
A Supplementary Material

Throughout our derivations, if it is clear from context, we omit the argument (t) indexing time, for
example writing Yu instead of Yu(t).

A.1 Proof of Lemma 1

We reproduce Lemma 1 below for ease of presentation.
Lemma 1. For user u, after

t ≥
(

2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

time steps,

P(Egood(u, t)) ≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
.

To derive this lower bound on the probability that the good neighborhood event Egood(u, t) occurs,
we prove four lemmas (Lemmas 4, 5, 6, and 7). Before doing so, we define a constant that will
appear several times:

β , exp(−∆4(1− γ)2t1−α).

We begin by ensuring that enough users from each of the k user types are in the system.
Lemma 4. For a user u,

P
(

user u’s type has ≤ n

2k
users

)
≤ exp

(
− n

8k

)
.

Proof. Let N be the number of users from user u’s type. User types are equiprobable, so N ∼
Bin(n, 1

k ). By a Chernoff bound,

P
(
N ≤ n

2k

)
≤ exp

(
− 1

2

(nk − n
2k )2

n
k

)
= exp

(
− n

8k

)
.

Next, we ensure that sufficiently many items have been jointly explored across all users. This will
subsequently be used for bounding both the number of good neighbors and the number of bad
neighbors.
Lemma 5. After t time steps,

P(fewer than t1−α/2 jointly explored items) ≤ exp(−t1−α/20).

Proof. Let Zs be the indicator random variable for the event that the algorithm jointly explores
at time s. Thus, the number of jointly explored items up to time t is

∑t
s=1 Zs. By our choice

for the time-varying joint exploration probability εJ , we have P(Zs = 1) = εJ(s) = 1
sα and

P(Zs = 0) = 1− 1
sα . Note that the centered random variable Z̄s = E[Zs]−Zs = 1

sα −Zs has zero
mean, and |Z̄s| ≤ 1 with probability 1. Then,

P
( t∑
s=1

Zs <
1

2
t1−α

)
= P

( t∑
s=1

Z̄s >

t∑
s=1

E[Zs]−
1

2
t1−α

)
(i)

≤ P
( t∑
s=1

Z̄s >
1

2
t1−α

)
(ii)

≤ exp

(
−

1
8 t

2(1−α)∑t
s=1 E[Z̄2

s ] + 1
6 t

1−α

)
(iii)

≤ exp

(
−

1
8 t

2(1−α)

t1−α

1−α + 1
6 t

1−α

)
= exp

(
− 3(1− α)t1−α

4(7− α)

)
(iv)

≤ exp(−t1−α/20),

where step (i) uses the fact that
∑t
s=1 E[Zs] =

∑t
s=1 1/sα ≥ t/tα = t1−α, step (ii) is Bernstein’s

inequality, step (iii) uses the fact that
∑t
s=1 E[Z̄2

s ] ≤∑t
s=1 E[Z2

s ] =
∑t
s=1 1/sα ≤ t1−α/(1−α),

and step (iv) uses the fact that α ≤ 4/7. (We remark that the choice of constant 4/7 isn’t special;
changing it would simply modify the constant in the decaying exponentially to potentially no longer
be 1/20).
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Assuming that the bad events for the previous two lemmas do not occur, we now provide a lower
bound on the number of good neighbors that holds with high probability.

Lemma 6. Suppose that there are no ∆-ambiguous items, that there are more than n
2k users of user

u’s type, and that all users have rated at least t1−α/2 items as part of joint exploration. For user u,
let ngood be the number of “good” neighbors of user u. If β ≤ 1

10 , then

P
(
ngood ≤ (1− β)

n

4k

)
≤ 10β.

We defer the proof of Lemma 6 to Appendix A.1.1.

Finally, we verify that the number of bad neighbors for any user is not too large, again conditioned
on there being enough jointly explored items.

Lemma 7. Suppose that the minimum number of rated items in common between any pair of users
is t1−α/2 and suppose that γ-incoherence holds for some γ ∈ [0, 1). For user u, let nbad be the
number of “bad” neighbors of user u. Then

P(nbad ≥ n
√
β) ≤

√
β.

