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Abstract

Extracting 3D shape of deforming objects in monocular videos, a task known as
non-rigid structure-from-motion (NRSfM), has so far been studied only on syn-
thetic datasets and controlled environments. Typically, the objects to reconstruct
are pre-segmented, they exhibit limited rotations and occlusions, or full-length
trajectories are assumed. In order to integrate NRSfM into current video analy-
sis pipelines, one needs to consider as input realistic -thus incomplete- tracking,
and perform spatio-temporal grouping to segment the objects from their surround-
ings. Furthermore, NRSfM needs to be robust to noise in both segmentation and
tracking, e.g., drifting, segmentation “leaking”, optical flow “bleeding” etc. In
this paper, we make a first attempt towards this goal, and propose a method that
combines dense optical flow tracking, motion trajectory clustering and NRSfM
for 3D reconstruction of objects in videos. For each trajectory cluster, we com-
pute multiple reconstructions by minimizing the reprojection error and the rank
of the 3D shape under different rank bounds of the trajectory matrix. We show
that dense 3D shape is extracted and trajectories are completed across occlusions
and low textured regions, even under mild relative motion between the object and
the camera. We achieve competitive results on a public NRSfM benchmark while
using fixed parameters across all sequences and handling incomplete trajectories,
in contrast to existing approaches. We further test our approach on popular video
segmentation datasets. To the best of our knowledge, our method is the first to
extract dense object models from realistic videos, such as those found in Youtube
or Hollywood movies, without object-specific priors.

1 Introduction
Structure-from-motion is the ability to perceive the 3D shape of objects solely from motion cues. It
is considered the earliest form of depth perception in primates, and is believed to be used by animals
that lack stereopsis, such as insects and fish [1].

In computer vision, non-rigid structure-from-motion (NRSfM) is the extraction of a time-varying
3D point cloud from its 2D point trajectories. The problem is under-constrained since many 3D
time-varying shapes and camera poses give rise to the same 2D image projections. To tackle this
ambiguity, early work of Bregler et al. [2] assumes the per frame 3D shapes lie in a low dimensional
subspace. They recover the 3D shape basis and coefficients, along with camera rotations, using
a 3K factorization of the 2D trajectory matrix, where K the dimension of the shape subspace,
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Video sequence Trajectory clustering 3D Shape Depth Missing entries

NRSfM

Figure 1: Overview. Given a monocular video, we cluster dense flow trajectories using 2D motion
similarities. Each trajectory cluster results in an incomplete trajectory matrix that is the input to our
NRSfM algorithm. Present and missing trajectory entries for the chosen frames are shown in green
and red respectively. The color of the points in the rightmost column represents depth values (red is
close, blue is far). Notice the completion of the occluded trajectories on the belly dancer, that reside
beyond the image border.

extending the rank 3 factorization method for rigid SfM of Tomasi and Kanade [3]. Akhter et al.[4]
observe that the 3D point trajectories admit a similar low-rank decomposition: they can be written
as linear combinations over a 3D trajectory basis. This essentially reflects that 3D (and 2D) point
trajectories are temporally smooth. Temporal smoothness is directly imposed using differentials
over the 3D shape matrix in Dai et al. [5]. Further, rather than recovering the shape or trajectory
basis and coefficients, the authors propose a direct rank minimization of the 3D shape matrix, and
show superior reconstruction results.

Despite such progress, NRSfM has been so far demonstrated only on a limited number of synthetic
or lab acquired video sequences. Factors that limit the application of current approaches to real-
world scenarios include:
(i) Missing trajectory data. The aforementioned state-of-the-art NRSfM algorithms assume com-
plete trajectories. This is an unrealistic assumption under object rotations, deformations or occlu-
sions. Work of Torresani et al. [6] relaxes the full-length trajectory assumption. They impose a
Gaussian prior over the 3D shape and use probabilistic PCA within a linear dynamical system for
extracting 3D deformation modes and camera poses; however, their method is sensitive to initializa-
tion and degrades with the amount of missing data. Gotardo and Martinez [7] combine the shape
and trajectory low-rank decompositions and can handle missing data; their method is one of our
baselines in Section 3. Park et al. [8] use static background structure to estimate camera poses
and handle missing data using a linear formulation over a predefined trajectory basis. Simon at al.
[9] consider a probabilistic formulation of the bilinear basis model of Akhter et al. [10] over the
non-rigid 3D shape deformations. This results in a matrix normal distribution for the time varying
3D shape with a Kronecker structured covariance matrix over the column and row covariances that
describe shape and temporal correlations respectively. Our work makes no assumptions regarding
temporal smoothness, in contrast to [8, 7, 9].
(ii) Requirement of accurate video segmentation. The low-rank priors typically used in NRSfM
require the object to be segmented from its surroundings. Work of [11] is the only approach that
attempts to combine video segmentation and reconstruction, rather than considering pre-segmented
objects. The authors projectively reconstruct small trajectory clusters assuming they capture rigidly
moving object parts. Reconstruction results are shown in three videos only, making it hard to judge
the success of this locally rigid model.

