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Abstract

This is the supplementary material for the paper entitled “Self-Paced Learning
with Diversity”. The material is organized as follows: Section 1 gives the proof
of Theorem 1. Section 2.1 and Section 2.2 present the detailed experimental set-
tings and results on the MED (Multimedia Event Detection) dataset. Section 2.3
and Section 2.4 present the settings and detailed results on the Hollywood2 and
Olympic datasets. Section 3 briefly discusses our practical lessons and the ob-
served deficiency of the SPL/SPLD models.

1 Proof of Theorem 1

We present the proof of Theorem 1 in the paper. Given the training dataset D =
{(x1, y1), · · · , (xn, yn)}, where xi ∈ R

m denotes the ith observed sample and yi denotes its la-

bel. Assume that the training samples X = [x1, · · · ,xn] are with b groups: X(1), · · · ,X(b), where

X
(j) = (x

(j)
1 , · · · ,x(j)

nj ) ∈ R
m×nj corresponds to samples in the jth group, nj is the sample num-

ber in this group and
∑b

j=1 nj = n. Accordingly, denote the weight vector as v = [v(1), · · · ,v(b)],

where v(j) = (v
(j)
1 , · · · , v(j)nj )

T ∈ R
nj . The following theorem proves that Algorithm 1 can get the

global solution of the following non-convex optimization problem:

min
v∈[0,1]n

E(w,v;λ, γ) =

n∑

i=1

viL(yi, f(xi,w))− λ

n∑

i=1

vi − γ‖v‖2,1, (1)

where L(yi, f(xi,w)) denotes the loss function which calculates the cost between the ground truth
label yi and the estimated label f(xi,w), and the l2,1-norm ‖v‖2,1 is the group sparsity of v:

‖v‖2,1 =
b∑

j=1

‖v(j)‖2.

For convenience we briefly rewrite E(w,v;λ, γ) and L(yi, f(xi,w)) as E(v) and Li, respectively,
throughout this material.

Theorem 1 The weight vector v∗ outputted from Algorithm 1 attains the global optimal solution of
the optimization problem (1), i.e.,

v
∗ = arg min

v∈[0,1]n
E(v).
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Proof 1 The objective function of (1) can be reformulated as the following decoupling forms based
on the data cluster information:

E(v) =

b∑

j=1

E(v(j)), (2)

where

E(v(j)) =

nj∑

i=1

v
(j)
i L

(j)
i − λ

nj∑

i=1

v
(j)
i − γ‖v(j)‖2, (3)

where L
(j)
i represents the loss value of x

(j)
i . It is easy to see that the original problem (1) can be

equivalently decomposed as a series of the following sub-optimization problems (j = 1, · · · , b):

v
(j)∗ = arg min

v
(j)∈[0,1]nj

E(v(j)). (4)

E(v(j)) defined in Eq. (3) is a concave function since its first and second terms are linear, and the
third term is the negative l2,1 norm, whose positive form is a commonly utilized convex regularizer.
It is well known that the minimum solution of a concave function over a polytope can be obtained
at its vertices [1]. In other words, for the optimization problem (4), it holds that its optimal solution

v
(j)∗ ∈ {0, 1}nj , i.e.,

v
(j)∗ = arg min

v
(j)∈{0,1}nj

E(v(j)). (5)

For k = 1, · · · , nj , let’s denote

v
(j)(k) = arg min

v
(j) ∈ {0, 1}nj

‖v(j)‖0 = k

E(v(j)). (6)

This means that v(j)(k) is the optimum of (4) if it is further constrained to be with k nonzero entries.
It is then easy to deduce that

v
(j)∗ = arg min

v
(j)(k)

E(v(j)(k)). (7)

That is, the optimal solution v
(j)∗ of (4) can be achieved among v

(j)(1), · · · ,v(j)(nj) at which the
minimal objective value is attained.

