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Abstract

Electroencephalography (EEG) recordings of rhythm perception might contain enough
information to distinguish different rhythm types/genres or even identify the rhythms
themselves. We apply convolutional neural networks (CNNs) to analyze and classify
EEG data recorded within a rhythm perception study in Kigali, Rwanda which comprises
12 East African and 12 Western rhythmic stimuli – each presented in a loop for 32
seconds to 13 participants. We investigate the impact of the data representation and
the pre-processing steps for this classification tasks and compare different network
structures. Using CNNs, we are able to recognize individual rhythms from the EEG
with a mean classification accuracy of 24.4% (chance level 4.17%) over all subjects by
looking at less than three seconds from a single channel. Aggregating predictions for
multiple channels, a mean accuracy of up to 50% can be achieved for individual subjects.

1 Introduction

Musical rhythm occurs in all human societies and is related to many phenomena, such as the perception of a
regular emphasis (i.e., beat), and the impulse to move one’s body. It is a universal human phenomenon, but
differs between human cultures. The influence of culture on the processing of rhythm in the brain as well
as the brain mechanisms underlying musical rhythm are still not fully understood. In order to study these,
we recruited participants in East Africa and North America to test their ability to perceive and produce
rhythms derived from East African and Western music. Besides several behavioral tasks, which have
already been discussed in [1], the East African participants also underwent electroencephalography (EEG)
recording while listening to East African and Western musical rhythms thus enabling us to study the neural
mechanisms underlying rhythm perception.

Using two popular deep learning techniques – stacked denoising autoencoders (SDAs) [2] and convolutional
neural networks (CNNs) [3] – we already obtained encouraging early results for distinguishing East
African and Western stimuli in a binary classification task based on the recorded EEG [4]. In this paper, we
address the much harder classification problem of recognizing the 24 individual rhythms. In the following,
we will review related work in Section 2, describe the data acquisition and pre-processing in Section 3,
present our experimental findings in Section 4, and discuss further steps in Section 5.

2 Related work

How the brain responses to auditory rhythms has already been investigated in several studies using EEG
and magnoencephalography (MEG): Oscillatory neural activity in the gamma (20-60 Hz) frequency band
is sensitive to accented tones in a rhythmic sequence and anticipates isochronous tones [5]. Oscillations
in the beta (20-30 Hz) band increase in anticipation of strong tones in a non-isochronous sequence [6, 7, 8].
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Another approach has measured the magnitude of steady state evoked potentials (SSEPs) (reflecting neural
oscillations entrained to the stimulus) while listening to rhythmic sequences [9, 10]. Here, enhancement
of SSEPs was found for frequencies related to the metrical structure of the rhythm (e.g., the frequency
of the beat). In contrast to these studies investigating the oscillatory activity in the brain, other studies
have used EEG to investigate event-related potentials (ERPs) in responses to tones occurring in rhythmic
sequences. This approach has been used to show distinct sensitivity to perturbations of the rhythmic pattern
vs. the metrical structure in rhythmic sequences [11], and to suggest that similar responses persist even
when attention is diverted away from the rhythmic stimulus [12]. Further, Will and Berg [13] observed
a significant increase in brain wave synchronization after periodic auditory stimulation with drum sounds
and clicks with repetition rates of 1–8Hz. Vlek et al. [14] already showed that imagined auditory accents
can be recognized from EEG. They asked ten subjects to listen to and later imagine three simple metric
patterns of two, three and four beats on top of a steady metronome click. Using logistic regression to
classify accented versus unaccented beats, they obtained an average single-trial accuracy of 70% for
perception and 61% for imagery. These results are very encouraging to further investigate the possibilities
for retrieving information about the perceived rhythm from EEG recordings.

