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Abstract

Submodular functions describe a variety of discrete problems in machine learn-
ing, signal processing, and computer vision. However, minimizing submodular
functions poses a number of algorithmic challenges. Recent work introduced an
easy-to-use, parallelizable algorithm for minimizing submodular functions that
decompose as the sum of “simple” submodular functions. Empirically, this al-
gorithm performs extremely well, but no theoretical analysis was given. In this
paper, we show that the algorithm converges linearly, and we provide upper and
lower bounds on the rate of convergence. Our proof relies on the geometry of
submodular polyhedra and draws on results from spectral graph theory.

1 Introduction

A large body of recent work demonstrates that many discrete problems in machine learning can be
phrased as the optimization of a submodular set function [2]. A set function F : 2V → R over a
ground set V ofN elements is submodular if the inequality F (A)+F (B) ≥ F (A∪B)+F (A∩B)
holds for all subsets A,B ⊆ V . Problems like clustering [33], structured sparse variable selection
[1], MAP inference with higher-order potentials [28], and corpus extraction problems [31] can be
reduced to the problem of submodular function minimization (SFM), that is

min
A⊆V

F (A). (P1)

Although SFM is solvable in polynomial time, existing algorithms can be inefficient on large-scale
problems. For this reason, the development of scalable, parallelizable algorithms has been an active
area of research [24, 25, 29, 35]. Approaches to solving Problem (P1) are either based on combina-
torial optimization or on convex optimization via the Lovász extension.

Functions that occur in practice are usually not arbitrary and frequently possess additional ex-
ploitable structure. For example, a number of submodular functions admit specialized algorithms
that solve Problem (P1) very quickly. Examples include cut functions on certain kinds of graphs,
concave functions of the cardinality |A|, and functions counting joint ancestors in trees. We will use
the term simple to refer to functions F for which we have a fast subroutine for minimizing F + s,
where s ∈ RN is any modular function. We treat these subroutines as black boxes. Many com-
monly occuring submodular functions (for example, graph cuts, hypergraph cuts, MAP inference
with higher-order potentials [16, 28, 37], co-segmentation [22], certain structured-sparsity inducing
functions [26], covering functions [35], and combinations thereof) can be expressed as a sum

F (A) =
∑R

r=1
Fr(A) (1)

of simple submodular functions. Recent work demonstrates that this structure offers important prac-
tical benefits [25, 29, 35]. For instance, it admits iterative algorithms that minimize each Fr sepa-
rately and combine the results in a straightforward manner (for example, dual decomposition).
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In particular, it has been shown that the minimization of decomposable functions can be rephrased
as a best-approximation problem, the problem of finding the closest points in two convex sets [25].
This formulation brings together SFM and classical projection methods and yields empirically fast,
parallel, and easy-to-implement algorithms. In these cases, the performance of projection methods
depends heavily on the specific geometry of the problem at hand and is not well understood in
general. Indeed, while Jegelka et al. [25] show good empirical results, the analysis of this alternative
approach to SFM was left as an open problem.

Contributions. In this work, we study the geometry of the submodular best-approximation problem
and ground the prior empirical results in theoretical guarantees. We show that SFM via alternating
projections, or block coordinate descent, converges at a linear rate. We show that this rate holds
for the best-approximation problem, relaxations of SFM, and the original discrete problem. More
importantly, we prove upper and lower bounds on the worst-case rate of convergence. Our proof
relies on analyzing angles between the polyhedra associated with submodular functions and draws
on results from spectral graph theory. It offers insight into the geometry of submodular polyhedra
that may be beneficial beyond the analysis of projection algorithms.

Submodular minimization. The first polynomial-time algorithm for minimizing arbitrary submod-
ular functions was a consequence of the ellipsoid method [19]. Strongly and weakly polynomial-
time combinatorial algorithms followed [32]. The current fastest running times are O(N5τ1 +N6)
[34] in general and O((N4τ1 + N5) logFmax) for integer-valued functions [23], where Fmax =
maxA |F (A)| and τ1 is the time required to evaluate F . Some work has addressed decomposable
functions [25, 29, 35]. The running times in [29] apply to integer-valued functions and range from
O((N +R)2 logFmax) for cuts to O((N +Q2R)(N +Q2R+QRτ2) logFmax), where Q ≤ N is
the maximal cardinality of the support of any Fr, and τ2 is the time required to minimize a simple
function. Stobbe and Krause [35] use a convex optimization approach based on Nesterov’s smooth-
ing technique. They achieve a (sublinear) convergence rate ofO(1/k) for the discrete SFM problem.
Their results and our results do not rely on the function being integral.

Projection methods. Algorithms based on alternating projections between convex sets (and related
methods such as the Douglas–Rachford algorithm) have been studied extensively for solving convex
feasibility and best-approximation problems [4, 5, 7, 11, 12, 20, 21, 36, 38]. See Deutsch [10] for a
survey of applications. In the simple case of subspaces, the convergence of alternating projections
has been characterized in terms of the Friedrichs angle cF between the subspaces [5, 6]. There are
often good ways to compute cF (see Lemma 6), which allow us to obtain concrete linear rates of
convergence for subspaces. The general case of alternating projections between arbitrary convex
sets is less well understood. Bauschke and Borwein [3] give a general condition for the linear
convergence of alternating projections in terms of the value κ∗ (defined in Section 3.1). However,
except in very limited cases, it is unclear how to compute or even bound κ∗. While it is known that
κ∗ < ∞ for polyhedra [5, Corollary 5.26], the rate may be arbitrarily slow, and the challenge is
to bound the linear rate away from one. We are able to give a specific uniform linear rate for the
submodular polyhedra that arise in SFM.

Although both κ∗ and cF are useful quantities for understanding the convergence of projection
methods, they largely have been studied independently of one another. In this work, we relate
these two quantities for polyhedra, thereby obtaining some of the generality of κ∗ along with the
computability of cF . To our knowledge, we are the first to relate κ∗ and cF outside the case of
subspaces. We feel that this connection may be useful beyond the context of submodular polyhedra.

1.1 Background

Throughout this paper, we assume that F is a sum of simple submodular functions F1, . . . , FR and
that F (∅) = 0. Points s ∈ RN can be identified with (modular) set functions via s(A) =

∑
n∈A sn.

The base polytope of F is defined as the set of all modular functions that are dominated by F and
that sum to F (V ),

B(F ) = {s ∈ RN | s(A) ≤ F (A) for all A ⊆ V and s(V ) = F (V )}.

