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Abstract

This note contains supplementary material&éonel Mean Estimation via Spec-
tral Filtering.

1 Proof of Theorem1l

(i) Sincefy = ﬂﬁ = 5, we have
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From [1], we have that|ip — pp| = Op(n~'/?) and therefore the result follows.
(ii) Define A := Ep|ip — pp|? = L2 @I’ consider
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Substituting forA in the r.h.s. of the above equation, we have

Eplliix — ppl®> —A = Ep (fop — pp) — pp

(ne? + c* 4 2en®) ||upl|? — (¢ + 2en?) [ k(x,2) dP(x)
n(nf + ¢)? '

Eplljix — ppll* — A =

Itis easy to verify thallp||fiy — pp||* — A < O if

el o E2end g
[k(z,z)dP(z) ~ n nc?+c2+2enf 28B4 /B(B—1)B-1/6"

Remark.If k(z,y) = (z,y), then itis easy to check th@®,. s = {P € M} (R?) : trﬁfe‘g) <45

wheref and ¥ represent the mean vector and covariance matrix. Note higthoice of kernel
yields a setting similar to classical James-Stein estomativherein for alh and allP € P, g :=
{PeNyo: 0]l <o\/dA/(1— A)}, jix is admissible for anyl, whereNp , := {P € ML (R?) :

lz—0)2

dP(z) = (2n0?)~%2e~ 22~ dx, 6 € R, o > 0}. On the other hand, the James-Stein estimator
is admissible for onlyl > 3 but for anyP € N ,.
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2 Consequence of Theorem 1 it is translation invariant

Claim: Let k(x,y) = ¥(z — y), z,y € R? where is a bounded continuous positive definite
function withy) € L1 (R?). For A = cn=? with ¢ > 0 and3 > 1, define
A(2m)/2(0)

Wl [

wheregp is the characteristic function @. ThenVrn andvVP € P, g, we haveEp||jiy — up|? <
Epl|fip — pp*.

Pe,pyp = {P € M{(RY) : | ¢pllr2 <

Proof. If k(z,y) = ¥(x — y), itis easy to verify that
e / 6r(w) *9(w) dw < sup P, < (2m) 2l el
weR?

where1) is the Fourier transform of. On the other hand, sindép(w)| < 1 for anyw € R?, we
have

// (2,) dP(x) dP(y /|¢p 2P dw</|¢ﬂ> ) P(w) dw < [[gpllz2 ]l 2

< ligellze v/ 18 llooll Bl o = l|dell 22 \/(27T)*d/2||1/)llu¢(0),

where we used(0) = ||zZ\|L1. As [ k(z,z) dP(z) = ¢(0), we have that
- { A (AT } |

J k(x,2) dP(x) ~ (2m)4724(0) "\ (2m)424(0)

SinceP € P. 3.4, we haveP € P, 4 and therefore the result follows. |

3 Proof of Theorem?2

Since(e;); is an orthonormal basis tH, we have for any? and f* € 3

oo oo o0
pp = Zuiei, fip = Zﬂiei, and f* = Z fiei,
=1 =1 1=1

wherep; :== (up, €;), ft; := (fip, e;), andf; := (f*, e;). If follows from the Parseval’s identity that

A = Epli—pl*=Ep Z(ﬂi_ﬂi)2] =Y A
i=1 i=1

Ao = ]E]P’”/:‘a_NHQ:EP Z(azf + (1= aq)j; ] ZAaz
i=1

Note that the problem has not changed and we are merely lpakiih from a dlfferent perspective.
To estimateup, we may just as well estimate its Fourier coefficient seqaenavith /i;. Based on
above decomposition, we may write the risk differedce — A asd > (Aq,; — A;). We can thus
ask under which conditions af = («;) for which A, ; — A; < 0 uniformly over alli.

For each coordinatg we have
Aai— 0 = Ep[(ouff + (1 — )i — p:)*] —Ep [( — 1i)?]
= Epla} f7 + 200 f7 (1 — )i + (1 — ci)*fa?
=20 f i — 2(1 — i) i + 7] — Ep[if — 200ips + 7]
= o} f 4 204 fiBpfu] — 207 fEplf] + (1 — ;) *Ep[;]
=20 f7 pi — 2(1 — o) Eplfi) i + g — Bp[f7] + 2B [f1i] — i
= aiff =20} fipi + (1 — i) *Ee[if] — 2(1 — ci)pf + 207 — Ep[ii}]
= aff} =20} f i + (af — 200)Ep[pf] + 2043



Next, we substitut&p[i?] = Ep[(f; — ;i + pi)?] = A; + p2 into the last equation to obtain
Api—Ai = afff =207 ff i+ 0f (A + u?) — 20 (A + 1) + 20040

= o7 f7 =207 ff i+ 0F A + oF pd — 2050

= i(fi2_2fi,ui+Ai+Mi)_2aiAi

= Qi (A + (ff = m)?) = 20u
which is negative ifty; satisfies

O<a; < Q—Al

A (fF — )?

