

)

.

This is a minimax problem in the sense of von Neumann [28], and we can exchange the order of
the inf and the sup, and solve the latter (which is in fact a maximum) componentwise. The gradient
with respect to u

i

is zero for u
i

=

wi
✓i

, and substituting this into the objective we get

h(w) =

1

2

inf

✓2⇥

d

X

i=1

w

2

i

✓

i

.

It follows that the infimum expression in (3) defines a norm, and the two norms are duals of each
other as required.

Proof of Proposition 3.1. We make the change of variable �

i

=

✓i�a

b�a

and observe that the con-
straints on ✓ induce the constraint set {� 2 (0, 1]

d

,

P

d

i=1

�

i

 ⇢}, where ⇢ =

c�da

b�a

. Furthermore

d

X

i=1

✓

i

u

2

i

= akuk2
2

+ (b� a)

d

X

i=1

�

i

u

2

i

.

The result then follows by taking the supremum over �.

Proof of Proposition 3.2. Equation 5 defines a norm and we will show that its norm coincides with
the dual of the ⇥-norm given by equation (4). To simplify the exposition we define the norm

kvk2
g

=

X

i2g

v

2

i

b

+

X

i/2g

v

2

i

a

, v 2 Rd

,

whose corresponding dual norm is

kuk2⇤,g = b

X

i2g

u

2

i

+ a

X

i/2g

u

2

i

, u 2 Rd

.

Furthermore for every u 2 Rd and g ✓ {1, . . . , d}, we define the vectors u|g = (u

i

I{i2g})
d

i=1

and
u|gc

= (u

i

I{i/2g})
d

i=1

.

We have, for every u 2 Rd, u 6= 0, that

sup

w2Rd

hw, ui
kwk = sup

{vg}

P

g2Gk
hv

g

, ui
P

g2Gk
kv

g

k
g

 sup

{vg}

P

g2Gk
kv

g

k
g

kuk⇤,g
P

g2Gk
kv

g

k
g

 max

g2Gk

kuk⇤,g, (13)

where we have used Cauchy-Schwarz and Hölder inequalities. We can make the first inequality tight
by setting v

g

= �

g

(bu|g + au|gc
) and the second inequality tight by requiring �

g

= 0 whenever
g /2 argmax

g

02Gk
kuk⇤,g0 , see e.g. [29, Sects. 5.4.14. and 5.4.15]. Note that the right hand side in

(13) is maximized when g = {i
1

, . . . , i

k

} such that |u
i

1

| � · · · |u
ik | and the expression coincides

with (4) for ⇢ = k.
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Proof of Proposition 3.3. Consider the definition of the norm kwk
⇥

in (3). We make the change of
variables �

i

=

✓i�a

b�a

, and write

kwk2
⇥

= min

✓2⇥

d

X

i=1

w

2

i

✓

i

=

�

a

min

�2�

d

X

i=1

w

2

i

�

i

+ �

, (14)

where we have defined � =

a

b�a

and � = {� 2 (0, 1]

d

:

P

d

i=1

�

i

 k}. We observe that

min

z2Rd

�kw � zk2
2

+ �kzk2
�

 

= min

z2Rd
min

�2�

(

d

X

i=1

(w

i

� z

i

)

2

+ �

z

2

i

�

i

)

= �min

�2�

d

X

i=1

w

2

i

�

i

+ �

, (15)

where we have interchanged the order of the minimization problems and solved for z
i

component-
wise. The result follows by combining equations (14) and (15).

Proof of Lemma 3.4. Let g(w) = kwk
⇥

. We need to show that g is a norm which is invariant
under permutations and sign changes. By Proposition 2.2, g is a norm, so it remains to show that
g(w

1

, ..., w

d

) = g(w

⇡(1)

, . . . , w

⇡(d)

) for every permutation ⇡, and g(Jw) = g(w) for every diago-
nal matrix J with entries ±1. The latter property is immediate. The former property follows since
the set ⇥-norm is permutation invariant.