We defer the proof of Lemma 7 to Appendix A.1.2.

We now prove Lemma 1, which union bounds over the four bad events of Lemmas 4, 5, 6, and 7.
Recall that the good neighborhood event Egood(u, t) holds if at time t, user u has more than n

5k good
neighbors and less than ∆tn1−α

10km bad neighbors. By assuming that the four bad events don’t happen,
then Lemma 6 tells us that there are more than (1 − β) n4k good neighbors provided that β ≤ 1

10 .
Thus, to ensure that there are more than n

5k good neighbors, it suffices to have (1 − β) n4k ≥ n
5k ,

which happens when β ≤ 1
5 , but we already require that β ≤ 1

10 . Similarly, Lemma 7 tells us
that there are fewer than n

√
β bad neighbors, so to ensure that there are fewer than ∆tn1−α

10km bad
neighbors it suffices to have n

√
β ≤ ∆tn1−α

10km , which happens when β ≤ ( ∆t
10kmnα )2. We can satisfy

all constraints on β by asking that β ≤ ( ∆
10kmnα )2, which is tantamount to asking that

t ≥
(

2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

since β = exp(−∆4(1− γ)2t1−α).

Finally, with t satisfying the inequality above, the union bound over the four bad events can be
further bounded to complete the proof:

P(Egood(u, t)) ≥ 1− exp
(
− n

8k

)
− exp(−t1−α/20)− 10β −

√
β

≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
.

A.1.1 Proof of Lemma 6

We begin with a preliminary lemma that upper-bounds the probability of two users of the same type
not being declared as neighbors.

Lemma 8. Suppose that there are no ∆-ambiguous items for any of the user types. Let users u
and v be of the same type, and suppose that they have rated at least Γ0 items in common (explored
jointly). Then for θ ∈ (0, 4∆2),

P(users u and v are not declared as neighbors) ≤ exp
(
− (4∆2 − θ)2

2
Γ0

)
.
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Proof. Let us first suppose that users u and v have rated exactly Γ0 items in common. The two users
are not declared to be neighbors if 〈Ỹu, Ỹv〉 < θΓ0. Let Ω ⊆ [m] such that |Ω| = Γ0. We have

E
[
〈Ỹu, Ỹv〉

∣∣supp(Ỹu) ∩ supp(Ỹv) = Ω
]

=
∑
i∈Ω

E[ỸuiỸvi | Ỹui 6= 0, Ỹvi 6= 0]

=
∑
i∈Ω

(p2
ui + (1− pui)2 − 2pui(1− pui))

= 4
∑
i∈Ω

(
pui −

1

2

)2

. (2)

Since 〈Ỹu, Ỹv〉 =
∑
i∈Ω ỸuiỸvi is the sum of terms {ỸuiỸvi}i∈Ω that are each bounded within

[−1, 1], Hoeffding’s inequality yields

P
(
〈Ỹu, Ỹv〉 ≤ θΓ0

∣∣ supp(Ỹu) ∩ supp(Ỹv) = Ω
)
≤ exp

(
−
[ equation (2)︷ ︸︸ ︷

4
∑
i∈Ω

(
pgi − 1

2

)2−θΓ0

]2
2Γ0

)
. (3)

As there are no ∆-ambiguous items, ∆ ≤ |pui − 1/2| for all users u and items i. Thus, our choice
of θ guarantees that

4
∑
i∈Ω

(
pui −

1

2

)2

− θΓ0 ≥ 4Γ0∆2 − θΓ0 = (4∆2 − θ)Γ0 ≥ 0. (4)

Combining inequalities (3) and (4), and observing that the above holds for all subsets Ω of cardinality
Γ0, we obtain the desired bound on the probability that users u and v are not declared as neighbors:

P(〈Ỹu, Ỹv〉 ≤ θΓ0 | |supp(Ỹu) ∩ supp(Ỹv)| = Γ0) ≤ exp
(
− (4∆2 − θ)2

2
Γ0

)
. (5)

