
A Discussion on implementation issues

A.1 A faster implementation for NSN

At each step of NSN, the algorithm computes the projections of all points onto a subspace and
find one with the largest norm. A naive implementation of the algorithm requires O(pK2N2

) time
complexity.

In fact, we can reduce the complexity to O(pKN2

). Instead of finding the maximum norm of the
projections, we can find the maximum squared norm of the projections. Let Uk be the subspace U
at step k. For any data point y, we have

kProjU
k

yk2
2

= kProjU
k�1

yk2
2

+ |u>
k y|2

where uk is the new orthogonal axis added from Uk�1

to make Uk. That is, Uk�1

? uk and
Uk = Uk�1

L

uk. As kProjU
k�1

yk2
2

is already computed in the (k � 1)’th step, we do not need to
compute it again at step k. Based on this fact, we have a faster implementation as described in the
following. Note that Pj at the kth step is equal to kProjU

k

yjk2
2

in the original NSN algorithm.

Algorithm 3 Fast Nearest Subspace Neighbor (F-NSN)

Input: A set of N samples Y = {y
1

, . . . , yN}, The number of required neighbors K, Maximum
subspace dimension kmax.

Output: A neighborhood matrix W 2 {0, 1}N⇥N

yi  yi/kyik2, 8i 2 [N ]

for i = 1, . . . , N do
Ii  {i}, u

1

 yi
Pj  0, 8j 2 [N ]

for k = 1, . . . ,K do
if k  kmax then

Pj  Pj + ku>
k yjk2, 8j 2 [N ]

end if
j⇤  argmaxj2[N ],j /2I

i

Pj

Ii  Ii [ {j⇤}
if k < kmax then

uk+1

 y
j

⇤�
P

k

l=1

(u>
l

y
j

⇤ )u
l

ky
j

⇤�
P

k

l=1

(u>
l

y
j

⇤ )u
l

k
2

end if
end for
Wij  Ij2I

i

or P
j

=1

, 8j 2 [N ]

end for

A.2 Estimation of the number of clusters

When L is unknown, it can be estimated at the clustering step. For Spectral clustering, a well-known
approach to estimate L is to find a knee point in the singular values of the neighborhood matrix. It
is the point where the difference between two consecutive singular values are the largest. For GSR,
we do not need to estimate the number of clusters a priori. Once the algorithms finishes, the number
of the resulting groups will be our estimate of L.

A.3 Parameter setting

The choices of K and k
max

depend on the dimension of the subspaces d. If data points are lying
exactly on the model subspaces, K = k

max

= d is enough for GSR to recover a subspace. In
practical situations where the points are near the subspaces, it is better to set K to be larger than d.
k
max

can also be larger than d because the k
max

� d additional dimensions, which may be induced
from the noise, do no intersect with the other subspaces in practice. For Extended Yale B dataset
and Hopkins155 dataset, we found that NSN+Spectral performs well if K is set to be around 2d.
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B Proofs

B.1 Proof outline

We describe the first few high-level steps in the proofs of our main theorems. Exact clustering of
our algorithms depends on whether NSN can find all correct neighbors for the data points so that
the following algorithm (GSR or Spectral clustering) can cluster the points exactly. For NSN+GSR,
exact clustering is guaranteed when there is a point on each subspace that have all correct neighbors
which are at least d� 1. For NSN+Spectral, exact clustering is guaranteed when each data point has
only the n � 1 other points on the same subspace as neighbors. In the following, we explain why
these are true.

Step 1-1: Exact clustering condition for GSR

The two statistical models have a property that for any d-dimensional subspace in Rp other than the
true subspaces D

1

, . . . ,DL the probability of any points lying on the subspace is zero. Hence, we
claim the following.

Fact 3 (Best d-dimensional fit) With probability one, the true subspaces D
1

, . . . ,DL are the L sub-
spaces containing the most points among the set of all possible d-dimensional subspaces.