The Lovász extension f : RN → R of F can be written as the support function of the base polytope,
that is f(x) = maxs∈B(F ) s

>x. Even though B(F ) may have exponentially many faces, the exten-
sion f can be evaluated in O(N logN) time [15]. The discrete SFM problem (P1) can be relaxed to
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the non-smooth convex optimization problem

min
x∈[0,1]N

f(x) ≡ min
x∈[0,1]N

R∑
r=1

fr(x), (P2)

where fr is the Lovász extension of Fr. This relaxation is exact – rounding an optimal continuous
solution yields the indicator vector of an optimal discrete solution. The formulation in Problem (P2)
is amenable to dual decomposition [30] and smoothing techniques [35], but suffers from the non-
smoothness of f [25]. Alternatively, we can formulate a proximal version of the problem

min
x∈RN

f(x) + 1
2‖x‖

2 ≡ min
x∈RN

R∑
r=1

(fr(x) + 1
2R‖x‖

2). (P3)

By thresholding the optimal solution of Problem (P3) at zero, we recover the indicator vector of an
optimal discrete solution [17], [2, Proposition 8.4].
Lemma 1. [25] The dual of the right-hand side of Problem (P3) is the best-approximation problem

min ‖a− b‖2 a ∈ A, b ∈ B, (P4)

where A = {(a1, . . . , aR) ∈ RNR |
∑R
r=1 ar = 0} and B = B(F1)× · · · ×B(FR).

Lemma 1 implies that we can minimize a decomposable submodular function by solving Prob-
lem (P4), which means finding the closest points between the subspace A and the product B of base
polytopes. Projecting ontoA is straightforward becauseA is a subspace. Projecting onto B amounts
to projecting onto each B(Fr) separately. The projection ΠB(Fr)z of a point z onto B(Fr) may be
solved by minimizing Fr − z [25]. We can compute these projections easily because each Fr is
simple.

Throughout this paper, we use A and B to refer to the specific polyhedra defined in Lemma 1
(which live in RNR) and P and Q to refer to general polyhedra (sometimes arbitrary convex sets) in
RD. Note that the polyhedron B depends on the submodular functions F1, . . . , FR, but we omit the
dependence to simplify our notation. Our bound will be uniform over all submodular functions.

2 Algorithm and Idea of Analysis

A popular class of algorithms for solving best-approximation problems are projection methods [5].
The most straightforward approach uses alternating projections (AP) or block coordinate descent.
Start with any point a0 ∈ A, and inductively generate two sequences via bk = ΠBak and ak+1 =
ΠAbk. Given the nature of A and B, this algorithm is easy to implement and use in our setting, and
it solves Problem (P4) [25]. This is the algorithm that we will analyze.

The sequence (ak, bk) will eventually converge to an optimal pair (a∗, b∗). We say that AP converges
linearly with rate α < 1 if ‖ak−a∗‖ ≤ C1α

k and ‖bk−b∗‖ ≤ C2α
k for all k and for some constants

C1 and C2. Smaller values of α are better.

Analysis: Intuition. We will provide a detailed analysis of the convergence of AP for the polyhedra
A and B. To motivate our approach, we first provide some intuition with the following much-
simplified setup. Let U and V be one-dimensional subspaces spanned by the unit vectors u and v
respectively. In this case, it is known that AP converges linearly with rate cos2 θ, where θ ∈ [0, π2 ]

is the angle such that cos θ = u>v. The smaller the angle, the slower the rate of convergence.
For subspaces U and V of higher dimension, the relevant generalization of the “angle” between the
subspaces is the Friedrichs angle [11, Definition 9.4], whose cosine is given by

cF (U, V ) = sup
{
u>v |u ∈ U ∩ (U ∩ V )⊥, v ∈ V ∩ (U ∩ V )⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1

}
. (2)

In finite dimensions, cF (U, V ) < 1. In general, when U and V are subspaces of arbitrary dimension,
AP will converge linearly with rate cF (U, V )2 [11, Theorem 9.8]. If U and V are affine spaces, AP
still converges linearly with rate cF (U − u, V − v)2, where u ∈ U and v ∈ V .

We are interested in rates for polyhedra P and Q, which we define as the intersection of finitely
many halfspaces. We generalize the preceding results by considering all pairs (Px, Qy) of
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Figure 1: The optimal sets E, H in Equation (4), the vector v, and the shifted polyhedron Q′.

faces of P and Q and showing that the convergence rate of AP between P and Q is at worst
maxx,y cF (aff0(Px), aff0(Qy))2, where aff(C) is the affine hull of C and aff0(C) = aff(C) − c
for some c ∈ C. The faces {Px}x∈RD of P are defined as the nonempty maximizers of linear
functions over P , that is

Px = arg max
p∈P

x>p. (3)

While we look at angles between pairs of faces, we remark that Deutsch and Hundal [13] consider a
different generalization of the “angle” between arbitrary convex sets.

Roadmap of the Analysis. Our analysis has two main parts. First, we relate the convergence rate
of AP between polyhedra P and Q to the angles between the faces of P and Q. To do so, we give a
general condition under which AP converges linearly (Theorem 2), which we show depends on the
angles between the faces of P and Q (Corollary 5) in the polyhedral case. Second, we specialize
to the polyhedra A and B, and we equate the angles with eigenvalues of certain matrices and use
tools from spectral graph theory to bound the relevant eigenvalues in terms of the conductance of a
specific graph. This yields a worst-case bound of 1− 1

N2R2 on the rate, stated in Theorem 12.

In Theorem 14, we show a lower bound of 1− 2π2

N2R on the worst-case convergence rate.

3 The Upper Bound

We first derive an upper bound on the rate of convergence of AP between the polyhedra A and B.
The results in this section are proved in Appendix A.

3.1 A Condition for Linear Convergence

We begin with a condition under which AP between two closed convex sets P and Q converges
linearly. This result is similar to that of Bauschke and Borwein [3, Corollary 3.14], but the rate we
achieve is twice as fast and relies on slightly weaker assumptions.

We will need a few definitions from Bauschke and Borwein [3]. Let d(K1,K2) = inf{‖k1 − k2‖ :
k1 ∈ K1, k2 ∈ K2} be the distance between sets K1 and K2. Define the sets of “closest points” as

E = {p ∈ P | d(p,Q) = d(P,Q)} H = {q ∈ Q | d(q, P ) = d(Q,P )}, (4)

and let v = ΠQ−P 0 (see Figure 1). Note that H = E + v, and when P ∩ Q 6= ∅ we have v = 0
and E = H = P ∩ Q. Therefore, we can think of the pair (E,H) as a generalization of the
intersection P ∩Q to the setting where P and Q do not intersect. Pairs of points (e, e+v) ∈ E×H
are solutions to the best-approximation problem between P and Q. In our analysis, we will mostly
study the translated version Q′ = Q− v of Q that intersects P at E.