Without loss of generality, we assume that the samples (x
(j)
1 , · · · ,x(j)

nj ) in the jth cluster are ar-

ranged in the ascending order of their loss values L
(j)
i . Then for the optimization problem (6), we

can get that

min
v
(j) ∈ {0, 1}nj

‖v(j)‖0 = k

E(v(j)) =

nj∑

i=1

v
(j)
i L

(j)
i − λ

nj∑

i=1

v
(j)
i − γ‖v(j)‖2

⇔ min
v
(j) ∈ {0, 1}nj

‖v(j)‖0 = k

nj∑

i=1

v
(j)
i L

(j)
i ,

since the last two terms in E(v(j)) are with constant values under the constraint. Then it is easy to

get that the optimal solution v
(j)(k) of (6) is attained by setting its k entries corresponding to the k

smallest loss values L
(j)
i (i.e., the first k entries of v(j)(k)) as 1 while others as 0, and the minimal

objective value is

E(v(j)(k)) =
k∑

i=1

v
(j)
i L

(j)
i − λk − γ

√
k. (8)
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Then let’s calculate the difference between any two adjacent elements in the sequence
E(v(j)(1)), · · · , E(v(j)(nj)):

diffk = E(v(j)(k + 1))− E(v(j)(k))

= L
(j)
k+1 − λ− γ(

√
k + 1−

√
k)

= L
(j)
k+1 − (λ + γ

1√
k + 1 +

√
k
).

Since L
(j)
k (with respect to k) is a monotonically increasing sequence while λ + γ 1√

k+1+
√
k

is

a monotonically decreasing sequence, diffk is a monotonically increasing sequence. Denote k∗

as the index where its first positive value is attained (if diffk ≤ 0 for all k = 1, · · · , nj − 1,

k∗ = nj). Then it is easy to get that E(v(j)(k)) is monotonically decreasing until k = k∗ and

then it starts to be monotonically increasing. This means that E(v(j)(k∗)) gets the minimum among

all E(v(j)(1)), · · · , E(v(j)(nj)). Based on (7), we know that the global optimum v
(j)∗ of (4) is

attained at v(j)(k∗).

By independently calculating the optimum v
(j)∗ for each cluster and then combining them, the

global optimal solution v
∗ of (1) can then be calculated. This corresponds to the process of our

proposed Algorithm 1.

The most computational complex step in the above derivation is the sort of nj (1 ≤ j ≤ b) samples.
Since nj < n, the average-case complexity is thus upper bounded by O(n log n), assuming that the
quick sort algorithm is used.

The proof is completed. �

2 Experiments

2.1 Experimental Setting on Event Detection

The TRECVID MED13Test dataset 1 is by far the largest collection on event detection. The set
consists of about 32,000 Internet videos. There are a total of 3,490 videos from 20 complex events,
e.g. “Birthday party” and “Parade”. The rest are background videos. For each event 10 positive
examples are given to train a detector, which is tested on about 25,000 videos. The official test split
released by NIST (National Institute of Standards and Technology) is used [2].

The R language 3.0.1 [3] 2 is used in our implementation. The code and the data are at this
page 3. The proposed SPLD is compared against the four baseline methods: RandomForest [4],
AdaBoost [5], BatchTrain and SPL (Self-paced Learning) [6].

A Deep Convolutional Neural Network [7] 4 is trained on 1.2 million ImageNet challenge images
from 1,000 classes [8] to represent each video as a 1,000-dimensional vector [9]. For BatchTrain,
SPL and SPLD, studies have shown that χ2 kernel [10, 2, 9] usually performs better than the linear
kernel. To incorporate the χ2 kernel into these models, we map the 1,000 dimensional space into a
5,000 dimension space by the explicit feature mapping using the additiveχ2 kernel [11] 5. To run the
baseline methods and the proposed method efficiently, the feature dimension is further reduced to
512 by principal component analysis (PCA), because the 512-dimensional features yield very similar
results as the 5,000-dimensional features. The same set of features is used across all methods.

The “randomForest” package is used to train the random forest classifier 6. Two parameters are
tuned on the validation set: the number of trees ({32, 64, 128, 256, 1024, 2048}) and the number
variables sampled as candidates at each split ({16, 32, 64, 128}). In total, 24 sets of experiments are
conducted, and the run with the best MAP (0.03) is selected in the baseline comparison.