Then it suffices for each subspace to have one point whose neighbors are d� 1 all correct points on
the same subspace. This is because the subspace spanned by those d points is almost surely identical
to the true subspace they are lying on, and that subspace will be picked by GSR.

Fact 4 If NSN with K � d � 1 finds all correct neighbors for at least one point on each subspace,
GSR recovers all the true subspaces and clusters the data points exactly with probability one.

In the following steps, we consider one data point for each subspace. We show that NSN with
K = kmax = d finds all correct neighbors for the point with probability at least 1� 3�

1�� . Then the
union bound and Fact 4 establish exact clustering with probability at least 1� 3L�

1�� .

Step 1-2: Exact clustering condition for spectral clustering

It is difficult to analyze spectral clustering for the resulting neighborhood matrix of NSN. A trivial
case for a neighborhood matrix to result in exact clustering is when the points on the same subspace
form a single fully connected component. If NSN with K = kmax = d finds all correct neighbors
for every data point, the subspace U at the last step (k = K) is almost surely identical to the true
subspace that the points lie on. Hence, the resulting neighborhood matrix W form L fully connected
components each of which contains all of the points on the same subspace.

In the rest of the proof, we show that if (1) holds, NSN finds all correct neighbors for a fixed point
with probability 1� 3�

1�� . Let us assume that this is true. If (1) with C
1

and C
2

replaced by C
1

4

and
C

2

2

holds, we have

n > C
1

d

✓

log

ne

d(�/n)

◆

2

,
d

p
<

C
2

log n

log(ndL(�/n)�1

)

.

Then it follows from the union bound that NSN finds all correct neighbors for all of the n points
on each subspace with probability at least 1 � 3L�

1�� , and hence we obtain Wij = Iw
i

=w
j

for every
(i, j) 2 [N ]

2. Exact clustering is guaranteed.

Step 2: Success condition for NSN

Now the only proposition that we need to prove is that for each subspace Di NSN finds all correct
neighbors for a data point (which is a uniformly random unit vector on the subspace) with probability
at least 1 � 3�

1�� . As our analysis is independent of the subspaces, we only consider D
1

. Without
loss of generality, we assume that y

1

lies on D
1

(w
1

= 1) and focus on this data point.
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When NSN finds neighbors of y
1

, the algorithm constructs kmax subspaces incrementally. At each
step k = 1, . . . ,K, if the largest projection onto U of the uncollected points on the same true
subspace D

1

is greater than the largest projection among the points on different subspaces, then
NSN collects a correct neighbor. In a mathematical expression, we want to satisfy

max

j:w
j

=1,j /2I
1

kProjUyjk2 > max

j:w
j

6=1,j /2I
1

kProjUyjk2 (3)

for each step of k = 1, . . . ,K.

The rest of the proof is to show (1) and (2) lead to (3) with probability 1� 3�
1�� in their corresponding

models. It is difficult to prove (3) itself because the subspaces, the data points, and the index set I
1

are all dependent of each other. Instead, we introduce an Oracle algorithm whose success is equiv-
alent to the success of NSN, but the analysis is easier. Then the Oracle algorithm is analyzed using
stochastic ordering, bounds on order statistics of random projections, and the measure concentration
inequalities for random subspaces. The rest of the proof is provided in Sections B.3 and B.4.

B.2 Preliminary lemmas

Before we step into the technical parts of the proof, we introduce the main ingredients which will
be used. The following lemma is about upper and lower bounds on the order statistics for the
projections of iid uniformly random unit vectors.

Lemma 5 Let x
1

, . . . , xn be drawn iid uniformly at random from the d-dimensional unit ball Sd�1.
Let z

(n�m+1)

denote the m’th largest value of {zi , kAxik2, 1  i  n} where A 2 Rk⇥d.

a. Suppose that the rows of A are orthonormal to each other. For any ↵ 2 (0, 1), there exists
a constant C > 0 such that for n,m, d, k 2 N where

n�m+ 1 � Cm
⇣

log

ne

m�

⌘

2

(4)

we have

z2
(n�m+1)

>
k

d
+

1

d
·min

(

2 log

 

n�m+ 1

Cm
�

log

ne
m�

�

2

!