This completes the proof.

4 Proof of Proposition 3

LetK = UDU be an eigen-decomposition Bf whereU = [, @i, . . ., 1,,] consists of orthog-
onal eigenvectors &k such thalU "U = T andD = diag(%1,- - . ., 7, ) consists of corresponding
eigenvalues. As a result, the coefficiefi{s\) can be written as

ﬂ(/\) = g)\(K)Kln = UgA(D)UTKln = Z ﬁzg)\(:yz)ﬁZTK]-n (1)

=1

UsingK1,, = [{(i, k(21,-)), ..., {fi, k(z,,-))] ", we can rewrite]) as

D g () > i (s k()
i=1 j=1
= Z Fitiga ’Yz < Zulj :L'],‘ >7

=1

B

whered;; is the jth component ofii;. Next, we invoke the relation between the eigenvectors of
the matrix K and the eigenfunctions of the empirical covariance opeigtdn H. That is, it is
known that theith eigenfunction o’y can be expressed & = (1/v/7) Z;‘Zl Uiik(z;,-) [2].

Consequently,
< Z .%‘7, : > <laa‘~/z>

and we can write the Spectral- KMSE as

iy = Z[Zﬁzg ’%gx(’%)m’{’ﬁ] k(zj,-)

j=1 Li=1 j

n
= Z Figa (3 ), ¥ Zd (zj,)

= ZQ,\(%)% (Vi) Vi
i=1
This completes the proof.

5 Population counterpart of Spectral-KMSE
To obtain the population version of the Spectral-KMSE, weoreto the regression perspective of

the kernel mean embedding which has been studied earli8r4h [The proof techniques used here
are similar to those in3). Consider

arg mingeseo Ex [[B(X,7) = FE(X, 3] + AIFls @
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whereF : H — H is Hilbert-Schmidt. We can expand the regularized |@&3aé

Ex [I5(X,) = BRG] + AP

:EX<k(X7)7k(Xa)>}C—2EX<k(Xa)aFk(Xa)>fH +EX<Fk( ) ( )>9C+)‘<FaF>HS

= Ex(k(X, ), k(X,))s — 2Ex (k(X,-) @ k(X ), F)ns + Ex (k ( ), F* Fk(X, N+ MF, F)us
= Ex<k(X, -), k(X, )>g{ — 2<Ck, F>HS + <Ck, F*F>HS + )\<]:—“,]§‘>1rj[57

whereF* denotes the adjoint & andC, = Ex[k(X, ) ® k(X -)]. Next, we show that the solution

to the above expressionks:= Cy,(C; +AI)~!. DefiningA := F(C;, +\I)'/2, the above expression
can be rewritten as

Ex (k(X,-),k(X, )3 — 2(Cx, F)us + (Cx, F*'F)us + MF, F)us

=Ex(k(X, ), k(X,"))sc — 2(Ch, F)rs + (Ck + \L,F'F) g
=Ex(k(X,),k(X, )9 — 2(Ck, F) s + <F(Ck, + D)2 F(C, + )\1)1/2>HS
= Ex (k(X,-), k(X,))sc — 2(Cr, A(Cr + \I) V) s + (A, A) g
=Ex(k(X,),k(X,"))ac — HCk (Cr + AI) 1/2H + Hck (Cp + M)~ /2 _ AH

As a result, the above expression is minimized when= C,.(C, + AI)~'/2, implying thatF =
Ci(Cr, + MXI)~ L. As in the sample case, a natural estimate of the SpectrsK M

X = F/J,Ip = Ck(Ck + )\I)_l,u]p

6 Proof of Proposition 4

The proof employs the relation between the Gram mad&iand the empirical covariance operator

C), shown in Lemma8. It is known that the operatqff;C is of finite rank, self-adjoint, and positive.
Moreover, its spectrum has only finitely many nonzero eldss). If 4; is a nonzero eigenvalue

andv; is the corresponding eigenfunction@f, then the following decompaosition holds
Crf = Filf ¥i)ac¥i, VfeEH
=1

Note that it may be that < n wherek is the rank ofC. In that case, the above decomposition still
holds. Settingf = /i and applying the definition of the filter functian to the operato€;, yield

/14/\ - Ckg)\( Zg)\ 72 'Vz</1“7vz>ﬂ{vu
=1

which is exactly the decomposition given in Lem@ar his completes the proof.

