
A Supplementary Material

A.1 Proof of Thm. 1

Proof: Fix n examples sequences, (xi,1, yi,1), ..., (xi,n, yi,n) for each of the K tasks. Let t be
certain trial and i to be an update task on this trial, such that Mi,t = 1 or Ai,t = 1. Denote this event
by Ui,t = 1. We write,
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The last inequality holds for all γ > 0 and for all ui ∈ Rd, so we can replace γ and ui by their
scaling αγ and αui respectively, where α > 0 will be determined shortly and we get
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In trials and task where there is no update, i.e., Ui,tZi,t = 0, the equality wi,t = wi,t−1 holds.
Combining the last two observations, we have
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Next, we sum the inequality above, over t and use the fact that wi,0 = 0 and ‖wi,t−1 −wi,t‖2 ≤ X2
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Substituting α = (2b+X2)/2γ (where b ∈ R, b > 0) in Eq. (3), we get
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We subtract a non negative quantity
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At this point we take the expectation of all the terms. Recall that the conditional expectation of Zi,t
is ai(b+ |p̂i,t|−minj |p̂j,t|)−1/Dt and that Ui,t = Mi,t +Ai,t and p̂i,t are measurable with respect
to the σ-algebra that generated by Z1, ...Zt−1. We start with the left term,
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We remind the reader that ai ≥ 1 ∀i. Thus we bound Mi,t ≤Mi,tai and get,
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Next we bound the factor that multiplies aiAi,t as follows,(
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and plug it into the left side of the inequality,
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The previous bound implies that 0 < δi ≤
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Combining Eq. (5) and Eq. (6),
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Summing up the last inequality over all K tasks and setting δ = maxi δi yields,
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which concludes the proof.

A.2 Extension to κ Queries per Round

We now allow the algorithm to query κ labels instead of one. On each iteration t, the modified
algorithm samples without repetitions κ labels to be annotated, and perform the same update as of
Eq. (2). Formally, on each round we have

∑
i Zi,t = κ for Zi,t ∈ {0, 1} where the first task-index

to be queried is drawn according to Eq. (1). The second task is drawn from the same distribution,
not allowing the first choice, and so on. Once κ tasks are drawn, the algorithm receives κ labels for
the κ corresponding inputs, and updates the κ models according to Eq. (2).
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Corollary 4 If SHAMPO algorithm gets feedback for κ tasks on each round, instead of only a single
task, the expected cumulative weighted mistakes is bounded as follows

E

[
K∑
i=1

n∑
t=1

Mi,t

]
≤ δ

γκ

[(
1 +

X2

2b

)
L̄κγ,n + κ

(
2b+X2

)2
8γ2b

U2

]
+

(
2
λ

b
− 1

)
E

[
K∑
i=1

n∑
t=1

aiAi,t

]
,

where L̄κγ,n is the expected loss of K models {ui} over the κ annotated instances per round t.

Proof: We follow the proof of Thm. 1 until the end of the proof. We repeat the process κ times, and
get the equivalent inequality for sampling κ tasks without repetitions, where δj is the per repetition
quantity, and we have, δ = maxj δj , κ∑
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where all expectations are now with respect to the sampling with repetitions, and specifically L̄κγ,n
is the expected loss of a set of linear models {ui} where κ tasks are sampled rather than a single
one. For a choice of κ = 1 we get the bound of Thm. 1, as expected.
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