,↵
p
d� k

)

(5)

with probability at least 1� �m.

b. For any k ⇥ d matrix A,

z
(n�m+1)

<
kAkFp

d
+

kAk
2p
d

·
✓p

2⇡ +

r

2 log

ne

m�

◆

(6)

with probability at least 1� �m.

Lemma 5b can be proved by using the measure concentration inequalities [12]. Not only can they
provide inequalities for random unit vectors, they also give us inequalities for random subspaces.

Lemma 6 Let the columns of X 2 Rd⇥k be the orthonormal basis of a k-dimensional random
subspace drawn uniformly at random in d-dimensional space.

a. For any matrix A 2 Rp⇥d.

E[kAXk2F ] =
k

d
kAk2F

b. [15, 12] If kAk
2

is bounded, then we have

Pr

(

kAXkF >

r

k

d
kAkF + kAk

2

·
 

r

8⇡

d� 1

+ t

!)

 e�
(d�1)t

2

8 .
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B.3 Proof of Theorem 2

Following Section B.1, we show in this section that if (2) holds then NSN finds all correct neighbors
for y

1

(which is assumed to be on D
1

) with probability at least 1� 3�
1�� .

Step 3: NSN Oracle algorithm

Consider the Oracle algorithm in the following. Unlike NSN, this algorithm knows the true label of
each data point. It picks the point closest to the current subspace among the points with the same
label. Since we assume w

1

= 1, the Oracle algorithm for y
1

picks a point in {yj : wj = 1} at every
step.

Algorithm 4 NSN Oracle algorithm for y
1

(assuming w
1

= 1)

Input: A set of N samples Y = {y
1

, . . . , yN}, The number of required neighbors K = d � 1,
Maximum subspace dimension kmax = d2 log de
I(1)

1

 {1}
for k = 1, . . . ,K do

if k  kmax then
Vk  span{yj : j 2 I(k)

1

}
j⇤k  argmax

j2[N ]:w
j

=1,j /2I(k)

1

kProjV
k

yjk2
else

j⇤k  argmax

j2[N ]:w
j

=1,j /2I(k)

1

kProjV
k

max

yjk2
end if
if max

j2[N ]:w
j

=1,j /2I(k)

i

kProjV
k

yjk2  maxj2[N ]:w
j

6=1

kProjV
k

yk
2

then
Return FAILURE

end if
I(k+1)

1

 I(k)
1

[ {j⇤k}
end for
Return SUCCESS

Note that the Oracle algorithm returns failure if and only if the original algorithm picks an incorrect
neighbor for y

1

. The reason is as follows. Suppose that NSN for y
1

picks the first incorrect point at
step k. By the step k� 1, correct points have been chosen because they are the nearest points for the
subspaces in the corresponding steps. The Oracle algorithm will also pick those points because they
are the nearest points among the correct points. Hence U ⌘ Vk. At step k, NSN picks an incorrect
point as it is the closest to U . The Oracle algorithm will declare failure because that incorrect point
is closer than the closest point among the correct points. In the same manner, we see that NSN fails
if the Oracle NSN fails. Therefore, we can instead analyze the success of the Oracle algorithm. The
success condition is written as

kProjV
k

yj⇤
k

k
2

> max

j2[N ]:w
j

6=1

kProjV
k

yk
2

, 8k = 1, . . . , kmax,

kProjV
k

max

yj⇤
k

k
2

> max

j2[N ]:w
j

6=1

kProjV
k

max

yk
2

, 8k = kmax + 1, . . . ,K. (7)

Note that Vk’s are independent of the points {yj : j 2 [N ], wj 6= 1}. We will use this fact in the
following steps.