Very recently, the potential of deep learning techniques for neuroimaging has been demonstrated for
functional and structural magnetic resonance imaging (MRI) data [15]. However, applications of deep
learning techniques within neuroscience and specifically for processing EEG recordings have been very
limited so far. Wulsin et al. [16] used deep belief nets (DBNs) to detect anomalies related to epilepsy
in EEG recordings of 11 subjects by classifying individual “channel-seconds”, i.e., one-second chunks
from a single EEG channel without further information from other channels or about prior values. Their
classifier was first pre-trained layer by layer as an autoencoder on unlabelled data, followed by a supervised
fine-tuning with backpropagation on a much smaller labeled data set. They found that working on raw,
unprocessed data (sampled at 256Hz) led to a classification accuracy comparable to hand-crafted features.
Langkvist et al. [17] similarly employed DBNs combined with hidden Markov models (HMMs) to classify
different sleep stages. Their data for 25 subjects comprised EEG as well as recordings of eye movements
and skeletal muscle activity. Again, the data was segmented into one-second chunks. Here, a DBN on
raw data showed a classification accuracy close to one using 28 selected features.

3 Data acquisition & pre-processing

3.1 Stimuli

The African rhythm stimuli were derived from recordings of traditional East African music [18]. The
author (DC) composed the Western rhythmic stimuli. Rhythms were presented as sequences of sine
tones that were 100ms in duration with intensity ramped up/down over the first/final 50ms and a pitch
of either 375 or 500 Hz. All rhythms had a temporal structure of 12 equal units, in which each unit could
contain a sound or not. For each rhythmic stimulus, two individual rhythmic sequences were overlaid
whereby one sequence was played at the high pitch and the other at the low pitch. There were two groups
of three individual rhythmic sequences for each cultural type of rhythm as shown in Table 1. With three
combinations within each group and two possible pitch assignments, this resulted in six rhythmic stimuli
for each group, 12 per rhythm type and 24 in total.1 Finally, rhythmic stimuli could be played back at
one of two tempi, having a minimum inter-onset interval of either 180 or 240ms.

Furthermore, we also formed groups based on how these stimuli were created. These allowed a more coarse
classification with fewer classes. Ignoring the pitch assignments and thus considering the pairs [a,b] and [b,a]
as equivalent, 12 groups were formed. At the next level, the stimuli derived from the same of the four groups
of three sequences were grouped resulting in four groups of six stimuli. Finally, distinguishing East African
from Western stimuli resulted in the binary classification problem that we addressed in our earlier work.

3.2 Study description

Sixteen East African participants were recruited in Kigali, Rwanda (3 female, mean age: 23 years, mean
musical training: 3.4 years, mean dance training: 2.5 years). The participants first completed three
behavioral tasks: a rhythm discrimination task, a rhythm reproduction task, and a beat tapping task.
Afterward, thirteen subjects also participated in the EEG portion of the study. All participants were over

1The 24 rhythm stimuli are available at http://dx.doi.org/10.6084/m9.figshare.1213903
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Table 1: Rhythmic sequences in groups of three that pairings were based on. All ‘x’s denote onsets. Larger,
bold ‘X’s denote the beginning of a 12 unit cycle (downbeat).

Western Rhythms East African Rhythms

1 X x x x x x x x X x x x x x x x 1 X x x x x x x x x x X x x x x x x x x x
2 X x x x x x X x x x x x 2 X x x x x x X x x x
3 X x x x x x x x x X x x x x x x x x 3 X x x x X x x x

4 X x x x x x x X x x x x x x 4 X x x x x x x x x X x x x x x x x x
5 X x x x x x x X x x x x x x 5 X x x x x x x x X x x x x x x x
6 X x x x x x x x x X x x x x x x x x 6 X x x x x x x X x x x x x x

the age of 18, had normal hearing, and had spent the majority of their lives in East Africa. They all gave
informed consent prior to participating and were compensated for their participation, as per approval by
the ethics boards at the Centre Hospitalier Universitaire de Kigali and the University of Western Ontario.
The participants were instructed to sit with eyes closed and without moving for the duration of the EEG
recording, and to maintain their attention on the auditory stimuli. All rhythms were repeated for 32 seconds,
presented in counterbalanced blocks (all East African rhythms then all Western rhythms, or vice versa),
and with randomized order within blocks. 12 rhythms of each type were presented – all at the same tempo,
and each rhythm was preceded by 4 seconds of silence. EEG was recorded via a portable Grass EEG
system using 14 channels at a sampling rate of 400Hz and impedances were kept below 10kΩ.