This paper aims at closing the gap between theory and application in object-agnostic NRSfM from
realistic monocular videos. We build upon recent advances in tracking, video segmentation and
low-rank matrix completion to extract 3D shapes of objects in videos under rigid and non-rigid
motion. We assume a scaled orthographic camera model, as standard in the literature [12, 13], and
low-rank object-independent shape priors for the moving objects. Our goal is a richer representation
of the video segments in terms of rotations and 3D deformations, and temporal completion of their
trajectories through occlusion gaps or tracking failures.
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An overview of our approach is presented in Figure 1. Given a video sequence, we compute dense
point trajectories and cluster them using 2D motion similarities. For each trajectory cluster, we
first complete the 2D trajectory matrix using standard low-rank matrix completion. We then re-
cover the camera poses through a rank 3 truncation of the trajectory matrix and Euclidean upgrade.
Last, keeping the camera poses fixed, we minimize the reprojection error of the observed trajectory
entries along with the nuclear norm of the 3D shape. A byproduct of affine NRSfM is trajectory
completion. The recovered 3D time-varying shape is backprojected in the image and the resulting
2D trajectories are completed through deformations, occlusions or other tracking ambiguities, such
as lack of texture. In summary, our contributions are:

(i) Joint study of motion segmentation and structure-from-motion. We use as input to reconstruction
dense trajectories from optical flow linking [14], as opposed to a) sparse corner trajectories [15],
used in previous NRSfM works [4, 5], or b) subspace trajectories of [16, 17], that are full-length
but cannot tolerate object occlusions. Reconstruction needs to be robust to segmentation mistakes.
Motion trajectory clusters are inevitably polluted with “bleeding” trajectories that, although reside
on the background, they anchor on occluding contours. We use morphological operations to discard
such trajectories that do not belong to the shape subspace and confuse reconstruction.

(ii) Multiple hypothesis 3D reconstruction through trajectory matrix completion under various rank
bounds, for tackling the rank ambiguity.

(iii) We show that, under high trajectory density, rank 3 factorization of the trajectory matrix, as
opposed to 3K, is sufficient to recover the camera rotations in NRSfM. This allows the use of an
easy, well-studied Euclidean upgrade for the camera rotations, similar to the one proposed for rigid
SfM [3].

We present competitive results of our method on the recently proposed NRSfM benchmark of [17],
under a fixed set of parameters and while handling incomplete trajectories, in contrast to existing ap-
proaches. Further, we present extensive reconstruction results in videos from two popular video seg-
mentation benchmarks, VSB100 [18] and Moseg [19], that contain videos from Hollywood movies
and Youtube. To the best of our knowledge, we are the first to show dense non-rigid reconstructions
of objects from real videos, without employing object-specific shape priors [10, 20]. Our code is
available at: www.eecs.berkeley.edu/∼katef/nrsfm.

2 Low-rank 3D video reconstruction

2.1 Video segmentation by multiscale trajectory clustering

Given a video sequence, we want to segment the moving objects in the scene. Brox and Malik
[19] propose spectral clustering of dense point trajectories from 2D motion similarities and achieve
state-of-the-art performance on video segmentation benchmarks. We extend their method to pro-
duce multiscale (rather than single scale) trajectory clustering to deal with segmentation ambiguities
caused by scale and motion variations of the objects in the video scene. Specifically, we first com-
pute a spectral embedding from the top eigenvectors of the normalized trajectory affinity matrix. We
then obtain discrete trajectory clusterings using the discretization method of [21], while varying the
number of eigenvectors to be 10, 20, 30 and 40 in each video sequence.