Now to handle the case that users u and v have jointly rated more than Γ0 items, observe that, with
shorthand Γuv , |supp(Ỹu) ∩ supp(Ỹv)|,

P(u and v not declared neighbors | pu = pv,Γuv ≥ Γ0)

= P(〈Ỹu, Ỹv〉 < θΓuv | pu = pv, Γuv ≥ Γ0)

=
P(〈Ỹu, Ỹv〉 ≤ θΓuv,Γuv ≥ Γ0 | pu = pv)

P(Γuv ≥ Γ0 | pu = pv)

=

∑m
`=Γ0

P(〈Ỹu, Ỹv〉 ≤ θ`,Γuv = ` | pu = pv)

P(Γuv ≥ Γ0 | pu = pv)

=

∑m
`=Γ0

[
P(Γuv = ` | pu = pv)

·P(〈Ỹu, Ỹv〉 ≤ θ` | pu = pv,Γuv = `)
]

P(Γuv ≥ Γ0 | pu = pv)

≤
∑m
`=Γ0

P(Γuv = ` | pu = pv) exp
(
− (4∆2−θ)2

2 Γ0

)
P(Γuv ≥ Γ0 | pu = pv)

by inequality (5)

= exp
(
− (4∆2 − θ)2

2
Γ0

)
.

We now prove Lemma 6.

Suppose that the event in Lemma 4 holds. Let G be n
2k users from the same user type as user u;

there could be more than n
2k such users but it suffices to consider n

2k of them. We define an indicator
random variable

Gv , 1{users u and v are neighbors} = 1{〈Ỹ (t)
u , Ỹ (t)

v 〉 ≥ θt1−α/2}.
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Thus, the number of good neighbors of user u is lower-bounded by W =
∑
v∈G Gv . Note that the

Gv’s are not independent. To arrive at a lower bound for W that holds with high probability, we use
Chebyshev’s inequality:

P(W − E[W ] ≤ −E[W ]/2) ≤ 4Var(W )

(E[W ])2
. (6)

Let β = exp(−(4∆2 − θ)2Γ0/2) be the probability bound from Lemma 8, where by our choice of
θ = 2∆2(1 + γ) and with Γ0 = t1−α/2, we have β = exp(−∆4(1− γ)2t1−α).

Applying Lemma 8, we have E[W ] ≥ (1− β) n2k , and hence

(E[W ])2 ≥ (1− 2β)
n2

4k2
. (7)

We now upper-bound
Var(W ) =

∑
v∈G

Var(Gv) +
∑
v 6=w

Cov(Gv, Gw).

Since Gv = G2
v ,

Var(Gv) = E[Gv]− E[Gv]
2 = E[Gv]︸ ︷︷ ︸

≤1

(1− E[Gv]) ≤ β,

where the last step uses Lemma 8.

Meanwhile,

Cov(Gv, Gw) = E[GvGw]− E[Gv]E[Gw] ≤ 1− (1− β)2 ≤ 2β.

Putting together the pieces,

Var(W ) ≤ n

2k
· β +

n

2k
·
( n

2k
− 1
)
· 2β ≤ n2

2k2
· β. (8)

Plugging (7) and (8) into (6) gives

P(W − E[W ] ≤ −E[W ]/2) ≤ 8β

1− 2β
≤ 10β,

provided that β ≤ 1
10 . Thus, ngood ≥W ≥ E[W ]/2 ≥ (1− β) n4k with probability at least 1− 10β.

A.1.2 Proof of Lemma 7

We begin with a preliminary lemma that upper-bounds the probability of two users of different types
being declared as neighbors.
Lemma 9. Let users u and v be of different types, and suppose that they have rated at least Γ0

items in common via joint exploration. Further suppose γ-incoherence is satisfied for γ ∈ [0, 1). If
θ ≥ 4γ∆2, then

P(users u and v are declared to be neighbors) ≤ exp
(
− (θ − 4γ∆2)2

2
Γ0

)
.