For x ∈ RD\E, the function κ relates the distance to E with the distances to P and Q′,

κ(x) =
d(x,E)

max{d(x, P ), d(x,Q′)}
.

If κ is bounded, then whenever x is close to both P andQ′, it must also be close to their intersection.
If, for example, D ≥ 2 and P and Q are balls of radius one whose centers are separated by distance
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exactly two, then κ is unbounded. The maximum κ∗ = supx∈(P∪Q′)\E κ(x) is useful for bounding
the convergence rate.
Theorem 2. Let P and Q be convex sets, and suppose that κ∗ < ∞. Then AP between P and Q
converges linearly with rate 1− 1

κ2
∗

. Specifically,

‖pk − p∗‖ ≤ 2‖p0 − p∗‖(1− 1
κ2
∗
)k and ‖qk − q∗‖ ≤ 2‖q0 − q∗‖(1− 1

κ2
∗
)k.

3.2 Relating κ∗ to the Angles Between Faces of the Polyhedra

In this section, we consider the case of polyhedra P and Q, and we bound κ∗ in terms of the angles
between pairs of their faces. In Lemma 3, we show that κ is nondecreasing along the sequence of
points generated by AP between P and Q′. We treat points p for which κ(p) = 1 separately because
those are the points from which AP between P andQ′ converges in one step. This lemma enables us
to bound κ(p) by initializing AP at p and bounding κ at some later point in the resulting sequence.
Lemma 3. For any p ∈ P\E, either κ(p) = 1 or 1 < κ(p) ≤ κ(ΠQ′p). Similarly, for any
q ∈ Q′\E, either κ(q) = 1 or 1 < κ(q) ≤ κ(ΠP q).

We can now bound κ by angles between faces of P and Q.
Proposition 4. If P and Q are polyhedra and p ∈ P\E, then there exist faces Px and Qy such that

1− 1

κ(p)2
≤ cF (aff0(Px), aff0(Qy))2.

The analogous statement holds when we replace p ∈ P\E with q ∈ Q′\E.

Note that aff0(Qy) = aff0(Q′y). Proposition 4 immediately gives us the following corollary.
Corollary 5. If P and Q are polyhedra, then

1− 1

κ2
∗
≤ max
x,y∈RD

cF (aff0(Px), aff0(Qy))2.

3.3 Angles Between Subspaces and Singular Values

Corollary 5 leaves us with the task of bounding the Friedrichs angle. To do so, we first relate the
Friedrichs angle to the singular values of certain matrices in Lemma 6. We then specialize this to
base polyhedra of submodular functions. For convenience, we prove Lemma 6 in Appendix A.5,
though this result is implicit in the characterization of principal angles between subspaces given
in [27, Section 1]. Ideas connecting angles between subspaces and eigenvalues are also used by
Diaconis et al. [14].
Lemma 6. Let S and T be matrices with orthonormal rows and with equal numbers of columns.
If all of the singular values of ST> equal one, then cF (null(S),null(T )) = 0. Otherwise,
cF (null(S),null(T )) is equal to the largest singular value of ST> that is less than one.

Faces of relevant polyhedra. Let Ax and By be faces of the polyhedra A and B from Lemma 1.
Since A is a vector space, its only nonempty face is Ax = A. Hence, Ax = null(S), where S is an
N ×NR matrix of N ×N identity matrices IN :

S =
1√
R

(
IN · · · IN︸ ︷︷ ︸

repeatedR times

)
. (5)

The matrix for aff0(By) requires a bit more elaboration. Since B is a Cartesian product, we have
By = B(F1)y1 × · · · × B(FR)yR , where y = (y1, . . . , yR) and B(Fr)yr is a face of B(Fr). To
proceed, we use the following characterization of faces of base polytopes [2, Proposition 4.7].
Proposition 7. Let F be a submodular function, and letB(F )x be a face ofB(F ). Then there exists
a partition of V into disjoint sets A1, . . . , AM such that

aff(B(F )x) =

M⋂
m=1

{s ∈ RN | s(A1 ∪ · · · ∪Am) = F (A1 ∪ · · · ∪Am)}.

5



The following corollary is immediate.
Corollary 8. Define F , B(F )x, and A1, . . . , AM as in Proposition 7. Then

aff0(B(F )x) =

M⋂
m=1

{s ∈ RN | s(A1 ∪ · · · ∪Am) = 0}.

By Corollary 8, for each Fr, there exists a partition of V into disjoint sets Ar1, . . . , ArMr
such that

aff0(By) =

R⋂
r=1

Mr⋂
m=1

{(s1, . . . , sR) ∈ RNR | sr(Ar1 ∪ · · · ∪Arm) = 0}. (6)

In other words, we can write aff0(By) as the nullspace of either of the matrices

T ′ =



1>A11

...
1>A11∪···∪A1M1

. . .
1>AR1

...
1>AR1∪···∪ARMR


or T =



1>A11√
|A11|
...

1>A1M1√
|A1M1

|
. . .

1>AR1√
|AR1|
...

1>ARMR√
|ARMR

|


,

where 1A is the indicator vector of A ⊆ V . For T ′, this follows directly from Equation (6). T
can be obtained from T ′ via left multiplication by an invertible matrix, so T and T ′ have the same
nullspace. Lemma 6 then implies that cF (aff0(Ax), aff0(By)) equals the largest singular value of

ST> =
1√
R

(
1A11√
|A11|

· · ·
1A1M1√
|A1M1

|
· · · 1AR1√

|AR1|
· · ·

1ARMR√
|ARMR

|

)
that is less than one. We rephrase this conclusion in the following remark.
Remark 9. The largest eigenvalue of (ST>)>(ST>) less than one equals cF (aff0(Ax), aff0(By))2.

Let Mall = M1 + · · ·+MR. Then (ST>)>(ST>) is the Mall×Mall square matrix whose rows and
columns are indexed by (r,m) with 1 ≤ r ≤ R and 1 ≤ m ≤ Mr and whose entry corresponding
to row (r1,m1) and column (r2,m2) equals

1

R

1>Ar1m1
1Ar2m2√

|Ar1m1
||Ar2m2

|
=

1

R

|Ar1m1
∩Ar2m2

|√
|Ar1m1

||Ar2m2
|
.