Proof of Proposition 3.5. For any W 2 Rd⇥m, define the following sets

T

k

= {W 2 Rd⇥m

: rank(W )  k, kWk
F

 1}, A

k

= co(T
k

),

and consider the following functional

�(W ) = inf{� > 0 : W 2 �A

k

}, W 2 Rd⇥m

. (16)

By Lemma A.1, � defines a norm on Rd⇥m with unit ball equal to A

k

. Since the constraints in
T

k

involve spectral functions, the sets T

k

and A

k

are invariant to left and right multiplication by
orthogonal matrices. It follows that � is a spectral function, that is �(W ) is defined in terms of
the singular values of W , and by von Neumann’s Theorem [10] the norm it defines is orthogonally
invariant and we have

�(W ) = inf{� > 0 : W 2 �A

k

}

= inf{� > 0 : �(W ) 2 �C

k

}

= k�(W )k
(k)

,

where we have defined the set C
k

= co{w 2 Rd

: kwk
2

 1, card(w)  k} and we have used the
fact that the unit ball of the k-support norm is the convex hull of C

k

[6, Section 2] in the penultimate
step. It follows that the norm defined by (16) is the spectral k-support norm.

Proof of Proposition 3.6. By von Neumann’s trace inequality (Theorem A.2) we have

1

a

kW � Zk2
F

+

1

b� a

kZk2
(k)

=

1

a

�kWk2
F

+ kZk2
F

� 2hW,Zi�+ 1

b� a

kZk2
(k)

� 1

a

�k�(W )k2
2

+ k�(Z)k2
2

� 2h�(W ),�(Z)i�+ 1

b� a

k�(Z)k2
(k)

=

1

a

k�(W )� �(Z)k2
2

+

1

b� a

k�(Z)k2
(k)

.
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Furthermore the inequality is tight if W and Z have the same ordered set of singular vectors. Hence

min

Z2Rd⇥m

⇢

1

a

kW � Zk2
F

+

1

b� a

kZk2
(k)

�

= min

z2Rd

⇢

1

a

k�(W )� zk2
2

+

1

b� a

kzk2
(k)

�

= k�(W )k2
(k)

,

where the last equality follows by Proposition 3.3

Proof of Theorem 4.1. We solve the constrained optimization problem

inf

⇢

d

X

i=1

w

2

i

✓

i

: a  ✓

i

 b,

d

X

i=1

✓

i

 c

�

. (17)

To simplify notation we assume without loss of generality that w

i

are positive and ordered
nonincreasing, and note that the optimal ✓

i

are ordered nonincreasing. To see this, let ✓

⇤
=

argmin

✓2⇥

P

d

i=1

w

2

i
✓i

. Now suppose that ✓⇤
i

< ✓

⇤
j

for some i < j and define ˆ

✓ to be identical
to ✓

⇤, except with the i and j elements exchanged. The difference in objective values is

d

X

i=1

w

2

i

ˆ

✓

i

�
d

X

i=1

w

2

i

✓

⇤
i

= (w

2

i

� w

2

j

)

 

1

✓

⇤
j

� 1

✓

⇤
i

!

,

which is negative so ✓

⇤ cannot be a minimizer.

We further assume without loss of generality that w
i

6= 0 for all i, and c  db (see Remark B.1
below). The objective is continuous and we take the infimum over a closed bounded set, so a
solution exists, the solution is a minimum, and it is unique by strict convexity. Furthermore, since
c  db, the sum constraint will be tight at the optimum.

Consider the Lagrangian function

L(✓,↵) =

d

X

i=1

w

2

i

✓

i

+

1

↵

2

 

d

X

i=1

✓

i

� c

!

, (18)

where 1/↵

2 is a strictly positive multiplier, and ↵ is to be chosen to make the sum constraint tight,
call this value ↵

⇤. Let ✓⇤ be the minimizer of L(✓,↵⇤
) over ✓ subject to a  ✓

i

 b.

We claim that ✓⇤ solves equation (17). Indeed, for any ✓ 2 [a, b]

d, L(✓⇤,↵⇤
)  L(✓,↵

⇤
), which

implies that
d

X

i=1

w

2

i

✓

⇤
i


d

X

i=1

w

2

i

✓

i

+

1

(↵

⇤
)

2

 

d

X

i=1

✓

i

� c

!

.

If in addition we impose the constraint
P

d

i=1

✓

i

 c, the second term on the right hand side is at
most zero, so we have for all such ✓

d

X

i=1

w

2

i

✓

⇤
i


d

X

i=1

w

2

i

✓

i

,

whence it follows that ✓⇤ is the minimizer of (17).