Proof. As with the proof of Lemma 8, we first analyze the case where users u and v have rated
exactly Γ0 items in common. Users u and v are declared to be neighbors if 〈Ỹu, Ỹv〉 ≥ θΓ0. We
now crucially use the fact that joint exploration chooses these Γ0 items as a random subset of the
m items. For our random permutation σ of m items, we have 〈Ỹu, Ỹv〉 =

∑Γ0

i=1 Ỹu,σ(i)Ỹv,σ(i) =∑Γ0

i=1 Yu,σ(i)Yv,σ(i), which is the sum of terms {Yu,σ(i)Yv,σ(i)}Γ0
i=1 that are each bounded within

[−1, 1] and drawn without replacement from a population of all possible items. Hoeffding’s in-
equality (which also applies to the current scenario of sampling without replacement [14]) yields

P
(
〈Ỹu, Ỹv〉 ≥ θΓ0 | pu 6= pv

)
≤ exp

(
−
(
θΓ0 − E[〈Ỹu, Ỹv〉 | pu 6= pv]

)2
2Γ0

)
. (9)
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By γ-incoherence and our choice of θ,

θΓ0 − E
[
〈Ỹu, Ỹv〉 | pu 6= pv

]
≥ θΓ0 − 4γ∆2Γ0 = (θ − 4γ∆2)Γ0 ≥ 0. (10)

Above, we used the fact that Γ0 randomly explored items are a random subset ofm items, and hence

E
[

1
Γ 0
〈Ỹu, Ỹv〉

]
= E

[
1
m 〈Yu, Yv〉

]
,

with Yu, Yv representing the entire (random) vector of preferences of u and v respectively.

Combining inequalities (9) and (10) yields

P
(
〈Ỹu, Ỹv〉 ≥ θΓ0 | pu 6= pv

)
≤ exp

(
− (θ − 4γ∆2)2

2
Γ0

)
.

A similar argument as the ending of Lemma 8’s proof establishes that the bound holds even if users
u and v have jointly explored more than Γ0 items.

We now prove Lemma 7.

Let β = exp(−(θ− 4γ∆2)2Γ0/2) be the probability bound from Lemma 9, where by our choice of
θ = 2∆2(1 + γ) and with Γ0 = t1−α/2, we have β = exp(−∆4(1− γ)2t1−α).

By Lemma 9, for a pair of users u and v with at least t1−α/2 items jointly explored, the probability
that they are erroneously declared neighbors is upper-bounded by β.

Denote the set of users of type different from u by B, and write

nbad =
∑
v∈B

1{u and v are declared to be neighbors},

whence E[nbad] ≤ nβ. Markov’s inequality gives

P(nbad ≥ n
√
β) ≤ E[nbad]

n
√
β
≤ nβ

n
√
β

=
√
β ,

proving the lemma.

A.2 Proof of Lemma 2

We reproduce Lemma 2 below.
Lemma 2. For user u at time t, if the good neighborhood event Egood(u, t) holds and t ≤ µm, then

P(Xut = 1) ≥ 1− 2m exp
(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
.

We begin by checking that when the good neighborhood event Egood(u, t) holds for user u, the items
have been rated enough times by the good neighbors.
Lemma 10. For user u at time t, suppose that the good neighborhood event Egood(u, t) holds. Then
for a given item i,

P
(

item i has ≤ tn1−α

10km
ratings from good neighbors of u

)
≤ exp

(
− tn1−α

40km

)
.

Proof. The number of user u’s good neighbors who have rated item i stochastically dominates a
Bin( n5k ,

εR(n)t
m ) random variable, where εR(n)t

m = t
mnα (here, we have critically used the lower

bound on the number of good neighbors user u has when the good neighborhood event Egood(u, t)
holds). By a Chernoff bound,

P
(

Bin
( n

5k
,

t

mnα

)
≤ tn1−α

10km

)
≤ exp

(
− 1

2

( tn
1−α

5km − tn1−α

10km )2

tn1−α

5km

)
≤ exp

(
− tn1−α

40km

)
.