3.3 Data pre-processing

EEG recordings are usually very noisy. They contain artifacts caused by muscle activity such as eye blinking
as well as possible drifts in the impedance of the individual electrodes over the course of a recording. Fur-
thermore, the recording equipment is very sensitive and easily picks up interferences from the surroundings.
For instance, in this experiment, the power supply dominated the frequency band around 50Hz. All these
issues have led to the common practice to invest a lot of effort into pre-processing EEG data, often even man-
ually rejecting single frames or channels. In contrast to this, we decided to put only little manual work into
cleaning the data and just removed obviously bad channels, thus leaving the main work to the deep learning
techniques. After bad channel removal, 12 channels remained for subjects 1–5 and 13 for subjects 6–13.

We followed the common practice in machine learning to partition the data into training, validation (or
model selection) and test sets. To this end, we split each 32s-long trial recording into three non-overlapping
pieces. The first T seconds after an optional offset were used for the validation set. The rationale behind
this was that we expected that the participants would need a few seconds in the beginning of each trial to
get used to the new rhythm. Thus, the data would be less suited for training but might still be good enough
to estimate the model accuracy on unseen data. The main part of each recording was used for training
and the remaining T seconds for testing. The time length T was tempo-dependent and corresponded to
the length of a single bar in the stimuli. Naturally, one would prefer segments that are as long as the 2-bar
stimuli. However, this would have reduced the amount of data left for training significantly and since only
the East African rhythm sequences 2 and 3 had differences between the first and second bar (cf. Table 1),
we only used 1 bar. With the optional offset, the data sets were aligned to start at the same position within
a bar.2 The specific values for the two tempi are listed in Table 2. Furthermore, we decided to process and
classify each EEG channel individually. Combining all 12 or 13 EEG channels in the analysis might allow
to detect spatial patterns and most likely lead to an increase of the classification performance. However,
this would increase the model complexity (number of parameters) by a factor of more than ten while at the
same time reducing the number of training and test examples by the same factor. Under these conditions,
the amount of data would not be sufficient to effectively train the CNN and lead to severe overfitting.

The data was finally converted into the input format required by the CNN to be learned.3 If the network
just took the raw EEG data, each waveform was normalized to a maximum amplitude of 1 and then split
into equally sized frames of length T matching the size of the network’s input layer. No windowing

2With offset, the validation and test set would correspond to the same section of the stimuli for the fast tempo
whereas for the fast tempo, it would differ by 1 bar because of the odd number of bars in between.

3Most of the processing was implemented through the librosa library available at https://github.com/
bmcfee/librosa/.
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Table 2: Differences between slow and fast stimuli.
tempo participants beat length bar length T bars optional offset training segment length

fast 1–3, 7–9 180ms 2160ms 14.815 1760ms 27680ms - offset
slow 4–6, 10–13 240ms 2880ms 11.111 320ms 26240ms - offset

function was applied and the hop size (controlling the overlap of consecutive windows) was either 24,
which corresponded to 60ms at the sampling rate of 400Hz, or the equivalent of T in samples. If the
network was designed to process the frequency spectrum, the processing involved:

1. computing the short-time Fourier transform (STFT) with given window length of 96 samples
and a hop size of 24 (This resulted in a new frequency spectrum vector every 60ms.),

2. computing the log amplitude,
3. scaling linearly to a maximum of 1 (per sequence),
4. (optionally) cutting of all frequency bins above the number requested by the network,
5. splitting the data into frames of length T (matching the network’s input dimensionality) with

a given hop size of 1 (60ms) or the equivalent of T .
Hops of 60ms were chosen as this equals to one fourth or one third of the beat length in the slow and
fast rhythms respectively. With this choice, we hoped to be able to pick up beat-related effects but also
to have a window size big enough for a sufficient frequency resolution in the spectrum. Including the
zero-frequency band, this resulted in 49 frequency bins up to 200Hz with a resolution of 4.17Hz. Using
the log amplitude in combination with the normalization had turned out to be the best approach in our
previous experiments trying to distinguish East African from Western stimuli [4].