Step 4: Lower bounds on the projection of correct points (the LHS of (7))

Let Vk 2 Rd⇥k be such that the columns of D
1

Vk form an orthogonal basis of Vk. Such a Vk exists
because Vk is a k-dimensional subspace of D

1

. Then we have

kProjV
k

yj⇤
k

k
2

= kV >
k D>

1

D
1

xj⇤
k

k
2

= kV >
k xj⇤

k

k
2

In this step, we obtain lower bounds on kV >
k xj⇤

k

k
2

for k  kmax and kV >
k
max

xj⇤
k

k
2

for k > kmax.
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It is difficult to analyze kV >
k xj⇤

k

k
2

because Vk and xj⇤
k

are dependent. We instead analyze another
random variable that is stochastically dominated by kV >

k xj⇤
k

k2
2

. Then we use a high-probability
lower bound on that variable which also lower bounds kV >

k xj⇤
k

k2
2

with high probability.

Define Pk,(m)

as the m’th largest norm of the projections of n� 1 iid uniformly random unit vector
on Sd�1 onto a k-dimensional subspace. Since the distribution of the random unit vector is isotropic,
the distribution of Pk,(m)

is identical for any k-dimensional subspaces independent of the random
unit vectors. We have the following key lemma.

Lemma 7 kV >
k xj⇤

k

k
2

stochastically dominates Pk,(k), i.e.,

Pr{kV >
k xj⇤

k

k
2

� t} � Pr{Pk,(k) � t}

for any t � 0. Moreover, Pk,(k) � P
ˆk,(k) for any ˆk  k.

The proof of the lemma is provided in Appendix B.5. Now we can use the lower bound on Pk,(k)

given in Lemma 5a to bound kV >
k xj⇤

k

k
2

. Let us pick ↵ and C for which the lemma holds. The first
inequality of (2) with C

1

= C + 1 leads to n� d > Cd
�

log

ne
d�

�

2, and also

n� k > Ck
⇣

log

ne

k�

⌘

2

, 8k = 1, . . . , d� 1. (8)

Hence, it follow from Lemma 5a that for each k = 1, . . . , kmax, we have

kV >
k xj⇤

k

k
2

� k

d
+

1

d
min

(

2 log

 

n� k + 1

Ck
�

log

ne
k�

�

2

!

,↵
p
d� k

)

� k

d
+

1

d
min

(

2 log

 

n� d

Cd
�

log

ne
�

�

2

!

,↵
p

d� 2 log d

)

(9)

with probability at least 1� �k.

For k > kmax, we want to bound kProjV
k

max

yj⇤
k

k
2

. We again use Lemma 7 to obtain the bound.
Since the condition for the lemma holds as shown in (8), we have

kV >
k
max

xj⇤
k

k
2

� 2 log d

d
+

1

d
min

(

2 log

 

n� k + 1

Ck
�

log

ne
k�

�

2

!

,↵
p

d� 2 log d

)

� 2 log d

d
+

1

d
min

(

2 log

 

n� d

Cd
�

log

ne
�

�

2

!

,↵
p

d� 2 log d

)

(10)

with probability at least 1� �k, for every k = kmax + 1, . . . , d� 1.

The union bound gives that (9) and (10) hold for all k = 1, . . . , d � 1 simultaneously with
probability at least 1� �

1�� .

Step 5: Upper bounds on the projection of incorrect points (the RHS of (7))

Since we have kProjV
k

yjk2 = kV >
k D>

1

Dw
j

xjk2, the RHS of (7) can be written as

max

j:j2[N ],w
j

6=1

kV >
k D>

1

Dw
j

xjk2 (11)

In this step, we want to bound (11) for every k = 1, . . . , d�1 by using the concentration inequalities
for Vk and xj . Since Vk and xj are independent, the inequality for xj holds for any fixed Vk.
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It follows from Lemma 5b and the union bound that with probability at least 1� �,
max

j:j2[N ],w
j

6=1

kV >
k D>

1

Dw
j

xjk2

 maxl 6=1

kV >
k D>

1

DlkFp
d

+

maxl 6=1

kV >
k D>

1

Dlk2p
d

·
 

p
2⇡ +

s

2 log

n(L� 1)e

�/d

!