3.4 Bounding the Relevant Eigenvalues

It remains to bound the largest eigenvalue of (ST>)>(ST>) that is less than one. To do so, we view
the matrix in terms of the symmetric normalized Laplacian of a weighted graph. Let G be the graph
whose vertices are indexed by (r,m) with 1 ≤ r ≤ R and 1 ≤ m ≤ Mr. Let the edge between
vertices (r1,m1) and (r2,m2) have weight |Ar1m1 ∩ Ar2m2 |. We may assume that G is connected
(the analysis in this case subsumes the analysis in the general case). The symmetric normalized
Laplacian L of this graph is closely related to our matrix of interest,

(ST>)>(ST>) = I − R−1
R L. (7)

Hence, the largest eigenvalue of (ST>)>(ST>) that is less than one can be determined from the
smallest nonzero eigenvalue λ2(L) of L. We bound λ2(L) via Cheeger’s inequality (stated in Ap-
pendix A.6) by bounding the Cheeger constant hG of G.
Lemma 10. For R ≥ 2, we have hG ≥ 2

NR and hence λ2(L) ≥ 2
N2R2 .
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We prove Lemma 10 in Appendix A.7. Combining Remark 9, Equation (7), and Lemma 10, we
obtain the following bound on the Friedrichs angle.
Proposition 11. Assuming that R ≥ 2, we have

cF (aff0(Ax), aff0(By))2 ≤ 1− R−1
R

2
N2R2 ≤ 1− 1

N2R2 .

Together with Theorem 2 and Corollary 5, Proposition 11 implies the final bound on the rate.
Theorem 12. The AP algorithm for Problem (P4) converges linearly with rate 1− 1

N2R2 , i.e.,

‖ak − a∗‖ ≤ 2‖a0 − a∗‖(1− 1
N2R2 )k and ‖bk − b∗‖ ≤ 2‖b0 − b∗‖(1− 1

N2R2 )k.

4 A Lower Bound

To probe the tightness of Theorem 12, we construct a “bad” submodular function and decomposition
that lead to a slow rate. Appendix B gives the formal details. Our example is an augmented cut
function on a cycle: for each x, y ∈ V , define Gxy to be the cut function of a single edge (x, y),

Gxy =

{
1 if |A ∩ {x, y}| = 1

0 otherwise .

Take N to be even and R ≥ 2 and define the submodular function F lb = F lb
1 + · · ·+ F lb

R , where

F lb
1 = G12 +G34 + · · ·+G(N−1)N F lb

2 = G23 +G45 + · · ·+GN1

and F lb
r = 0 for all r ≥ 3. The optimal solution to the best-approximation problem is the all zeros

vector.
Lemma 13. The cosine of the Friedrichs angle between A and aff(Blb) is

cF (A, aff(Blb))2 = 1− 1
R

(
1− cos

(
2π
N

))
.

Around the optimal solution 0, the polyhedra A and Blb behave like subspaces, and it is possible to
pick initializations a0 ∈ A and b0 ∈ Blb such that the Friedrichs angle exactly determines the rate
of convergence. That means 1− 1/κ2

∗ = cF (A, aff(Blb))2, and

‖ak‖ = (1− 1
R (1− cos( 2π

N )))k‖a0‖ and ‖bk‖ = (1− 1
R (1− cos( 2π

N )))k‖b0‖.

Bounding 1− cos(x) ≤ 1
2x

2 leads to the following lower bound on the rate.

Theorem 14. There exists a decomposed function F lb and initializations for which the convergence
rate of AP is at least 1− 2π2

N2R .

This theoretical bound can also be observed empirically (Figure 3 in Appendix B).

5 Convergence of the Primal Objective

We have shown that AP generates a sequence of points {ak}k≥0 and {bk}k≥0 in RNR such that
(ak, bk)→ (a∗, b∗) linearly, where (a∗, b∗) minimizes the objective in Problem (P4). In this section,
we show that this result also implies the linear convergence of the objective in Problem (P3) and of
the original discrete objective in Problem (P1). The proofs may be found in Appendix C.

Define the matrix Γ = −R1/2S, where S is the matrix defined in Equation (5). Multiplication by Γ
maps a vector (w1, . . . , wR) to −

∑
r wr, where wr ∈ RN for each r. Set xk = Γbk and x∗ = Γb∗.

As shown in Jegelka et al. [25], Problem (P3) is minimized by x∗.
Proposition 15. We have f(xk) + 1

2‖xk‖
2 → f(x∗) + 1

2‖x∗‖
2 linearly with rate 1− 1

N2R2 .

This linear rate of convergence translates into a linear rate for the original discrete problem.
Theorem 16. Choose A∗ ∈ arg minA⊆V F (A). Let Ak be the suplevel set of xk with smallest
value of F . Then F (Ak)→ F (A∗) linearly with rate 1− 1

2N2R2 .
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6 Discussion

In this work, we analyze projection methods for parallel SFM and give upper and lower bounds on
the linear rate of convergence. This means that the number of iterations required for an accuracy of
ε is logarithmic in 1/ε, not linear as in previous work [35]. Our rate is uniform over all submodular
functions. Moreover, our proof highlights how the number R of components and the facial structure
of B affect the convergence rate. These insights may serve as guidelines when working with projec-
tion algorithms and aid in the analysis of special cases. For example, reducing R is often possible.
Any collection of Fr that have disjoint support, such as the cut functions corresponding to the rows
or columns of a grid graph, can be grouped together without making the projection harder.

Our analysis also shows the effects of additional properties of F . For example, suppose that F
is separable, that is, F (V ) = F (S) + F (V \S) for some nonempty S ( V . Then the subsets
Arm ⊆ V defining the relevant faces of B satisfy either Arm ⊆ S or Arm ⊆ Sc [2]. This makes G
in Section 3.4 disconnected, and as a result, the N in Theorem 12 gets replaced by max{|S|, |Sc|}
for an improved rate. This applies without the user needing to know S when running the algorithm.

A number of future directions suggest themselves. For example, Jegelka et al. [25] also considered
the related Douglas–Rachford (DR) algorithm. DR between subspaces converges linearly with rate
cF [6], as opposed to c2F for AP. We suspect that our approach may be modified to analyze DR
between polyhedra. Further questions include the extension to cyclic updates (instead of parallel
ones), multiple polyhedra, and stochastic algorithms.

Acknowledgments. We would like to thank Mădălina Persu for suggesting the use of Cheeger’s
inequality. This research is supported in part by NSF CISE Expeditions Award CCF-1139158,
LBNL Award 7076018, and DARPA XData Award FA8750-12-2-0331, and gifts from Amazon
Web Services, Google, SAP, The Thomas and Stacey Siebel Foundation, Apple, C3Energy, Cisco,
Cloudera, EMC, Ericsson, Facebook, GameOnTalis, Guavus, HP, Huawei, Intel, Microsoft, NetApp,
Pivotal, Splunk, Virdata, VMware, WANdisco, and Yahoo!. This work is supported in part by the
Office of Naval Research under grant number N00014-11-1-0688, the US ARL and the US ARO
under grant number W911NF-11-1-0391, and the NSF under grant number DGE-1106400.