4 Experiments

CNNs, as for instance described in [3], have a variety of structural parameters which need to be chosen
carefully. In general, CNNs are artificial neural networks (ANNs) with one or more convolutional layers.
In such layers, linear convolution operations are applied for local segments of the input followed by a non-
linear transformation and a pooling operation over neighboring segments. If the EEG data is represented as
waveform, the input has only one dimension (width) which corresponds to the time. If it is represented as
frequency spectrum, it has a second dimension (height) which corresponds to the frequency. The kernel for
each convolution operation is described by a weight matrix of a certain shape. Here, we only considered
the kernel width as free parameter and kept the height maximal. Multiple kernels can be applied in parallel
within the same layer whereby each corresponds to a different output channel of the layer. The stride param-
eter controls how much the kernels should advance on the input data between successive applications. Here,
we fixed this parameter at 1 resulting in a maximal overlap of consecutive input segments. Finally, the pool-
ing parameter controls how many values of neighboring segments are aggregated using the max operation.

Like in our previous work, we used a DLSVM output layer as proposed in [19].4 This special kind of
output layer for classification uses the hinge loss as cost function and replaces the commonly applied
softmax. The convolutional layers applied the rectifier non-linearity f(x) =max(0,x) which does not
saturate like sigmoid functions and thus facilitates faster learning as proposed in [20]. The input length
in the time dimension was adapted to match the bar length T . All models were trained for 50 epochs using
stochastic gradient descent (SGD) (on mini-batches of size 100) with exponential decay of the learning
rate after each epoch and momentum. The best model was selected based on the accuracy on the validation
set. Furthermore, we applied dropout regularization [21]. In total, this resulted in four learning parameters
with value ranges derived from earlier experiments:

• the initial learning rate (between 0.001 and 0.01),
• the exponential learning rate decay per epoch (between 1.0 and 1.1),
• the initial momentum (between 0.0 and 0.5), and
• and the final momentum in the last epoch (between 0.0 and 0.99)

and three structural parameters for each convolutional layer
• the kernel width (between 1 and the input width for the layer),
• the number of channels (between 1 and 30), and

4We used the experimental implementation for pylearn2 provided by Kyle Kastner at https:
//github.com/kastnerkyle/pylearn2/blob/svm_layer/pylearn2/models/mlp.py
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• the pooling width (between 1 and 10).

In our previous work, we successfully applied CNNs with two convolutional layers to classify the perceived
rhythms into types (East African vs. Western) as well as to identify individual rhythms in a pilot experiment
[4]. However, we were only able to test a small number of manually tuned structural configurations,
leaving a considerable potential for further improvement. Here, we took a systematic approach for finding
good structural and learning parameters for the CNNs. To this end, we applied a Bayesian optimization
technique for hyper-parameter selection in machine learning algorithms, which has recently been described
by Snoek et al. [22] and has been implemented in Spearmint library.5 The basic idea is to treat the learning
algorithm’s generalization performance as a sample from a Gaussian process and select the next parameter
configuration to test based on the expected improvement. The authors showed that this way, the number
of experiment runs to minimize a given objective can be significantly reduced while surpassing the
performance of parameters chosen by human experts. We implemented6 our experiments using Theano
[23] and pylearn2 [24]. The computations were run on a dedicated 12-core workstation with two Nvidia
graphics cards – a Tesla C2075 and a Quadro 2000.

We followed the common practice to optimize the performance on the validation set. Because the 24
classes we would like to predict were perfectly balanced, we chose the accuracy, i.e., the percentage of
correctly classified instances, as primary evaluation measure.7 Furthermore, ranking the 24 classes by their
corresponding network output values, we also computed the precision at rank 3 (prec.@3) and the mean
reciprocal rank (MRR) – two commonly used information retrieval measures. The former corresponds to ac-
curacy considering the top three classes in the ranking instead of just the first one. The latter is computed as:

MRR=
1

|D|

|D|∑
i=1

1

ranki
(1)

where D is the set of test instances and ranki is the rank of the correct class for instance i. The value
range is (0,1] where the best value, 1, is obtained if the correct class is always ranked first.

4.1 Impact of pre-processing (subject 4)

At first, we analyzed the impact of the pre-processing on the performance of a model with a single
convolutional layer. For this, we only considered the recordings from subject 4 who were easiest to classify
in our earlier experiments. The exponential learning rate decay was fixed at 1.08 leaving three structural
and three learning parameters for the Bayesian optimization. Results are shown in Figure 1 (left).