Next, we show a sufficient condition for which the algorithm correctly classifies every item as likable
or unlikable for user u.
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Lemma 11. Suppose that there are no ∆-ambiguous items. For user u at time t, suppose that the
good neighborhood event Egood(u, t) holds. Provided that every item i ∈ [m] has more than tn1−α

10km

ratings from good neighbors of user u, then with probability at least 1 − m exp(−∆2tn1−α

20km ), we
have that for every item i ∈ [m],

p̃ui >
1

2
if item i is likable by user u,

p̃ui <
1

2
if item i is unlikable by user u.

Proof. Let A be the number of ratings that good neighbors of user u have provided. Suppose item i

is likable by user u. Then when we condition on A = a0 , d tn1−α

10km e, p̃ui stochastically dominates

qui ,
Bin(a0, pui)

a0 + ∆a0
=

Bin(a0, pui)

(1 + ∆)a0
,

which is the worst-case variant of p̃ui that insists that all ∆a0 bad neighbors provided rating “−1”
for likable item i (here, we have critically used the upper bound on the number of bad neighbors
user u has when the good neighborhood event Egood(u, t) holds). Then

P(qui ≤
1

2
| A = a0) = P

(
Bin(a0, pui) ≤

(1 + ∆)a0

2

∣∣∣∣ A = a0

)
= P

(
a0pui − Bin(a0, pui) ≥ a0

(
pui −

1

2
− ∆

2

) ∣∣∣∣ A = a0

)
(i)

≤ exp
(
− 2a0

(
pui −

1

2
− ∆

2

)2)
(ii)

≤ exp
(
− 1

2
a0∆2

)
(iii)

≤ exp
(
− ∆2tn1−α

20km

)
,

where step (i) is Hoeffding’s inequality, step (ii) follows from item i being likable by user u (i.e.,
pui ≥ 1

2 + ∆), and step (iii) is by our choice of a0. Conclude then that

P(p̃ui ≤
1

2
| A = a0) ≤ exp

(
− ∆2tn1−α

20km

)
.

Finally,

P
(
p̃ui ≤

1

2

∣∣∣ A ≥ tn1−α

10km

)
=

∑∞
a=a0

P(A = a)P(p̃ui ≤ 1
2 | A = a)

P(A ≥ tn1−α

10km )

≤
∑∞
a=a0

P(A = a) exp(−∆2tn1−α

20km )

P(A ≥ tn1−α

10km )

= exp
(
− ∆2tn1−α

20km

)
.

A similar argument holds for when item i is unlikable. Union-bounding over all m items yields the
claim.

We now prove Lemma 2. First off, provided that t ≤ µm, we know that there must still exist an
item likable by user u that user u has yet to consume. For user u at time t, supposing that event
Egood(u, t) holds, then every item has been rated more than tn1−α

10km times by the good neighbors of
user u with probability at least 1 − m exp(− tn1−α

40km ). This follows from union-bounding over the
m items with Lemma 10. Applying Lemma 11, and noting that we only exploit with probability
1− εJ(t)− εR(n) = 1− 1/tα − 1/nα, we finish the proof:

P(Xut = 1) ≥ 1−m exp
(
− tn1−α

40km

)
−m exp

(
− ∆2tn1−α

20km

)
− 1

tα
− 1

nα

≥ 1− 2m exp
(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
.
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A.3 Experimental Results

We demonstrate our algorithm COLLABORATIVE-GREEDY on two datasets, showing that they have
comparable performance and that they both outperform two existing recommendation algorithms
Popularity Amongst Friends (PAF) [4] and Deshpande and Montanari’s method (DM) [12]. At each
time step, PAF finds nearest neighbors (“friends”) for every user and recommends to a user the
“most popular” item, i.e., the one with the most number of +1 ratings, among the user’s friends.
DM doesn’t do any collaboration beyond a preprocessing step that computes item feature vectors
via matrix completion. Then during online recommendation, DM learns user feature vectors over
time with the help of item feature vectors and recommends an item to each user based on whether it
aligns well with the user’s feature vector.