Ideally, each point trajectory corresponds to a sequence of 2D projections of a 3D physical point.
However, each trajectory cluster is spatially surrounded by a thin layer of trajectories that reside
outside the true object mask and do not represent projections of 3D physical points. They are
the result of optical flow “bleeding ” to untextured surroundings [22], and anchor themselves on
occluding contours of the object. Although “bleeding” trajectories do not drift across objects, they
are a source of noise for reconstruction since they do not belong to the subspace spanned by the true
object trajectories. We discard them by computing an open operation (erosion followed by dilation)
and an additional erosion of the trajectory cluster mask in each frame.

2.2 Non-rigid structure-from-motion

Given a trajectory cluster that captures an object in space and time, let Xt
k ∈ R3×1 denote the 3D

coordinate [X Y Z]T of the kth object point at the tth frame. We represent 3D object shape with a
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matrix S that contains the time varying coordinates of K object surface points in F frames:

S3F×P =

S1

...
SF

 =

X1
1 X1

2 · · · X1
P

...
...

XF
1 XF

2 · · · XF
P

 .

For the special case of rigid objects, shape coordinates are constant and the shape matrix takes the
simplified form: S3×P = [X1 X2 · · · XP ] .

We adopt a scaled orthographic camera model for reconstruction [3]. Under orthography, the
projection rays are perpendicular to the image plane and the projection equation takes the form:
x = RX + t, where x = [x y]T is the vector of 2D pixel coordinates, R2×3 is a scaled truncated
rotation matrix and t2×1 is the camera translation. Combining the projection equations for all object
points in all fames, we obtain:x1

1 x1
2 · · · x1

P

...
...

...
...

xF
1 xF

2 · · · xF
P

 = R · S+

t1

...
tF

 · 1P
T , (1)

where the camera pose matrix R takes the form:

Rrigid
2F×3 =

R1

...
RF

 , Rnonrigid
2F×3F =

R1 0 · · · 0
...

... · · ·
...

0 0 · · · RF

 . (2)

We subtract the camera translation tt from the pixel coordinates xt, t = 1 · · ·F , fixing the origin
of the coordinate system on the objects’s center of mass in each frame, and obtain the centered
trajectory matrix W2F×P for which W = R · S.

Let W̃ denote an incomplete trajectory matrix of a cluster obtained from our multiscale trajectory
clustering. Let H ∈ {0, 1}2F×P denote a binary matrix that indicates presence or absence of
entries in W̃. Given W̃,H, we solve for complete trajectories W, shape S and camera pose R
by minimizing the camera reprojection error and 3D shape rank under various rank bounds for the
trajectory matrix. Rather than minimizing the matrix rank which is intractable, we minimize the
matrix nuclear norm instead (denoted by ‖·‖∗), that yields the best convex approximation for the
matrix rank over the unit ball of matrices. Let � denote Hadamard product and ‖·‖F denote the
Frobenius matrix norm. Our cost function reads:

NRSfM(K):
min .
W,R,S

‖H� (W − W̃)‖2F + ‖W −R · S‖2F + 1K>1 · µ‖Sv‖∗
subject to Rank(W) ≤ 3K, ∃αt, s.t. Rt(Rt)T = αtI2×2, t = 1 · · ·F.

(3)

We compute multiple reconstructions with K ∈ {1 · · · 9}. Sv denotes the re-arranged shape matrix
where each row contains the vectorized 3D shape in that frame:

Sv
F×3P =

X1
1 Y 1

1 Z1
1 · · · X1

P Y 1
P Z1

P

...
...

... · · ·
...

...
...

XF
1 Y F

1 ZF
1 · · · XF

P Y F
P ZF

P

 = [PX PY PZ ] (I3 ⊗ S), (4)

where PX , PY , PZ are appropriate row selection matrices. Dai et al. [5] observe that Sv
F×3P has

lower rank than the original S3F×P since it admits a K-rank decomposition, instead of 3K, as-
suming per frame 3D shapes span a K dimensional subspace. Though S facilitates the writing of
the projection equations, minimizing the rank of the re-arranged matrix Sv avoids spurious degrees
of freedom. Minimization of the nuclear norm of Sv is used only in the non-rigid case (K > 1).
In the rigid case, the shape does not change in time and Sv

1×3P has rank 1 by construction. We
approximately solve Eq. 3 in three steps.