Generally, CNNs using the frequency spectrum representation were faster. A possible reason could be
that the graphics cards performed better using two-dimensional kernels instead of long one-dimensional
ones. Furthermore, the search for good parameters was much harder for the waveform representation
because the value range for the kernel width was much wider ([1,1152] instead of [1,45]). Thus, the search
took much longer. For instance, using the large hop size, an accuracy of more than 20% was only achieved
after 208 runs for CNNs using waveform input with offset and after 47 runs without offset. Comparable
values were already obtained after 1 and 2 runs respectively for the CNNs with frequency spectrum input
and the values shown in Figure 1 (left) were obtained after 45 and 105 runs respectively. Consequently,
the frequency spectrum appeared to be the clearly preferable choice for the input representation.

With the small hop size of 60ms, a lot more training instances were generated because of the high overlap.
This slowed down learning by a factor of more than 10. Hence, fewer configurations could be tested within
the same time. Overall, the large hop size corresponding to 1 bar was favorable because of the significant
speed-up without an impact on accuracy. By using the offset in combination with the hop size of 1 bar,
all instances for training, validation and testing were aligned to the same position within a bar. This could
explain the increase in accuracy for this parameter combination together with the spectrum representation.
In combination with the waveform input, the inverse effect was observed. However, as it was generally
harder to find good solutions in this setting, it could be that testing more configurations eventually would
lead to the same result as for the spectrum.

5https://github.com/JasperSnoek/spearmint
6The code to run the experiments is available as supplementary material at http://dx.doi.org/10.6084/

m9.figshare.1213903
7As the Bayesian optimization aims to minimize an objective, we let our learner report the misclassification rate

instead which is one minus the accuracy.
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Figure 1: Impact of pre-processing. Left: Classification accuracy and average epoch processing time for
different combinations of the pre-processing parameters. CNN structural and learning parameters were
obtained through Bayesian optimization for 300 runs for hop size 1 bar and 60 runs for hop size 60ms.
Processing times for CNNs were measured separately as single process using the Tesla C2075 graphics
card and averaged over 50 epochs. For comparison, SVM classification accuracies were obtained using
LIBSVM with polynomial kernel (degree 1–5). (Only the best values are shown.) Right: Impact of the
optional frequency bin cutoff on the accuracy.

For a comparison, we also trained support vector machine (SVM) classifiers using LIBSVM [25] on the
same pre-processed data. Here, training did not finish within 48 hours for the small hop size because of the
amount of training data. For waveform data, a polynomial kernel with degree 2 worked best, whereas for the
frequency spectrum, it was a polynomial kernel with degree 4. All values were significantly (more than 10%
absolute) below those obtained with a CNN. This shows using CNNs leads to a substantial improvement.

Next, we analyzed the impact of the optional frequency bin cutoff. To this end, we used the best
pre-processing parameter combination from the above comparison. This time, we fixed the momentum
parameters to an initial value of 0.5 and a final value of 0.99 as these clearly dominated within the best
configurations found so far. Instead, we did not fix the exponential learning rate decay. This resulted in
5 parameters to be optimized. We sampled the number of frequency bins from the range of [1,49] with
higher density for lower values and let the Bayesian optimization run 300 experiments for each value.
Results are shown in Figure 1 (right). A very significant accuracy increase can be observed between
12 and 15 bins which corresponds to a frequency band of 45.8–62.5 Hz in the high gamma range which
has been associated with beat perception, e.g., in [5]. The accuracy increase between 28 and 36 bins
(116–145 Hz) is hard to explain as EEG frequency ranges beyond 100 Hz have barely been studied so
far. Here, a further investigation of the learned patterns (reflected in the CNN kernels) could lead to more
insight. This analysis is still subject of ongoing research. The effect on the processing time was negligible.

Based on these findings, we chose the following pre-processing parameters for the remaining experiments:
The EEG data was represented as frequency spectrum using 49 bins. Input frames were obtained with a
hop size corresponding to the length of 1 bar, T , and with a offset to align all instances to the same position
within a bar.

