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Proposition 1 The likelihood function L(θ|D) does not depend on the parameters of variable X if
X is hidden in dataset D and is a leaf of the network structure.

Proof If di is an example of dataset D, then Prθ(di) does not depend on the parameters of variable
X; see [1, Chapter 6]. Hence, the likelihood function L(θ|D) =

∏N
i=1 Prθ(di) does not depend on

the parameters of variable X . �

1 Soundness

1.1 Decomposing the Likelihood Function

Theorem 1 Let S be a component of G|O and let R be the remaining variables of network G. If
variables O are observed in example d, we have

Prθ(d) =

∑
Θd

S

Θd
S

∑
Θd

R

Θd
R

 .
Proof Let N = S∪R be all network variables. One can show that the product Θd

SΘd
R is a parameter

term for N and d. Moreover, one can show that every parameter term for N and d can be written
as Θd

SΘd
R. The key observation here is that if variable X is shared by some parameter in Θd

S and
some parameter in Θd

R, then X ∈ O and its value must be set by example d. Hence, the parameters
of Θd

S and those of Θd
R must be compatible. Hence, one can enumerate all parameter terms Θd

N by
enumerating all products Θd

SΘd
R:

Prθ(d) =
∑
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�

1.2 Optimizing Component Likelihoods

Theorem 2 Consider a sub-network G which is induced by component S and boundary variables
B. Let θ be the parameters of sub-network G, and let D be a dataset for G that observes boundary
variables B. Then θ? is a stationary point for the sub-network likelihood, L(θ|D), only if θ? :S
is a stationary point for the component likelihood L(θ :S|D). Moreover, every stationary point for
L(θ :S|D) is part of some stationary point for L(θ|D).

Proof By definition of a sub-network, S must be a component of G|B. Hence, by Theorem 1,
L(θ|D) = L(θ :S|D)L(θ :B|D). Since S and B partition the variables of sub-network G, the
parameters in θ :S do not overlap with those in θ :B, and their union accounts for all sub-network
parameters, θ. The theorem then follows immediately from Lemma 1. �
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Figure 1: Speedup of D-EDML over EDML on chain networks: three chains (180, 380, and 500
variables) (left), and tree networks (63, 127, 255, and 511 variables) (right), with three random
datasets per network/observed percentage, and 210 examples per dataset.

2 Results

Table 1 and Figure 1 show results for EDML.

Network Observed % Speed-up Speed-up
D-EM D-EDML

alarm 95.0% 267.67x 33.93x
alarm 90.0% 173.47x 218.09x
alarm 80.0% 115.4x 85.1x
alarm 70.0% 87.67x 34.06x
alarm 60.0% 92.65x 31.83x
alarm 50.0% 12.09x 6.42x

win95pts 95.0% 591.38x 49.25x
win95pts 90.0% 112.57x 43.43x
win95pts 80.0% 22.41x 17.97x
win95pts 70.0% 17.92x 14.64x
win95pts 60.0% 4.8x 8.4x
win95pts 50.0% 7.99x 16.7x

andes 95.0% 155.54x 162.63x
andes 90.0% 52.63x 90.5x
andes 80.0% 14.27x 14.75x
andes 70.0% 2.96x 6.24x
andes 60.0% 0.77x 2.35x
andes 50.0% 1.01x 2.47x

diagnose 95.0% 43.03x 127.24x
diagnose 90.0% 17.16x 49.69x
diagnose 80.0% 11.86x 21.32x
diagnose 70.0% 3.25x 11.54x
diagnose 60.0% 3.48x 8.72x
diagnose 50.0% 3.73x 9.79x

water 95.0% 811.48x 88.41x
water 90.0% 110.27x 70.0x
water 80.0% 7.23x 5.34x
water 70.0% 1.5x 1.55x
water 60.0% 2.03x 1.82x
water 50.0% 4.4x 3.79x
pigs 95.0% 235.63x 40.7x
pigs 90.0% 37.61x 10.77x
pigs 80.0% 34.19x 11.17x
pigs 70.0% 16.23x 5.18x
pigs 60.0% 4.1x 1.82x
pigs 50.0% 3.16x 1.69x

Table 1: D-EM over EM speed-ups and D-EDML over EDML speed-ups on UAI networks. Three
random datasets per network/observed percentage with 210 examples per dataset.
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A Decomposing Stationary Points

A stationary point for function f(x1, . . . , xn) is a point x?1, . . . , x
?
n at which the gradient of

f(x1, . . . , xn) evaluates to zero. That is,

∂f

∂xi

∣∣∣∣
xi=x?

i

= 0 for i = 1, . . . , n.

Lemma 1 Consider the non-zero function

f(x1, . . . , xn, y1, . . . , ym) = g(x1, . . . , xn)h(y1, . . . , ym).

Then x?1, . . . , x
?
n, y

?
1 , . . . , y

?
m is a stationary point of f iff x?1, . . . , x

?
n is a stationary point of g and

y?1 , . . . , y
?
m is a stationary point of h.

Proof Consider the following elementary identities:

∂f

∂xi
= g(x1, . . . , xn)

∂h

∂xi
+ h(y1, . . . , ym)

∂g

∂xi

= h(y1, . . . , ym)
∂g

∂xi
∂f

∂yi
= g(x1, . . . , xn)

∂h

∂yi
+ h(y1, . . . , ym)

∂g

∂yi

= g(x1, . . . , xn)
∂h

∂yi
.

The lemma follows immediately from these identities since function f is non-zero (which implies
that g and h are non-zero). �
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