Low-rank trajectory matrix completion We want to complete the 2D trajectory matrix under a
rank bound constraint:

min .
W

‖H� (W − W̃)‖2F
subject to Rank(W) ≤ 3K.

(5)
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Due to its intractability, the rank bound constraint is typically imposed by a factorization, W =
UV T , U2F×r,VP×r, for our case r = 3K. Work of [23] empirically shows that the following
regularized problem is less prone to local minima than its non-regularized counterpart (λ = 0):

min .
W,U2F×3K ,VP×3K

‖H� (W − W̃)‖2F + λ
2 (‖U‖

2
F + ‖V‖2F )

subject to W = UVT .
(6)

We solve Eq. 6 using the method of Augmented Lagrange multipliers. We want to explicitly search
over different rank bounds for the trajectory matrix W as we varyK. We do not choose to minimize
the nuclear norm instead, despite being convex, since different weights for the nuclear term result in
matrices of different ranks, thus is harder to control explicitly the rank bound. Prior work [24, 23]
shows that the bilinear formulation of Eq. 6, despite being non-convex in comparison to the nuclear
regularized objective (‖H� (W−W̃)‖2F +‖W‖∗), it returns the same optimum in cases r >= r∗,
where r∗ denotes the rank obtained by the unconstrained minimization of the nuclear regularized
objective. We use the continuation strategy proposed in [23] over r to avoid local minima for r < r∗:
starting from large values of r, we iteratively reduce it till the desired rank bound 3K is achieved.
For details, please see [23, 24].

Euclidean upgrade Given a complete trajectory matrix, minimization of the reprojection error
term of Eq. 3 under the orthonormality constraints is equivalent to a SfM or NRSfM problem in its
standard form, previously studied in the seminal works of [3, 2]:

min .
R,S

‖W −R · S‖2F
subject to ∃αt, s.t. Rt(Rt)T = αtI2×2, t = 1 · · ·F.

(7)

For rigid objects, Tomasi and Kanade [3] recover the camera pose and shape matrix via SVD of W
truncated to rank 3: W = UDVT = (UD1/2)(D1/2VT) = R̂ · Ŝ. The factorization is not unique
since for any invertible matrix G3×3: R̂ · Ŝ = R̂ ·GG−1Ŝ. We estimate G so that R̂G satisfies the
orthonormality constraints:

orthogonality: R̂2t−1GGT R̂T
2t = 0, t = 1 · · ·F

same norm: R̂2t−1GGT R̂T
2t−1 = R̂2tGGT R̂T

2t, t = 1 · · ·F. (8)

The constraints of Eq. 8 form an overdetermined homogeneous linear system with respect to the
elements of the gram matrix Q = GGT . We estimate Q using least-squares and factorize it using
SVD to obtain G up to an arbitrary scaling and rotation of its row space [25]. Then, the rigid object
shape is obtained by S3×P = G−1Ŝ.

For non-rigid objects, a similar Euclidean upgrade of the rotation matrices has been attempted using
a rank 3K (rather than 3) decomposition of W [26]. In the non-rigid case, the corrective transforma-
tion G has size 3K × 3K. Each column triplet 3K × 3 is recovered independently since it contains
the rotation information from all frames. For a long time, an overlooked rank 3 constraint on the
Gram matrix Qk = GTkGk spurred conjectures regarding the ambiguity of shape recovery under
non-rigid motion [26]. This lead researchers to introduce additional priors for further constraining
the problem, such as temporal smoothness [27]. Finally, the work of [4] showed that orthonormality
constraints are sufficient to recover a unique non-rigid 3D shape. Dai et al. [5] proposed a practical
algorithm for Euclidean upgrade using rank 3K decomposition of W that minimizes the nuclear
norm of Qk under the orthonormality constraints.