4.2 One vs. two convolutional layers (all subjects)

Having determined the optimal pre-processing parameters for subject 4 and CNNs with a single
convolutional layer, we also used these settings to train individual models with one and two convolutional
layers for all subjects. This time, we allowed 500 runs of the Bayesian optimization to find the best
parameters in each setting. Additionally, we considered three groups of subjects. The ’fast’ and ’slow’
group contained all subjects with the respective stimulus tempo (cf. Table 2) whereas the ’all’ group
contained all 13 subjects. For the groups, we stopped the Bayesian optimization after 100 runs as there was
no more improvement and the processing time was much longer due to the bigger size of the combined
data sets. Results are shown in Table 3. Apart from the performance values for classifying individual
instances that correspond a segment from an EEG channel, we also aggregated all predictions from the
12 or 13 different channels of the same trial into one prediction by a simple majority vote. The obtained
accuracies are listed in Table 3 (right). Additionally, we computed the accuracies for the more coarse
variants of the classification problem with fewer classes (cf. Section 3.1).
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Table 3: Structural parameters and performance values of the best CNNs with one or two convolutional
layers after Bayesian parameter optimization for each subject (500 runs) and the three subject groups (100
runs). Layer structure is written as [kernel shape] / pooling width x number of channels. (A more detailed
table can be found in the supplementary material.)

network structure channel mean (24 classes) aggregated trial accuracy
subject input 1st layer 2nd layer accuracy prec.@3 MRR 24 classes 12 classes 4 classes 2 classes

1 33x49 [5x49]/3x16 [16x1]/5x12 19.1% 36.1% 0.34 25.0% 29.2% 58.3% 79.2%
2 33x49 [10x49]/1x22 27.1% 46.5% 0.42 37.5% 37.5% 50.0% 87.5%
3 33x49 [17x49]/1x30 21.9% 38.2% 0.36 20.8% 25.0% 45.8% 66.7%
4 45x49 [35x49]/1x30 36.1% 63.5% 0.55 50.0% 62.5% 75.0% 83.3%
5 45x49 [40x49]/2x30 18.1% 34.7% 0.33 16.7% 25.0% 41.7% 70.8%
6 45x49 [26x49]/5x30 [1x1]/10x30 29.5% 48.1% 0.45 37.5% 41.7% 54.2% 75.0%
7 33x49 [15x49]/1x13 23.1% 43.9% 0.40 33.3% 45.8% 54.2% 66.7%
8 33x49 [5x49]/2x21 [2x1]/2x24 24.0% 44.2% 0.41 41.7% 41.7% 58.3% 91.7%
9 33x49 [13x49]/2x21 [6x1]/4x30 21.8% 33.7% 0.36 25.0% 29.2% 58.3% 91.7%
10 45x49 [7x49]/1x30 26.6% 51.0% 0.44 33.3% 33.3% 45.8% 66.7%
11 45x49 [27x49]/1x30 26.6% 55.1% 0.45 33.3% 37.5% 41.7% 75.0%
12 45x49 [5x49]/5x30 [5x1]/10x30 32.1% 60.9% 0.51 29.2% 33.3% 54.2% 83.3%
13 45x49 [18x49]/10x21 [1x1]/6x30 20.2% 37.2% 0.36 25.0% 29.2% 50.0% 70.8%

mean (1 convolutional layer) 24.4% 46.4% 0.41 30.8% 36.5% 51.6% 74.7%
mean (2 convolutional layers) 24.4% 44.2% 0.40 29.5% 34.0% 52.2% 77.2%

fast 33x49 [8x49]/1x22 9.7% 22.1% 0.23 10.4% 16.7% 35.4% 66.7%
33x49 [1x49]/1x30 [17x1]/1x30 9.5% 21.6% 0.23 11.8% 19.4% 38.9% 67.4%

slow 45x49 [31x49]/1x30 9.9% 22.9% 0.24 10.7% 13.7% 32.7% 56.5%
45x49 [1x49]/10x23 [12x1]/5x27 9.1% 24.3% 0.24 10.1% 13.1% 31.5% 58.9%

all 33x49 [1x49]/1x30 7.3% 19.0% 0.21 7.7% 12.2% 29.2% 57.1%
33x49 [3x49]/9x22 [5x1]/5x18 7.2% 18.4% 0.20 8.7% 12.5% 31.4% 55.4%

As expected, models learned for groups of participants did not perform very well. Furthermore, the
classification accuracy varied a lot between subjects with the best accuracy (36.1% for subject 4) twice
as high as the worst (18.1% for subject 5). This was most likely due to strong individual differences in
the rhythm perception. But it might at least have been partly caused by the varying quality of the EEG
recordings. For instance, the signal was much noisier than usual for subject 5. For most subjects, the
aggregation per trial significantly increased the classification accuracy. Only in cases where the accuracy
for individual channels was low, such as for subject 5, the aggregation did not yield an improvement.