1
http://www.nist.gov/itl/iad/mig/med13.cfm

2
http://www.R-project.org/

3http://www.cs.cmu.edu/˜lujiang/spld
4
https://code.google.com/p/cuda-convnet/

5
http://www.robots.ox.ac.uk/˜vgg/software/homkermap/

6
http://cran.r-project.org/web/packages/randomForest/index.html
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The “ada” package is used to train the AdaBoost classifier [12] 7. Two parameters are tuned on the
validation set: the loss in the objective function {exponential, logistic}, and the number of iterations
in {10, 30, 50, 70, 90}. In total, 10 sets of experiments are conducted, and the run with the best MAP
(0.028) is selected in the baseline comparison.

The “Liblinear” package [13] is used to train BatchTrain 8. Two parameters are tuned: the tolerance
parameter C = {0.1, 1, 10}, the 6 loss functions ({L2-regularized L1-loss SVM, L2-regularized
L2-loss SVM, L2-regularized logistic regression, L1-regularized logistic regression, etc.}). The
bias term is set to 1.0. The run with the best MAP (0.083) is selected in the baseline comparison
(L2-regularized logistic regression, bias term is set to 1.0 and C = 1.0).

The SPL algorithm in [6] is implemented based on the SVM classier by the “Liblinear” package
using the same C, bias term and the loss function as BatchTrain. The parameter λ is tuned in terms
of the rank rather than the absolute value. That is instead of specifying the absolute value of λ in
each iteration, we specify the number of samples to be included in each iteration, and then calculate
λ accordingly. For example, suppose 5 samples are needed to be selected for the current iteration;
we first sort samples in ascending order of their losses, and set λ to be the loss of the 6th sample
so that only the top 5 samples will be selected. This implementation is theoretically consistent
with the algorithm in [6]. Empirically we found setting λ by the statistics collected from ranked
samples is more robust than by absolute values for both SPL and SPLD. This is because setting
by absolute values can result in selecting too many or too few samples. Since the training set is
extremely unbalanced which contains only 10 positive samples but around 5000 negative samples.
Two parameters λ+, λ− are incorporated for positive and negative samples, respectively.

Algorithm 1 and Algorithm 2 in the paper are used in implementing SPLD. The group membership in
Algorithm 1 is generated by two clustering algorithms on the reduced-dimension feature. The “stat”
package is used to implement K-means. “kernlab” package is used in the spectral clustering [14]
implementation 9. The number of groups in both algorithms are set to {64,128,256}. By default,
the best configuration on the validation set (64 clusters generated by the spectral clustering) is used
in the baseline comparison. Likewise, the parameters λ, γ are set according to the ranked samples,
and then the absolute values of λ, γ are calculated accordingly. These two parameters are fully
tuned in the same manner as in SPL, where the line search strategy is used. In all experiments,
the multi-class classification is conducted using the “one-versus-all” scheme. A set of randomly
selected videos including 10 positive videos (neither from the training nor the test set) are used
as the validation set. For a fair comparison, the parameters of all methods are tuned on the same
validation set. For example, in SPL and SPLD, the best iteration to train the final model is searched
on the validation set. The final model of both SPL and SPLD only incorporates a subset of the given
training set.

In SPL and SPLD, following [6], we initialize v by setting vi = 1 to a number of randomly selected
samples. We observed both SPL and SPCL may be unstable to the random starting values. We
repeat the experiments 10 times with different starting values. The 10-run average and the best run
are reported.

2.2 Detailed Results on MED

Table 1 lists the AP for each event in the MED dataset. As we see, the improvement is consistent
across events. SPLD obtains the best AP on 13 out of 20 events, and obtains the top 2 AP on 17 out
of 20 events. According to the paired t-test (one tail), the improvement of SPLD over all baseline
is statistically significant at the p-value level of 0.02. It is worth mentioning that the task is very
challenging [15, 16, 17], and the MAP of our BatchTrain result is comparable to the state-of-the-art
result on the MED using 10 samples and a single type of feature [2].

Fig. 1 plots the validation and the test AP on three representative events, in which the x-axis repre-
sents the iteration in training. The blue solid curve (Dev MAP) denotes the MAP on the validation
set, the red one marked by squares (Test AP) denotes the MAP on the test set, and the green dashed
curve denotes the AP of BatchTrain which remains the same across iterations. As illustrated in

7
http://cran.r-project.org/web/packages/ada/index.html

8
http://cran.r-project.org/web/packages/LiblineaR/index.html

9
http://cran.r-project.org/web/packages/kernlab/index.html
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Table 1: Performance comparison with the baseline methods on TRECVID MED. The best AP for
each event is marked in bold.