References
[1] F. Bach. Structured sparsity-inducing norms through submodular functions. In Advances in Neural Infor-

mation Processing Systems, 2011.

[2] F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations and
Trends in Machine Learning, 6(2-3):145–373, 2013.

[3] H. H. Bauschke and J. M. Borwein. On the convergence of von Neumann’s alternating projection algo-
rithm for two sets. Set-Valued Analysis, 1(2):185–212, 1993.

[4] H. H. Bauschke and J. M. Borwein. Dykstra’s alternating projection algorithm for two sets. Journal of
Approximation Theory, 79(3):418–443, 1994.

[5] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility problems.
SIAM Review, 38(3):367–426, 1996.

[6] H. H. Bauschke, J. B. Cruz, T. T. Nghia, H. M. Phan, and X. Wang. The rate of linear convergence of the
Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle. Journal of Approximation
Theory, 185:63–79, 2014.

[7] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM Journal
on Optimization, 23(4):2037–2060, 2013.
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A Upper Bound Results

A.1 Proof of Theorem 2

For the proof of this theorem, we will need the fact that projection maps are firmly nonexpansive,
that is, for a closed convex nonempty subset C ⊆ RD, we have

‖ΠCx−ΠCy‖2 + ‖(x−ΠCx)− (y −ΠCy)‖2 ≤ ‖x− y‖2

for all x, y ∈ RD. Now, suppose that κ∗ < ∞. Let e = ΠEpk and note that v = ΠQe− e and that
ΠQe ∈ H . We have

κ−2
∗ d(pk, E)2 ≤ d(pk, Q

′)2

≤ ‖pk −ΠQpk + v‖2

≤ ‖(pk −ΠQpk)− (e−ΠQe)‖2

≤ ‖pk − e‖2 − ‖ΠQpk −ΠQe‖2

≤ d(pk, E)2 − d(qk, H)2.

It follows that d(qk, H) ≤ (1 − κ−2
∗ )1/2d(pk, E). Similarly, we have d(pk+1, E) ≤ (1 −

κ−2
∗ )1/2d(qk, H). When combining these, induction shows that

d(pk, E) ≤ (1− κ−2
∗ )kd(p0, E)

d(qk, H) ≤ (1− κ−2
∗ )kd(q0, H).

As shown in [3, Theorem 3.3], the above implies that pk → p∗ ∈ E and qk → q∗ ∈ H and that
‖pk − p∗‖ ≤ 2‖p0 − p∗‖(1− κ−2

∗ )k

‖qk − q∗‖ ≤ 2‖q0 − q∗‖(1− κ−2
∗ )k.

A.2 Connection Between κ and cF in the Subspace Case

In this section, we introduce a simple lemma connecting κ and cF in the case of subspaces U and
V . We will use this lemma in several subsequent proofs.
Lemma 17. Let U and V be subspaces and suppose u ∈ U ∩ (U ∩ V )⊥ and that u 6= 0. Then

(a) ‖ΠV u‖ ≤ cF (U, V )‖u‖
(b) κ(u) ≤ (1− cF (U, V )2)−1/2

(c) κ(u) = (1− cF (U, V )2)−1/2 if and only if ‖ΠV u‖ = cF (U, V )‖u‖.

Proof. Part (a) follows from the definition of cF . Indeed,

cF (U, V ) ≥ u>(ΠV u)

‖u‖‖ΠV u‖
=
‖ΠV u‖2

‖u‖‖ΠV u‖
=
‖ΠV u‖
‖u‖

.

Part (b) follows from Part (a) and the observation that κ(u) = (1 − ‖ΠV u‖2/‖u‖2)−1/2. Part (c)
follows from the same observation.

A.3 Proof of Lemma 3

It suffices to prove the statement for p ∈ P\E. For p ∈ P\E, define q = ΠQ′p, e = ΠEq, and
p′′ = Π[p,e]q, where [p, e] denotes the line segment between p and e (which is contained in P by
convexity). See Figure 2 for a graphical depiction. If q ∈ E, then κ(p) = 1. So we may assume that
q /∈ E which also implies that d(p′′, E) > 0 and d(ΠP q, E) > 0. We have

κ(p) =
d(p,E)

d(p,Q′)
≤ ‖p− e‖
‖p− q‖

≤ ‖q − e‖
‖q − p′′‖

≤ d(q, E)

d(q, P )
= κ(q). (8)

The first inequality holds because d(p,E) ≤ ‖p−e‖ and d(p,Q′) = ‖p−q‖. The middle inequality
holds because the area of the triangle with vertices p, q, and e can be expressed as both 1

2‖p−e‖‖q−
p′′‖ and 1

2‖p− q‖‖q − e‖ sin θ, where θ is the angle between vectors p− q and e− q, so

‖p− e‖‖q − p′′‖ = ‖p− q‖‖q − e‖ sin θ ≤ ‖p− q‖‖q − e‖.
The third inequality holds because ‖q − e‖ = d(q, E) and ‖q − p′′‖ ≥ d(q, P ). The chain of
inequalities in Equation (8) prove the lemma.
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Figure 2: Illustration of the proof of Lemma 3.

A.4 Proof of Proposition 4

Suppose that p ∈ P\E (the case q ∈ Q′\E is the same), and let e = ΠEp. If κ(p) = 1, the
statement is evident, so we may assume that κ(p) > 1. We will construct sequences of polyhedra

P ⊇ P1 ⊇ · · · ⊇ PJ
Q′ ⊇ Q′1 ⊇ · · · ⊇ Q′J

.

where Pj+1 is a face of Pj and Q′j+1 is a face of Q′j for 1 ≤ j ≤ J − 1. Either dim(aff(Pj+1)) <
dim(aff(Pj)) or dim(aff(Q′j+1)) < dim(aff(Q′j)) will hold. We will further define Ej = Pj ∩Q′j ,
which will contain e, so that we can define

κj(x) =
d(x,Ej)

max{d(x, Pj), d(x,Q′j)}

for x ∈ RD\Ej (this is just the function κ defined for the polyhedra Pj and Q′j). Our construction
will yield points pj ∈ Pj , and qj ∈ Q′j such that pj ∈ relint(Pj)\Ej , qj ∈ relint(Q′j)\Ej , and
qj = ΠQ′j

pj for each j. Furthermore, we will have

κ(p) ≤ κ1(p1) ≤ · · · ≤ κJ(pJ). (9)

Now we describe the construction. For any t ∈ [0, 1], define pt = (1 − t)p + te to be the point
obtained by moving p by the appropriate amount toward e. Note that t 7→ κ(pt) is a nondecreasing
function on the interval [0, 1). Choose ε > 0 sufficiently small so that every face of either P or
Q′ that intersects Bε(e), the ball of radius ε centered on e, necessarily contains e. Now choose
0 ≤ t0 < 1 sufficiently close to 1 so that ‖pt0 − e‖ < ε. It follows that e is contained in the face of
P whose relative interior contains pt0 . It further follows that e is contained in the face of Q′ whose
relative interior contains ΠQ′p

t0 because

‖ΠQ′p
t0 − e‖ = ‖ΠQ′p

t0 −ΠQ′e‖ ≤ ‖pt0 − e‖ < ε.