We simulate an online recommendation system based on movie ratings from the Movielens10m and
Netflix datasets, each of which provides a sparsely filled user-by-movie rating matrix with ratings
out of 5 stars. Unfortunately, existing collaborative filtering datasets such as the two we consider
don’t offer the interactivity of a real online recommendation system, nor do they allow us to reveal
the rating for an item that a user didn’t actually rate. For simulating an online system, the former
issue can be dealt with by simply revealing entries in the user-by-item rating matrix over time. We
address the latter issue by only considering a dense “top users vs. top items” subset of each dataset.
In particular, we consider only the “top” users who have rated the most number of items, and the
“top” items that have received the most number of ratings. While this dense part of the dataset is
unrepresentative of the rest of the dataset, it does allow us to use actual ratings provided by users
without synthesizing any ratings.

An initial question to ask is whether the dense movie ratings matrices we consider could be reason-
ably explained by our latent source model. We automatically learn the structure of these matrices
using the method by Grosse et al. [13] and find Bayesian clustered tensor factorization (BCTF) to
accurately model the data. This finding isn’t surprising as BCTF has previously been used to model
movie ratings data [21]. BCTF effectively clusters both users and movies so that we get structure
such as that shown in Figure 1(a) for the Movielens10m “top users vs. top items” matrix. Our latent
source model could reasonably model movie ratings data as it only assumes clustering of users.

Following the experimental setup of [4], we quantize a rating of 4 stars or more to be +1 (likeable),
and a rating of 3 stars or less to be −1 (unlikeable). While we look at a dense subset of each
dataset, there are still missing entries. If a user u hasn’t rated item j in the dataset, then we set
the corresponding true rating to 0, meaning that in our simulation, upon recommending item j to
user u, we receive 0 reward, but we still mark that user u has consumed item j; thus, item j can no
longer be recommended to user u. For both Movielens10m and Netflix datasets, we consider the
top n = 200 users and the top m = 500 movies. For Movielens10m, the resulting user-by-rating
matrix has 80.7% nonzero entries. For Netflix, the resulting matrix has 86.0% nonzero entries. For
an algorithm that recommends item πut to user u at time t, we measure the algorithm’s average
cumulative reward up to time T as

1

n

T∑
t=1

n∑
u=1

Y (T )
uπut ,

where we average over users.

For all methods, we recommend items until we reach time T = 500, i.e., we make movie recom-
mendations until each user has seen all m = 500 movies. We disallow the matrix completion step
for DM to see the users that we actually test on, but we allow it to see the the same items as what
is in the simulated online recommendation system in order to compute these items’ feature vectors
(using the rest of the users in the dataset). Furthermore, when a rating is revealed, we provide DM
both the thresholded rating and the non-thresholded rating, the latter of which DM uses to estimate
user feature vectors over time.

Parameters θ and α for and COLLABORATIVE-GREEDY are chosen using training data: We sweep
over the two parameters on training data consisting of 200 users that are the “next top” 200 users,
i.e., ranked 201 to 400 in number movie ratings they provided. For simplicity, we discretize our
search space to θ ∈ {0.0, 0.1, . . . , 1.0} and α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We choose the parameter
setting achieving the highest area under the cumulative reward curve. For both Movielens10m and
Netflix datasets, this corresponded to setting θ = 0.0 and α = 0.5 for COLLABORATIVE-GREEDY.
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Figure 2: Average cumulative rewards over time: (a) Movielens10m, (b) Netflix.

In contrast, the parameters for PAF and DM are chosen to be the best parameters for the test data
among a wide range of parameters. The results are shown in Figure 2. We find that our algorithm
COLLABORATIVE-GREEDY outperforms PAF and DM. We remark that the curves are roughly con-
cave, which is expected since once we’ve finished recommending likeable items (roughly around
time step 300), we end up recommending mostly unlikeable items until we’ve exhausted all the
items.
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