Event ID & Name RandomForest AdaBoost BatchTrain SPL SPLD

E006: Birthday party 1.498 1.696 9.411 11.659 13.202
E007: Changing a vehicle tire 7.819 4.541 19.148 20.232 19.723
E008: Flash mob gathering 3.357 15.147 23.673 26.108 27.149
E009: Getting a vehicle unstuck 7.711 10.83 11.349 11.516 28.845
E010: Grooming an animal 4.065 1.522 5.830 7.437 8.996
E011: Making a sandwich 2.497 1.076 9.347 8.364 12.594
E012: Parade 3.767 3.951 16.255 19.553 19.553
E013: Parkour 7.299 9.012 27.403 27.403 30.105
E014: Repairing an appliance 3.695 0.581 18.237 18.237 25.898
E015: Working on a sewing project 0.497 0.342 2.482 2.740 2.943
E021: Attempting a bike trick 1.076 0.402 3.965 3.965 3.806
E022: Cleaning an appliance 0.476 0.499 0.932 5.964 1.156
E023: Dog show 8.696 1.497 6.371 12.018 17.103
E024: Giving directions to a location 0.205 0.218 0.548 0.847 0.701
E025: Marriage proposal 0.180 0.127 0.313 0.590 0.522
E026: Renovating a home 0.188 0.246 1.368 1.552 3.957
E027: Rock climbing 4.381 3.284 3.288 3.288 7.718
E028: Town hall meeting 0.572 0.295 2.406 5.964 2.848
E029: Winning a race without a vehicle 0.650 0.730 1.953 2.033 14.783
E030: Working on a metal crafts project 2.360 0.410 0.861 1.565 0.641

MAP (x100) 3.049 2.820 8.257 9.552 12.112
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Figure 1: The validation and test AP in different iterations. Top row plots the SPL result and bottom
shows the proposed SPLD result. The x-axis represents the iteration in training. The blue solid curve
(Dev AP) denotes the AP on the validation set, the red one marked by squares (Test AP) denotes the
AP on the test set, and the green dashed curve denotes the Test AP of BatchTrain which remains the
same across iterations.

Fig. 1, SPLD attains a better solution within fewer iterations than SPL, e.g. in Fig. 1(a) SPLD ob-
tains the best test AP (0.14) by 6 iterations as opposed to AP (0.12) by 11 iterations in SPL. We
hypothesize that it is because the diverse samples learned in the early iterations in SPLD tend to be
more informative. This result substantiates the claim that considering diversity in SPL is beneficial.
The best Test APs of both SPL and SPLD are better than BatchTrain. This observation is consistent
with the one in [18] that removing some samples may be beneficial in training a better detector. The
Dev APs are used to tune the best iteration to train models. As shown, Dev AP and Test AP share a
similar pattern justifying the rationale for parameters tuning on the validation set.
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2.3 Experimental Setting on Action Recognition

Hollywood2 10 and Olympic Sports 11 are two representative datasets on action recognition. Holly-
wood2 were collected from 69 different Hollywood movies [19]. It contains 1,707 videos belonging
to 12 actions, split into a training set (823 videos) and a test set (884 videos). Olympic Sports con-
sists of athletes practicing different sports collected from YouTube [20]. There are 16 sports actions
(such as “High-jump” and “Basketball lay-up”) from 783 clips. We use 649 for training and 134 for
testing as recommended in [20].

Following [21], the improved dense trajectory features are extracted and represented by fisher vec-
tor encoding [22]. The spatial and temporal extension discussed in [23] is applied on the improved
dense trajectory. In Hollywood2, the spatial tiling [24] is also applied. As a result, the dimension
of the final dense trajectory feature for Hollywood2 is 116,736, and for Olympic Sports is 350,208.
To accelerate the experiments, we precalculate the linear kernel matrix, and the kernel SVM imple-
mentation in “kernlab” is used in BatchTrain, SPL and SPLD 12. In Adaboost and RandomForest,
since the precomputed kernel is not applicable, it is extremely time consuming to run experiments
in the original high-dimensional feature space. Therefore we use PCA to reduce the largest possible
dimension (the total number of samples) for Adaboost and RandomForest.