To initialize the construction, set

p1 = pt0

q1 = ΠQ′p
t0 ,

and let P1 and Q′1 be the unique faces of P and Q′ respectively such that p1 ∈ relint(P1) and
q1 ∈ relint(Q′1) (the relative interiors of the faces of a polyhedron partition that polyhedron [8,
Theorem 2.2]). Note that q1 /∈ E because κ(p1) ≥ κ(p) > 1. Note that e ∈ E1 = P1 ∩Q′1 so that

κ(p) ≤ κ(p1) =
d(p1, E)

d(p1, Q′)
=
‖p1 − e‖
‖p1 − q1‖

=
d(p1, E1)

d(p1, Q′1)
= κ1(p1).
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Now, inductively assume that we have defined Pj , Q′j , pj , and qj satisfying the stated properties.
Generate the sequences {xk}k≥0 and {yk}k≥0 with xk ∈ Pj and yk ∈ Q′j by running AP between
the polyhedra Pj andQ′j initialized with x0 = pj . There are two possibilities, either xk ∈ relint(Pj)
and yk ∈ relint(Q′j) for every k, or there is some k for which either xk /∈ relint(Pj) or yk /∈
relint(Q′j). Note that Pj and Q′j intersect and that AP between them will not terminate after a finite
number of steps.

Suppose that xk ∈ relint(Pj) and yk ∈ relint(Q′j) for every k. Then set J = j and terminate the
procedure. Otherwise, choose k′ such that either xk′ /∈ relint(Pj) or yk′ /∈ relint(Q′j). Now set
pj+1 = xk′ and qj+1 = yk′ . Let Pj+1 and Q′j+1 be the unique faces of Pj and Q′j respectively such
that pj+1 ∈ relint(Pj+1) and qj+1 ∈ relint(Q′j+1). Note that pj+1, qj+1 /∈ Ej+1 = Pj+1 ∩Q′j+1
and e ∈ Ej+1. We have

κj(pj) < κj(pj+1) =
d(pj+1, Ej)

d(pj+1, Q′j)
=

d(pj+1, Ej)

‖pj+1 − qj+1‖
≤ d(pj+1, Ej+1)

d(pj+1, Q′j+1)
= κj+1(pj+1).

The preceding work shows the inductive step. Note that if Pj+1 6= Pj then dim(aff(Pj+1)) <
dim(aff(Pj)) and if Q′j+1 6= Q′j then dim(aff(Q′j+1)) < dim(aff(Q′j)). One of these will hold, so
the induction will terminate after a finite number of steps.

We have produced the sequence in Equation (9) and we have created pJ , PJ , and Q′J such
that AP between PJ and Q′J , when initialized at pJ , generates the same sequence of points as
AP between aff(PJ) and aff(Q′J). Using this fact, along with [12, Theorem 9.3], we see that
Πaff(PJ )∩aff(Q′J )pJ ∈ EJ . Using this, along with Lemma 17(b), we see that

κJ(pJ) ≤ (1− cF (aff0(PJ), aff0(Q′J))2)−1/2. (10)

Equations (10) and (9) prove the result. Note that PJ andQ′J are faces of P andQ′ respectively. We
can switch between faces of Q′ and faces of Q because doing so amounts to translating by v which
does not affect the angles.

A.5 Proof of Lemma 6

We have

cF (null(S),null(T )) = cF (range(S>)⊥, range(T>)⊥)

= cF (range(S>), range(T>)),

where the first equality uses the fact that null(W ) = range(W>)⊥ for matrices W , and the second
equality uses the fact that cF (U⊥, V ⊥) = cF (U, V ) for subspaces U and V [6, Fact 2.3].

Let S> and T> have dimensions D× J and D×K respectively, and let X and Y be the subspaces
spanned by the columns of S> and T> respectively. Without loss of generality, assume that J ≤
K. Let σ1 ≥ · · · ≥ σJ be the singular values of ST> with corresponding left singular vectors
u1, . . . , uJ and right singular vectors v1, . . . , vJ . Let xj = S>uj and let yj = T>vj for 1 ≤ j ≤ J .
By definition, we can write

σj = max
u,v
{u>ST>v |u ⊥ span(u1, . . . , uj−1), v ⊥ span(v1, . . . , vj−1), ‖u‖ = 1, ‖v‖ = 1}.

Since the {uj}j are orthonormal, so are the {xj}j . Similarly, since the {vj}j are orthonormal, so
are the {yj}j . Suppose that all of the singular values of ST> equal one. Then we must have xj = yj
for each j, which implies that X ⊆ Y , and so cF (X,Y ) = 0.

Now suppose that σ1 = · · · = σ` = 1, and σ`+1 6= 1. It follows that

X ∩ Y = span(x1, . . . , x`) = span(y1, . . . , y`),

and so

σ`+1 = sup
u,v
{u>ST>v |u ∈ span(u1, . . . , u`)

⊥, v ∈ span(v1, . . . , v`)
⊥, ‖u‖ = 1, ‖v‖ = 1}

= sup
x,y
{x>y |x ∈ X ∩ (X ∩ Y )⊥, y ∈ Y ∩ (X ∩ Y )⊥, ‖x‖ = 1, ‖y‖ = 1}

= cF (X,Y ).
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A.6 Cheeger’s Inequality

For an overview of spectral graph theory, see Chung [9]. We state Cheeger’s inequality below.

Let G be a weighted, connected graph with vertex set VG and edge weights (wij)i,j∈VG
. Define the

weighted degree of a vertex i to be δi =
∑
j 6=i wij , define the volume of a subset of vertices to be

the sum of their weighted degrees, vol(U) =
∑
i∈U δi, and define the size of the cut between U and

its complement U c to be the sum of the weights of the edges between U and U c,

|E(U,U c)| =
∑

i∈U,j∈Uc

wij .

The Cheeger constant is defined as

hG = min
∅6=U(VG

|E(U,U c)|
min(vol(U), vol(U c))

.

