A Supplementary Material

A.1 Proof of Thm. 1

Proof: Fix n examples sequences, (X;1,¥i1);---, (Xin,Yin) for each of the K tasks. Let ¢ be
certain trial and ¢ to be an update task on this trial, such that M; ; = 1 or A; ; = 1. Denote this event
by U;+ = 1. We write,
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The last inequality holds for all ¥ > 0 and for all u; € RY, so we can replace v and u; by their
scaling ay and au; respectively, where o > 0 will be determined shortly and we get
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In trials and task where there is no update, i.e., U; ;Z; ; = 0, the equality w; ; = w;;_; holds.
Combining the last two observations, we have
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Next, we sum the inequality above, over ¢ and use the fact that w; o = Oand ||w; ;—1 — W, ; H2 < X?
to get,

n R X2 n a2
Z Ui Z; <047 + YitDit — 2) <a Z Uit Zi 1y 5 0(0;) + -5 ||llz||2 . 3)

t=1 t=1
Substituting v = (2b + X2) /27 (where b € R, b > 0) in Eq. (3), we get
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We subtract a non negative quantity » ., , U; +Z; ymin; |p; ;| from the Lh.s. and get,
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At this point we take the expectation of all the terms. Recall that the conditional expectation of Z; ;
is a;(b+|pi+| —min; [pj+|) ' /Dy and that U; , = M, + + A, + and p; ; are measurable with respect
to the o-algebra that generated by Z1, ...Z;_1. We start with the left term,
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We remind the reader that a; > 1 Vi. Thus we bound M; ; < M; ,a; and get,
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Next we bound the factor that multiplies a;A; ; as follows,
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and plug it into the left side of the inequality,
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where the last inequality follows from,
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The previous bound implies that 0 < §; < Zfil a;.
Combining Eq. (5) and Eq. (6),
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Summing up the last inequality over all K tasks and setting § = max; J; yields,
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which concludes the proof.

A.2 Extension to x Queries per Round

) A; ra; > 0, thus there exists ¢; such that,
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We now allow the algorithm to query « labels instead of one. On each iteration ¢, the modified
algorithm samples without repetitions « labels to be annotated, and perform the same update as of
Eq. (2). Formally, on each round we have ), Z; ; =  for Z; ; € {0, 1} where the first task-index
to be queried is drawn according to Eq. (1). The second task is drawn from the same distribution,
not allowing the first choice, and so on. Once & tasks are drawn, the algorithm receives « labels for

the x corresponding inputs, and updates the x models according to Eq. (2).
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Corollary 4 [f SHAMPO algorithm gets feedback for k tasks on each round, instead of only a single
task, the expected cumulative weighted mistakes is bounded as follows
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where f@"n is the expected loss of K models {u;} over the r annotated instances per round t.
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Proof: We follow the proof of Thm. 1 until the end of the proof. We repeat the process « times, and
get the equivalent inequality for sampling & tasks without repetitions, where §; is the per repetition
quantity, and we have, § = max; J;,
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where all expectations are now with respect to the sampling with repetitions, and specifically I_/Q}n

is the expected loss of a set of linear models {u;} where x tasks are sampled rather than a single
one. For a choice of kK = 1 we get the bound of Thm. 1, as expected. ]
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