Overall, the performance of the simpler models with a single convolutional layer was on par with the
more complex ones – and often even better. One possible reason for this could be that the models with
two convolutional layers had twice as many structural parameters and thus it was potentially harder to
find good configurations. Furthermore, with more weights to be learned and thus more degrees of freedom
to adapt, they were more prone to overfitting on this rather small data set. Figure 2 (left) visualizes the
confusion between the different rhythms for subject 4 where the best overall accuracy was achieved.8
Remarkably, only few of the East African rhythms were misclassified as Western (upper right quadrant)
and vice versa (lower left). For the East African music, confusion was mostly amongst neighbors (i.e.,
similar rhythms; upper left quadrant) – especially rhythms based on sequences 2 and 3 that were the only
ones that cannot be captured correctly in a window of 1 bar – whereas for the Western rhythms, there
were patterns indicating a strong perceived similarity between rhythm sequences 1 and 4. The accuracies
obtained for the classification tasks with fewer classes (cf. Table 3, right) paint a similar picture indicating
strong stimulus similarity as the main reason for confusion. In the mean confusion matrix, this effect is far
less pronounced. However, it can be observed in most of the confusion matrices for the individual subjects.

The results reported here still need to be taken with a grain of salt. Because of the study design, there is
only one trial session (of 32 seconds) per stimulus for each subject. Thus, there is the chance that the neural
networks learned to identify the individual trials and not the stimuli based on artifacts in the recordings that
only occurred sporadically throughout the experiment. Or there could have been brain processes unrelated

8The respective confusion matrices for the models with two convolutional layers look very similar. They can be
found in the supplementary material together with the matrices for the other participants.
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Figure 2: Confusion matrices for the CNN with a single convolutional layer for subject 4. Labels contain
the ids of the high-pitched and low-pitch rhythm sequence (c.f. Table 1) and the rhythm type (’a’ for
African, ’w’ for Western). Left: Labels arranged such that most similar rhythms are close together. Right:
Labels in the order of the trials for this subject. More plots are provided in the supplementary material.

to rhythm perception that were only present during some of the trials. Re-arranging the labels within the con-
fusion matrix such that they correspond to the order of the stimuli presentation (Figure 2, right) shows some
confusion between successive trials (blocks along the diagonal) which supports this hypothesis. Repeating
the experiment with multiple trials per stimulus for each subject should give more insights into this matter.

5 Conclusions

Distinguishing the rhythm stimuli used in this study is not easy as a listener. They are all presented in
the same tempo and comprise two 12/8 bars. Consequently, none of the participants scored more than
83% in the behavioral rhythm discrimination test. Considering this and the rather sub-par data quality of
the EEG recordings, the accuracies obtained for some of the participants are remarkable. They demonstrate
that perceived rhythms may be identified from EEG recorded during their auditory presentation using
convolutional neural networks that look only at a short segment of the signal from a single EEG channel
(corresponding to the length of a single bar of a two-bar stimulus).

We hope that our finding will encourage the application of deep learning techniques for EEG analysis
and stimulate more research in this direction. As a next step, we want to analyze the learned models
as they might provide some insight into the important underlying patterns within the EEG signals and
their corresponding neural processes. However, this is largely still an open problem. (As a first attempt,
visualizations of the kernel weight matrices and of input patterns producing the highest activations can
be found in the supplementary material.) We are also looking to correlate the classification performance
values with the subjects’ scores in the behavioral part of the study.

The study is currently being repeated with North America participants and we are curious to see whether
we can replicate our findings. In particular, we hope to further improve the classification accuracy through
higher data quality of the new EEG recordings. Furthermore, we want to conduct a behavioral study to
obtain information about the perceived similarity between the stimuli. Finally, encouraged by our results,
we want to extend our focus by also considering more complex and richer stimuli such as audio recordings
of rhythms with realistic instrumentation instead of artificial sine tones.
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