Let L be the unnormalized Laplacian of G, i.e. the |VG| × |VG| matrix whose entries are defined by

Lij =

{
−wij i 6= j
δi otherwise .

Let D be the |VG| × |VG| diagonal matrix defined by Dii = δi. Then L = D−1/2LD−1/2 is the
normalized Laplacian. Let λ2(L) denote the second smallest eigenvalue of L (since G is connected,
there will be exactly one eigenvalue equal to zero).

Theorem 18 (Cheeger’s inequality). We have λ2(L) ≥ h2
G

2 .

A.7 Proof of Lemma 10

Proof. We have

min(vol(U), vol(U c)) ≤ 1

2
vol(VG)

=
1

2

∑
(r,m)

 ∑
(r′,m′) 6=(r,m)

|Arm ∩Ar′m′ |


=

1

2

∑
(r,m)

(R− 1)|Arm|

=
1

2
NR(R− 1).

Since G is connected, for any nonempty set U ( VG, there must be some element v ∈ V (here V is
the ground set of our submodular function F , not the set of vertices VG) such that v ∈ Ar1m1

∩Ar2m2

for some (r1,m1) ∈ U and (r2,m2) ∈ U c. Suppose that v appears in k of the subsets of V indexed
by elements of U and in R− k of the subsets of V indexed by elements of U c. Then

|E(U,U c)| ≥ k(R− k) ≥ R− 1.

It follows that
hG ≥

R− 1
1
2NR(R− 1)

=
2

NR
.

It follows from Theorem 18 that λ2(L) ≥ 2
N2R2 .

B Results for the Lower Bound

B.1 Some Helpful Results

In Lemma 19, we show how AP between subspaces U and V can be initialized to exactly achieve
the worst-case rate of convergence. Then in Corollary 20, we show that if subsets U ′ and V ′ look
like subspaces U and V near the origin, we can initialize AP between U ′ and V ′ to achieve the same
worst-case rate of convergence.
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Lemma 19. Let U and V be subspaces with U 6⊆ V and V 6⊆ U . Then there exists some nonzero
point u0 ∈ U ∩ (U ∩ V )⊥ such that when we initialize AP at u0, the resulting sequences {uk}k≥0

and {vk}k≥0 satisfy

‖uk‖ = cF (U, V )2k‖u0‖
‖vk‖ = cF (U, V )2k‖v0‖.

Proof. Find u∗ ∈ U ∩ (U ∩ V )⊥ and v∗ ∈ V ∩ (U ∩ V )⊥ with ‖u∗‖ = 1 and ‖v∗‖ = 1 such that
u>∗ v∗ = cF (U, V ), which we can do by compactness. By Lemma 17(a),

cF (U, V ) = v>∗ u∗ = v>∗ ΠV u∗ ≤ ‖ΠV u∗‖ ≤ cF (U, V ).

Set u0 = u∗ and generate the sequences {uk}k≥0 and {vk}k≥0 via AP. Since ‖ΠV u0‖ = cF (U, V ),
Lemma 17(c) implies that κ(u0) = (1 − cF (U, V )2)−1/2. Since κ attains its maximum at u0,
Lemma 3 implies that κ attains the same value at every element of the sequences {uk}k≥0 and
{vk}k≥0. Therefore, Lemma 17(c) implies that ‖ΠV uk‖ = cF (U, V )‖uk‖ and ‖ΠUvk‖ =
cF (U, V )‖vk‖ for all k. This proves the lemma.

Corollary 20. Let U and V be subspaces with U 6⊆ V and V 6⊆ U . Let U ′ ⊆ U and V ′ ⊆ V be
subsets such that U ′∩Bε(0) = U ∩Bε(0) and V ′∩Bε(0) = V ∩Bε(0) for some ε > 0. Then there
is a point u′0 ∈ U ′ such that the sequences {u′k}k≥0 and {v′k}k≥0 generated by AP between U ′ and
V ′ initialized at u′0 satisfy

‖u′k‖ = cF (U, V )2k‖u′0‖
‖v′k‖ = cF (U, V )2k‖v′0‖.

Proof. Use Lemma 19 to choose some nonzero u0 ∈ U ∩ (U ∩ V )⊥ satisfying this property. Then
set u′0 = ε

‖u0‖u0.

B.2 Proof of Lemma 13

Observe that we can write

aff(Blb) = {(s1,−s1, . . . , sN
2
,−sN

2
,−tN

2
, t1,−t1, . . . , tN

2
, 0, . . . , 0, . . . , 0, . . . , 0) | si, tj ∈ R}.

We can write aff(Blb) as the nullspace of the matrix

Tlb =


Tlb,1

Tlb,2
IN

. . .
IN

 ,

where theN×N identity matrix IN is repeatedR−2 times and where Tlb,1 and Tlb,2 are the N
2 ×N

matrices

Tlb,1 =
1√
2


1 1

1 1
. . .

1 1

 Tlb,2 =
1√
2


1 1

1 1
. . .

1 1

 .

Recall that we can write A as the nullspace of the matrix S defined in Equation (5). It follows from
Lemma 6 that cF (A, aff(Blb)) equals the largest singular value of ST>lb that is less than one. We
have

ST>lb = 1√
R

(
T>lb,1 T>lb,2 IN · · · IN

)
.

We can permute the columns of ST>lb without changing the singular values, so cF (A, aff(Blb))
equals the largest singular value of

1√
R

(
T>lb,0 IN · · · IN

)
,
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Figure 3: We run five trials of AP betweenA and Blb with random initializations, whereN = 10 and
R = 10. For each trial, we plot the ratios d(ak+1, E)/d(ak, E), where E = A ∩ Blb is the optimal
set. The red line shows the theoretical lower bound of 1− 1

R (1− cos( 2π
N )) on the worst-case rate of

convergence.

that is less than one, where Tlb,0 is the N ×N circulant matrix

Tlb,0 =
1√
2


1 1

1 1
. . .

1 1
1 1

 .

Therefore, cF (A, aff(Blb))2 equals the largest eigenvalue of

1
R

(
T>lb,0 IN · · · IN

) (
T>lb,0 IN · · · IN

)>
= 1

R

(
T>lb,0Tlb,0 + (R− 2)IN

)
that is less than one. Therefore, it suffices to examine the N ×N circulant matrix

T>lb,0Tlb,0 =
1

2


2 1 1
1 2

. . .
2 1

1 1 2

 .

The eigenvalues of T>lb,0Tlb,0 are given by λj = 1 + cos
(

2πj
N

)
for 0 ≤ j ≤ N − 1 (see Gray [18,

Section 3.1] for a derivation). Therefore,

cF (A, aff(Blb))2 = 1− 1
R (1− cos( 2π

N )).