We can therefore solve the original problem by minimizing the Lagrangian (18) over the box con-
straint. Due to the coupling effect of the multiplier, the problem is separable, and we can solve the
simplified problem componentwise using Lemma A.4. It follows that

✓

i

=

8

>

<

>

:

a, if ↵ <

a

|wi| ,

↵|w
i

|, if a

|wi|  ↵  b

|wi| ,

b, if ↵ >

b

|wi| ,
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where ↵ > 0 is such that
P

d

i=1

✓

i

(↵) = c. Note also that in the main body of the paper we use the
equivalent compact notation ✓

i

= ✓

i

(↵) = min(b,max(a,↵|w
i

|)).
The minimizer then has the form

✓ = (b, . . . , b

| {z }

q

, ✓

q+1

, . . . , ✓

d�`

, a, . . . , a

| {z }

`

),

where q, ` 2 {0, . . . , d} are determined by the value of ↵ which satisfies

S(↵) =

d

X

i=1

✓

i

(↵) = qb+

d�`

X

i=q+1

↵|w
i

|+ `a = c,

i.e. ↵ = p/

⇣

P

d�`

i=q+1

|w
i

|
⌘

, where p = c� qb� `a.

The value of the norm follows by substituting ✓ into the objective and we get

kwk2
⇥

=

q

X

i=1

|w
i

|2
b

+

1

p

⇣

d�`

X

i=q+1

|w
i

|
⌘

2

+

d

X

i=d�`+1

|w
i

|2
a

=

1

b

kw
Q

k2
2

+

1

p

kw
I

k2
1

+

1

a

kw
L

k2
2

,

as required. We can further characterize q and ` by considering the form of ✓
i

. By construction we
have ✓

q

� b > ✓

q+1

and ✓

d�`

> a � ✓

d�`+1

, or equivalently

|w
q

|
b

� 1

p

d�`

X

i=q+1

|w
i

| > |w
q+1

|
b

, and

|w
d�`

|
a

� 1

p

d�`

X

i=q+1

|w
i

| > |w
d�`+1

|
a

,

and we are done.

Remark B.1. The case where some w
i

are zero follows from the case that we have considered in the
theorem. If w

i

= 0 for n < i  d, then clearly we must have ✓
i

= a for all such i. We then consider
the n-dimensional problem of finding (✓

1

, . . . , ✓

n

) that minimizes
P

n

i=1

w

2

i
✓i

, subject to a  ✓

i

 b,
and

P

n

i=1

✓

i

 c

0, where c

0
= c � (d � n)a. As c � da by assumption, we also have c

0 � na, so
a solution exists to the n-dimensional problem. If c0 < bn, then a solution is trivially ✓

i

= b for all
i = 1 . . . n. In general, c0 � bn, and we proceed as per the proof of the theorem. Finally, a vector
that solves the original d-dimensional problem will be given by (✓

1

, . . . , ✓

n

, a, . . . , a).

Proof of Theorem 4.2. Following Theorem 4.1, we need to determine ↵

⇤ to satisfy the coupling
constraint S(↵⇤

) = c. Each component ✓
i

is a piecewise linear function in the form of a step
function with a constant positive slope between the values a/|w

i

| and b/|w
i

|. Let the set
�

↵

i

 

2d

i=1

be the set of the 2d critical points, where the ↵

i are ordered nondecreasing. The function S(↵) is
a nondecreasing piecewise linear function with at most 2d critical points. We can find ↵

⇤ by first
sorting the points {↵i}, finding ↵

i and ↵

i+1 such that

S(↵

i

)  c  S(↵

i+1

)

by binary search, and then interpolating ↵

⇤ between the two points. Sorting takes O(d log d).
Computing S(↵

i

) at each step of the binary search is O(d), so O(d log d) overall. Given ↵

i and
↵

i+1, interpolating ↵

⇤ is O(1), so the algorithm overall is O(d log d) as claimed.
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Proof of Theorem 4.3. Using the infimum formulation of the norm, we solve

min

x2Rd
inf

✓2⇥

(

1

2

d

X

i=1

(x

i

� w

i

)

2

+

�

2

d

X

i=1

x

2

i

✓

i

)

.

We can exchange the order of the optimization and solve for x first. The problem is separable and a
direct computation yields that x

i

=

✓iwi
✓i+�

. Discarding a multiplicative factor of �/2, and noting that
the infimum is a minimum, the problem in ✓ becomes

min

✓

⇢

d

X

i=1

w

2

i

✓

i

+ �

: a  ✓

i

 b,

d

X

i=1

✓

i

 c

�

.

This is exactly like problem (17) after the change of variable ✓0
i

= ✓

i

+ �. The remaining part of the
proof then follows in a similar manner to the proof of Theorem 4.1.
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