7 Proof of Theorem5

Consider the following decomposition
fx —pp = CAkQ/\(CAk)ﬂlP’ - Hp
= Ckgx(Cr)(ftp — pp) + Crga(Cr)p — pip
= Ciga(Ci) (e — pe) + (Cuga(Ch) — DR + (Crga(Cr) = 1)(CY = C)h

where we used the fact that there exists H such thajup = C,fh as we assumed that € R(C,f)
for somes > 0. Therefore

lin—pel| < 11Cxr (i) lopllite—pel|+ 1 (Cuga (C)=T)CE lopl 11| +ICkgn (Ch) =T llop I C ~CE lop 1|

where we used the fact thitlb|| < ||A||op]b]] with A : H — H being a bounded operatére H
and|| - ||,, denoting the operator norm defined|ja$||,, := sup{||4b|| : ||b|| = 1}.
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By (C1), (C2) and(C3), we have|Ciga(Ci)llop < B, |ICkga(Cr) — Illop < C and||(Crga(Cr) —

1)CP|lp < DA™n{Sm0} respectively. Denotingh|| = ||C, ° ||, we therefore have

lix = piell < Blle — pell + DA™ 107 gl | + CNICY = CFloplICy el (3)
For0 < 5 < 1, it follows from Theorem 1 in§] that there exists a constant such that
Iy — CFllop < TulICk — Cill5, < T1lICk = Crllfrs-
On the other hand, sinee+— o is Lipschitz on0, x?] for 3 > 1, the following lemma yields that
ey = Clllop < 1€ = Clzs < 72llCh = Crllzrs
wherers is the Lipschitz constant of — o on |0, x?]. In other words,

Hclf — CA;’?HOP < max{7y, 2 }|Cr — CAk”r;gl{lﬁ}. @)

Lemma 1 (Contributed by Anreas Maurer, see Lemma 57}).[ Supposed and B are self-adjoint
Hilbert-Schmidt operators on a separable Hilbert spd€avith spectrum contained in the interval
[a,b], and let(o;);er and (7;);es be the eigenvalues of and B, respectively. Given a function
r: [a,b] = R, if there exists a finite constaitsuch that
|r(o;) —r(7j)| < Loy — 7], Viel, jeJ,
then
[r(A) = r(B)llus < L|A = Blus.

Using @) in (3), we have

i = pell < Blljie = el + DA™ 0P g + OC = Cull e I pell,  (6)
wherer := max{7, 72 }. We now obtain bounds dfjip— up|| and||Cy, —@HHS using the following
results.

Lemma 2 ([8]). Suppose that = sup,y v/k(z,x). Foranyd > 0, the following inequality holds
with probability at leastl — e~?

2 V26
e — ppl| < MRV
Vn

Lemma 3 (e.g., see Theorem 7 iB]). Letx := sup,c \/k(z,x). Forn € Nand anys > 0, the
following inequality holds with probability at leagt— 2¢~°:

~ 2v/2k2
Je-al,, < 2222
HS Vn
Using Lemmag and3 in (5), for anys > 0, with probabilityl — 3e~?, we obtain
X 26B + kBV20 in _ 2V/2k2/§)mind 1B}
lix = el < == ===+ DA e + 0r B e sl

8 Shrinkage parameter\ = cn ="

In this section, we provide supplementary results that destnate the effect of the shrinkage pa-
rameter\ presented in Theorer That is, if we choose = c¢n—# for somec > 0 andj > 1, the
estimator, is a proper estimator gf. Unfortunately, the true value ¢f, which characterizes the
smoothness of the true kernel mean is not known in practice. Nevertheless, we provide sinaalat
experiments that illustrate the convergence of the estimat for different values of: and .

The data-generating distribution used in this experimenidéntical to the one we consider in
our previous experiments on synthetic data. That is, tha de¢ generated as follows: ~
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Figure 1: The risk of shrinkage estimatog when\ = c¢n=". The left figure shows the risk of the
shrinkage estimator as sample size increases while fixiegdlue of3, whereas the right figure
shows the same plots while fixing the valuecoSee text for more explanation.

S mN(0,5) + €,0,; ~ U(=10,10),; ~ W3 x I;,7),e ~ N(0,0.2 x 1) where
U(a,b) andW(Zy, df) are the uniform distribution and Wishart distribution, pestively. We set
m = [0.05,0.3,0.4,0.25]. We use the Gaussian RBF kerkét, 2') = exp(—||z—2'||?/20?%) whose
bandwidth parameter is calculated using the median heyrigt., 0 = median{||z; — z;||*}.
Figure 1 depicts the comparisons between the standard kernel méaraes and the shrinkage
estimators with varying values ofands.

As we can see in Figurg if ¢ is very small or5 is very large, the shrinkage estimajor behaves
like the empirical estimatqgtp. This coincides with the intuition given in TheoreinNote that the
value of3 specifies the smoothness of the true kernel meand is unknown in practice. Thus, one
of the interesting future directions is to develop procedbtat can adapt to this unknown parameter
automatically.
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