B.3 Lower Bound Illustration

The proof of Theorem 14 shows that there is some a0 ∈ A such that when we initialize AP between
A and Blb at a0, we generate a sequence {ak}k≥0 satisfying

d(ak, E) = (1− 1
R (1− cos( 2π

N ))kd(a0, E),

where E = A ∩ Blb is the optimal set. In Figure 3, we plot the theoretical bound in red, and in
blue the successive ratios d(ak+1, E)/d(ak, E) for five runs of AP between A and Blb with random
initializations. Had we initialized AP at a0, the successive ratios would exactly equal 1 − 1

R (1 −
cos( 2π

N )). The plot of these ratios would coincide with the red line in Figure 3.
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Figure 3 illustrates that the empirical behavior of AP between A and Blb is often similar to the
worst-case behavior, even when the initialization is random. When we initialize AP randomly, the
successive ratios appear to increase to the lower bound and then remain constant. Figure 3 shows
the case N = 10 and R = 10, but the plot looks similar for other N and R.

We also note that the graph corresponding to our lower bound example actually achieves a Cheeger
constant similar to the one used in Lemma 10.

C Results for Convergence of the Primal and Discrete Problems

C.1 Proof of Proposition 15

First, suppose that s ∈ B(F ). Let A = {n ∈ V | sn ≥ 0} be the set of indices on which s is
nonnegative. Then we have

‖s‖ ≤ ‖s‖1 = 2s(A)− s(V ) ≤ 3Fmax. (11)

Recall that we defined Fmax = maxA |F (A)|. Now, we show that f(xk) + 1
2‖xk‖

2 converges to
f(x∗) + 1

2‖x∗‖
2 linearly with rate 1− 1

N2R2 . We will use Equation (11) to bound the norms of xk
and x∗, both of which lie in −B(F ). We will also use the fact that ‖xk − x∗‖ ≤ ‖Γ‖‖bk − b∗‖ ≤√
R‖bk − b∗‖. Finally, we will use the proof of Theorem 12 to bound ‖bk − b∗‖. First, we bound

the difference between the squared norms using convexity. We have

1
2‖xk‖

2 − 1
2‖x∗‖

2 ≤ x>k (xk − x∗)
≤ ‖xk‖‖xk − x∗‖
≤ 3Fmax

√
R‖bk − b∗‖

≤ 6Fmax

√
R‖b0 − b∗‖(1− 1

N2R2 )k. (12)

Next, we bound the difference in Lovász extensions. Choose s ∈ arg maxs∈B(F ) s
>xk. Then

f(xk)− f(x∗) ≤ s>(xk − x∗)
≤ ‖s‖‖xk − x∗‖
≤ 3Fmax

√
R‖bk − b∗‖

≤ 6Fmax

√
R‖b0 − b∗‖(1− 1

N2R2 )k. (13)

Combining the bounds (12) and (13), we find that

(f(xk) + 1
2‖xk‖

2)− (f(x∗) + 1
2‖x∗‖

2) ≤ 12Fmax

√
R‖b0 − b∗‖(1− 1

N2R2 )k. (14)

C.2 Proof of Theorem 16

We will make use of the following result, shown in [2, Proposition 10.5] and stated below for con-
venience.

Proposition 21. Let (w, s) ∈ RN ×B(F ) be a pair of primal-dual candidates for the minimization
of 1

2‖w‖
2 + f(w), with duality gap ε = 1

2‖w‖
2 + f(w) + 1

2‖s‖
2. Then if A is the suplevel set of w

with smallest value of F , then

F (A)− s−(V ) ≤
√
Nε/2.

Using this result in our setting, recall that by definitionAk is the set of the form {n ∈ V | (xk)n ≥ c}
for some constant c with smallest value of F ({n ∈ V | (xk)n ≥ c}).

Let (w∗, s∗) ∈ RN ×B(F ) be a primal-dual optimal pair for the left-hand version of Problem (P3).
The dual of this minimization problem is the projection problem mins∈B(F )

1
2‖s‖

2. From [2, Propo-
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sition 10.5], we see that

F (Ak)− F (A∗) ≤ F (Ak)− (s∗)−(V )

≤
√

N
2 ((f(xk) + 1

2‖xk‖2)− (f(x∗) + 1
2‖x∗‖2))

≤
√

6FmaxNR1/2‖b0 − b∗‖ (1− 1
N2R2 )k/2

≤
√

6FmaxNR1/2‖b0 − b∗‖(1− 1
2N2R2 )k,

where the third inequality uses the proof of Proposition 15. The second inequality relies on Bach [2,
Proposition 10.5], which states that a duality gap of ε for the left-hand version of Problem (P3) turns
into a duality gap of

√
Nε/2 for the original discrete problem. If our algorithm converged with

rate 1
k , this would translate to a rate of 1√

k
for the discrete problem. But fortunately, our algorithm

converges linearly, and taking a square root preserves linear convergence.

C.3 Running times

Theorem 16 implies that the number of iterations required for an accuracy of ε is at most

2N2R2 log

(√
6FmaxNR1/2‖b0 − b∗‖

ε

)
. (15)

Each iteration involves minimizing each of the Fr separately. For comparison, the number of itera-
tions required in Stobbe and Krause [35] is

24
√
NR

Fmax

ε
.

The dependence of this algorithm on N and R is better, but its dependence on Fmax/ε is worse. For
example, to obtain the exact discrete solution, we need ε < minS,T |F (S)− F (T )|. This is one for
integer-valued functions (in which case the lower rate may be desirable), but can otherwise become
very small. The constant Fmax can be of order O(N) in general (or even larger if the function
becomes very negative). For empirical comparisons, we refer the reader to [25].

The running times of the combinatorial algorithm by Kolmogorov [29] apply to integer-valued func-
tions (as opposed to the generic ones above) and range from O((N + R)2 logFmax) for cuts to
O((N + Q2R)(N + Q2R + QRτ2) logFmax), where Q ≤ N is the maximal cardinality of the
support of any Fr, and τ2 is the time required to minimize a simple function. This is better than (15)
if Q is a small constant, and worse as Q gets closer to N .

For comparison, if not exploiting decomposition, one may use combinatorial algorithms, the Frank-
Wolfe algorithm (conditional gradient descent), or a subgradient method. The combinatorial algo-
rithm by Orlin [34] has a running time of O(N5τ1 + N6), and the algorithm by Iwata [23] (for
integer-valued functions) has a running time of O((N4τ1 +N5) logFmax), where τ1 is the time re-
quired to evaluate F . For an accuracy of ε in the discrete objective, Frank-Wolfe will take 64N Fmax

ε2

iterations, each taking time O(N logN). The subgradient method behaves similarly.
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