Surprisingly, we have found that in practice it is not necessary to go beyond rank 3 truncation of W
to obtain the rotation matrices in the case of dense NRSfM. The large majority of trajectories span
the rigid component of the object, and their information suffices to compute the objects’ rotations.
This is not the case for synthetic NRSfM datasets, where the number of tracked points on the artic-
ulating links is similar to the points spanning the “torso-like” component, as in the famous “Dance”
sequence [12]. In Section 3, we show dense face reconstruction results while varying the truncating
rank κr of W for the Euclidean upgrade step, and verify that κr = 3 is more stable than κr > 3 for
NRSfM of faces.

Rank regularized least-squares for 3D shape recovery In the non-rigid case, given the recovered
camera poses R, we minimize the reprojection error of the observed trajectory entries and 3D shape
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Figure 2: Qualitative results in the synthetic benchmark of [17]. High quality reconstructions are
obtained with oracle (full-length) trajectories for both abrupt and smooth motion. For incomplete
trajectories, in the 3rd column we show in red the missing and in green the present trajectory entries.
The reconstruction result for the 2nd video sequence that has 30% missing data, though worse, is
still recognizable.

nuclear norm:
min .

S

1
2‖H� (W̃ −R · S)‖2F + µ‖Sv‖∗

subject to Sv = [PX PY PZ ] (I3 ⊗ S).
(9)

Notice that we consider only the observed entries in W̃ to constrain the 3D shape estimation; how-
ever, information from the complete W has been used for extracting the rotation matrices R. We
solve the convex, non-smooth problem in Eq. 9 using the nuclear minimization algorithm proposed
in [28]. It generalizes the accelerated proximal gradient method of [29] from l1 regularized least-
squares on vectors to nuclear norm regularized least-squares on matrices. It has a better iteration
complexity than the Fixed Point Continuation (FPC) method of [30] and the Singular Value Thresh-
olding (SVT) method [31].

Given camera pose R and shape S, we backproject to obtain complete centered trajectory matrix
W = R ·S. Though we can in principle iterate over the extraction of camera pose and 3D shape, we
observed benefits from such iteration only in the rigid case. This observation agrees with the results
of Marques and Costeira [32] for rigid SfM from incomplete trajectories.

3 Experiments
The only available dense NRSfM benchmark has been recently introduced in Garg et al. [17]. They
propose a dense NRSfM method that minimizes a robust discontinuity term over the recovered 3D
depth along with 3D shape rank. However, their method assumes as input full-length trajectories
obtained via the subspace flow tracking method of [16]. Unfortunately, the tracker of [16] can
tolerate only very mild out-of-plane rotations or occlusions, which is a serious limitation for tracking
in real videos. Our method does not impose the full-length trajectory requirement. Also, we show
that the robust discontinuity term in [17] may not be necessary for high quality reconstructions.

The benchmark contains four synthetic video sequences that depict a deforming face, and three real
sequences that depict a deforming back, face and heart, respectively. Only the synthetic sequences
have ground-truth 3D shapes available, since it is considerably more difficult to obtain ground-truth
for NRSfM in non-synthetic environments. Dense full-length ground-truth 2D trajectories are pro-
vided for all sequences. For evaluation, we use the code supplied with the benchmark, that performs
a pre-alignment step at each frame between St and StGT using Procrustes analysis. Reconstruction
performance is measured by mean RMS error across all frames, where the per frame RMS error of
a shape St with respect to ground-truth shape StGT is defined as: ‖S

t−St
GT ‖F

‖St
GT ‖F

.

Figure 2 presents our qualitative results and Table 1 compares our performance against previous
state-of-the-art NRSfM methods: Trajectory Basis (TB) [12], Metric Projections (MP) [33], Varia-
tional Reconstruction (VR) [17] and CSF [7]. For CSF, we were not able to complete the experiment
for sequences 3 and 4 due to the non-scalable nature of the algorithm. Next to the error of each
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Figure 3: Reconstruction results in the “Back”, “Face” and “Heart” sequences of [17]. We show
present and missing trajectory entries, per frame depth maps and retextured depth maps.

method we show in parentheses the rank used, that is, the rank that gave the best error. Our method
uses exactly the same parameters and K = 9 for all four sequences. Baseline VR [17] adapts the
weight for the nuclear norm of S for each sequence. This shows robustness of our method under
varying object deformations. κr is the truncated rank of W used for the Euclidean upgrade step.
When κr > 3, we use the Euclidean upgrade proposed in [5]. κr = 3 gives the most stable face
reconstruction results.