The experiments on these datasets are configured in the same setting discussed in Section 2.1, except
the following points. A randomly selected training set is used as the validation set on Olympic
Sports, and all training samples are used on Hollywood2. The parameters of all methods on the
dataset are tuned on the same validation set. As recommended in [21], for a fair comparison, the
C in SVM is fixed across BatchTrain, SPL and SPLD. By default, the K-means clustering is used,
and the number of clusters is set to 128. We have better results with spectral clustering but this
configuration is good enough for the baseline comparison. To compare with the MAP in literature
such as [21], only the best MAP found in the experiments is reported. Besides, since many actions
in Olympic Sports are easy with 100% Average Precision (AP), there exist multiple iterations with
the same dev AP. In other words, ties often occur in parameter tuning on Olympic Sports (see Fig. 3
for some examples). We use some heuristic rules to break ties in the Olympic Sports dataset.

2.4 Detailed Results on Hollywood2 and Olympic Sports

Table 2 lists the AP for each action on the Hollywood2 dataset. As on the MED dataset, the im-
provement is consistent across actions. SPLD obtains the best AP on 9 out of 12 actions (on two
actions marked in italic SPLD ties with SPL and BatchTrain). According to the paired t-test, the
improvement of SPLD over all baseline is statistically significant at the p-value level of 0.1.

Table 2: Performance comparison with the baseline methods on Hollywood2. The best AP is marked
in bold. The italic number indicates that the best AP is shared by more than one methods.

Action ID & Name RandomForest AdaBoost BatchTrain SPL SPLD

H01: AnswerPhone 20.492 18.350 18.775 33.719 39.462
H02: DriveCar 68.825 88.729 95.790 95.790 95.790
H03: Eat 11.041 17.889 71.750 71.750 71.750
H04: FightPerson 48.067 69.928 81.960 81.960 81.961

H05: GetOutCar 11.559 28.974 62.787 62.786 62.787
H06: HandShake 8.206 6.042 42.988 42.982 46.297
H07: HugPerson 10.846 23.362 16.716 33.595 58.006
H08: Kiss 40.299 46.424 63.340 62.420 60.885
H09: Run 46.916 70.865 85.751 80.524 81.825
H10: SitDown 30.832 66.650 53.595 81.582 81.703
H11: SitUp 5.307 7.437 38.860 38.870 38.874
H12: StandUp 35.969 48.997 65.657 80.647 80.499

MAP (x100) 28.196 41.137 58.164 63.885 66.653

10
http://www.di.ens.fr/˜laptev/actions/hollywood2/

11
http://vision.stanford.edu/Datasets/OlympicSports/

12
http://cran.r-project.org/web/packages/kernlab/index.html
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(a) H01: AnswerPhone (b) H07: HugPerson (c) H009: Run

Figure 2: The validation AP (Dev AP) and the test AP (Test AP) of different iterations on Holly-
wood2.

Table 3 lists the AP for each action on the Olympic Sports dataset. A similar patten can be observed
that the improvement is consistent across actions. SPLD obtains the best AP across all 16 actions,
though on 11 actions the best AP is shared with other baseline methods). The reason is because
actions in this dataset are relatively easy to recognize. Since the AP is perfect (100.00) or nearly
perfect on many events, SPLD may not further improve the number. According to the paired t-test,
the improvement of SPLD over all baseline is statistically significant at the p-value level of 0.07.

Fig. 2 and Fig. 3 plot the validation and test AP on Hollywood2 and Olympic Sports, respectively.
For most of the actions, SPLD attains the best solution within fewer iterations than SPL, e.g. in
Fig. 3(a) SPLD obtains the perfect test AP (1.0) by 14 iterations as opposed to by 22 iterations
in SPL. An interesting observation is that in Fig. 2(a) and Fig. 2(b), one can observe a fluctuation
of AP in SPL after it reaches the best Test AP. The fluctuation suggests the samples learned are
informative and as a result the model is changed. This type of fluctuation can be only observed in
the early iterations of SPLD, suggesting that SPLD selects informative samples earlier. This result
could be another evidence for that considering diversity in the self-paced learning is beneficial.