Next, to imitate a more realistic setup, we introduce missing entries to the ground-truth 2D tracks by
“hiding” trajectory entries that are occluded due to face rotations. The occluded points are shown in
red in Figure 2 3rd column. From the “incomplete trajectories” section of Table 1, we see that the
error increase for our method is small in comparison to the full-length trajectory case.

In the real “Back”, “Face” and “Heart” sequences of the benchmark, the objects are pre-segmented.
We keep all trajectories that are at least five frames long. This results in 29.29%, 30.54% and
52.71% missing data in the corresponding trajectory matrices W̃. We usedK = 8 for all sequences.
We show qualitative results in Figure 3. The present and missing entries are shown in green and
red, respectively. The missing points occupy either occluded regions, or regions with ambiguous
correspondence, e.g., under specularities in the Heart sequence.

Next, we test our method on reconstructing objects from videos of two popular video segmentation
datasets: VSB100 [18], that contains videos uploaded to Youtube, and Moseg [19], that contains
videos from Hollywood movies. Each video is between 19 and 121 frames long. For all videos
we use K ∈ {1 · · · 5}. We keep all trajectories longer than five frames. This results in missing
data varying from 20% to 70% across videos, with an average of 45% missing trajectory entries.
We visualize reconstructions for the best trajectory clusters (the ones closest to the ground-truth
segmentations supplied with the datasets) in Figure 4.

Discussion Our 3D reconstruction results in real videos show that, under high trajectory density,
small object rotations suffice to create the depth perception. We also observe the tracking quality to
be crucial for reconstruction. Optical flow deteriorates as the spatial resolution decreases, and thus
high video resolution is currently important for our method. The most important failure cases for our

ground-truth full trajectories incomplete trajectories
TB [12] MP [33] VR [17] ours

κr = 3
ours
κr = 6

ours
κr = 9

ours κr = 3 CSF

Seq.1 (10) 18.38 (2) 19.44 (3) 4.01 (9) 5.16 6.69 21.02 4.92 (8.93% occl) 15.6
Seq.2 (10) 7.47 (2) 4.87 (3) 3.45 (9) 3.71 5.20 25.6 9.44 (31.60% occl) 36.8
Seq.3 (99) 4.50 (4) 5.13 (6) 2.60 (9) 2.81 2.88 3.00 3.40 (14.07% occl) ——
Seq.4 (99) 6.61 (4) 5.81 (4) 2.81 (9) 3.19 3.08 3.54 5.53 ( 13.63% occl) ——

Table 1: Reconstruction results on the NRSfM benchmark of [17]. We show mean RMS error per
cent (%). Numbers for TB, MP and VR baselines are from [17]. In the first column, we show in
parentheses the number of frames. κr is the rank of W used for the Euclidean upgrade. The last
two columns shows the performance of our algorithm and CSF baseline when occluded points in the
ground-truth tracks are hidden.

7



K = 2

K = 1

K = 3

K = 1

K = 2

K = 4

K = 3

K = 3

K = 1

K = 2

Figure 4: Reconstruction results on the VSB and Moseg video segmentation datasets. For each
example we show a) the trajectory cluster, b) the present and missing entries, and c) the depths of the
visible (as estimated from ray casting) points, where red and blue denote close and far respectively.

method are highly articulated objects, which violates the low-rank assumptions. 3D reconstruction
of articulated bodies is the focus of our current work.

4 Conclusion
We have presented a practical method for extracting dense 3D object models from monocular un-
calibrated video without object-specific priors. Our method considers as input trajectory motion
clusters obtained from automatic video segmentation that contain large amounts of missing data
due to object occlusions and rotations. We have applied our NRSfM method on synthetic dense re-
construction benchmarks and on numerous videos from Youtube and Hollywood movies. We have
shown that a richer object representation is achievable from video under mild conditions of camera
motion and object deformation: small object rotations are sufficient to recover 3D shape. “We see
because we move, we move because we see”, said Gibson in his “Perception of the Visual World”
[34]. We believe this paper has made a step towards encompassing 3D perception from motion into
general video analysis.
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