Table 3: Performance comparison with the baseline methods on Olympic Sports. The best AP is
marked in bold. The italic number indicates that the best AP is shared by more than one methods.

Event ID & Name RandomForest AdaBoost BatchTrain SPL SPLD

O01: Basketball layup 75.80 94.88 100.00 100.00 100.00
O02: Bowling 76.30 82.78 90.53 90.53 90.53
O03: Clean and jerk 69.24 97.14 98.09 98.09 100.00
O04: Discus throw 52.47 56.48 91.48 91.48 91.48
O05: Diving platform 10m 100.00 100.00 100.00 100.00 100.00
O06: Diving springboard 3m 83.39 98.61 100.00 100.00 100.00
O07: Hammer throw 78.94 81.22 98.61 98.61 98.61
O08: High jump 60.18 44.31 78.16 78.16 80.30
O09: Javelin throw 77.86 32.92 100.00 100.00 100.00
O10: Long jump 56.23 83.83 80.00 83.57 88.33
O11 Pole vault 57.02 53.75 100.00 100.00 100.00
O12: Shot put 51.69 57.29 90.43 90.43 90.43
O13: Snatch 89.89 88.70 92.37 92.37 92.37
O14: Tennis serve 16.75 45.11 96.83 96.83 96.83
O15: Triple jump 6.73 10.14 53.06 53.06 77.17
O16: Vault 60.65 80.77 80.14 80.14 83.66

MAP (x100) 63.32 69.25 90.61 90.83 93.11

3 Discussions

We employed two engineering tricks in the implementation. First, the parameters λ and γ were
tuned by the statistics collected from the ranked samples, as opposed to by the absolute values. This
strategy avoids selecting too many or too few samples at a single iteration. Second, for unbalanced

7



5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

 A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

Dev AP

Test AP

BatchTrain

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

 A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

Dev AP

Test AP

BatchTrain

5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

Iteration

 A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

Dev AP

Test AP

BatchTrain

5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

Iteration

 A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

Dev AP

Test AP

BatchTrain

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Iteration

 A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

Dev AP

Test AP

BatchTrain

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Iteration

 A
v
e
ra

g
e
 P

re
c
is

io
n

 

 

Dev AP

Test AP

BatchTrain

(a) O01: Basketball layup (b) O09: Javelin throw (c) O14: Tennis serve

S
P

L
S

P
L

D

Figure 3: The validation AP (Dev AP) and the test AP (Test AP) of different iterations on Olympic
Sports.

datasets, such as the ones in our experiments, two sets of parameter λ were introduced: λ+ for
positive and λ− for negative samples in order to pace positive and negative separately. The above
implementation, which is consistent with our theory in the paper, behaved more robustly in practice.

In SPL/SPLD, for non-convex loss function L in the off-the-shelf model, the sequential self-paced
steps affect the final model. However, for the convex loss function, the same training sets end up
with the same model, irrespective of iterative self-paced steps. In our experiments, the loss functions
were all convex functions as they are generally regarded as the best model for event/action detec-
tion [25, 21]. The converged final SPL/SPLD models only contained a subset of training samples
but performed better than the model trained on the whole training set. This is consistent with the
observation in [18] that not all samples are valuable in training detectors. As other machine learn-
ing methods, SPL/SPLD requires a validation set that follows the same underlying distribution of
the test set, in order to tune the parameters. Intuitively, this is analogous to the mock exam whose
purposes are to let students realize how well they would perform on the real test data, and more
importantly have a better idea of what to study.

We observed two limitations for the current SPL/SPLD models. First, the sample weight variable vi
in SPL/SPLD can only have binary values, which may be less reasonable for the applications that
need to discriminate importance of samples. The real-valued weights of self-paced learning were
studied in [25]. However, the models in [25] do not support learning with diversity. Second, the
performance of SPL/SPLD may be unstable to the random starting values. This phenomenon can be
intuitively explained in the context of education, it is impossible for students to predetermine what
to learn before they actually learning anything. This problem may be alleviated by incorporating
prior knowledge from external sources.
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