 maxl 6=1

kV >
k D>

1

DlkFp
d

·
 

5 +

r

2 log

ndL

�

!

for all k = 1, . . . , d � 1. The last inequality follows from the fact kV >
k D>

1

Dlk2  kV >
k D>

1

DlkF .
Since kV >

k D>
1

Dw
j

xjk2  kV >
k D>

1

Dw
j

kF  maxl 6=1

kV >
k D>

1

DlkF for every j such that wj 6= 1,
we have

max

j:j2[N ],w
j

6=1

kV >
k D>

1

Dw
j

xjk2 
maxl 6=1

kV >
k D>

1

DlkFp
d

·min

(

5 +

r

2 log

ndL

�
,
p
d

)

. (12)

Now let us consider maxl 6=1

kV >
k D>

1

DlkF . In our statistical model, the new axis added to Vk at the
kth step (uk+1

in Algorithm 3) is chosen uniformly at random from the subspace in D
1

orthogonal
to Vk. Therefore, Vk is a random matrix drawn uniformly from the d ⇥ k Stiefel manifold, and the
probability measure is the normalized Haar (rotation-invariant) measure. From Lemma 6b and the
union bound, we obtain that with probability at least 1� �/dL,

kV >
k D>

1

DlkF 
r

k

d
kD>

1

DlkF + kD>
1

Dlk2 ·
 

r

8⇡

d� 1

+

r

8

d� 1

log

dL

�

!

 kD>
1

DlkF ·
 

r

k

d
+

r

8⇡

d� 1

+

r

8

d� 1

log

dL

�

!

 max a↵ ·
p
d ·

 

r

k

d
+

r

8⇡

d� 1

+

r

8

d� 1

log

dL

�

!

. (13)

The union bound gives that with probability at least 1 � �, maxl 6=1

kV >
k D>

1

DlkF is also bounded
by (13) for every k = 1, . . . , kmax.

Putting (13) and (12) together, we obtain
max

j:j2[N ],w
j

6=1

kV >
k D>

1

Dw
j

xjk2

 max a↵ ·
 

r

k

d
+

r

8⇡

d� 1

+

r

8

d� 1

log

dL

�

!

·min

(

5 +

r

2 log

ndL

�
,
p
d

)

(14)

for all k = 1, . . . , d� 1 with probability at least 1� 2�.

Final Step: Proof of the main theorem

Putting (9), (10), and (14) together, we obtain that if

max a↵ < min

1kd�1

q

min{k, 2 log d}+min

�

2 log

�

n�d
Cd

�

� 4 log log

ne
� ,↵
p
d� 2 log d

 

⇣

p

min{k, 2 log d}+
q

8⇡d
d�1

+

q

8d
d�1

log

dL
�

⌘

·min

⇢

5 +

q

2 log

ndL
� ,
p
d

� ,

(15)

then (7) holds, and hence NSN finds all correct neighbors for y
1

with probability at least 1 � 3�
1�� .

The RHS of (15) is minimized when k � 2 log d, and consequently the condition (15) is equivalent
to

max a↵ <

q

2 log d+min

�

2 log

�

n�d
Cd

�

� 4 log log

ne
� ,↵
p
d� 2 log d

 

⇣p
2 log d+

q

8⇡d
d�1

+

q

8d
d�1

log

dL
�

⌘

·min

⇢

5 +

q

2 log

ndL
� ,
p
d

� . (16)
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As n is polynomial in d, there is a constant C
3

> 0 such that

(RHS of (16)) >
C

3

p

log (n� d)� log log

ne
�

q

log

dL
� · log ndL

�

This completes the proof.

B.4 Proof of Theorem 1

As we did in Section B.3, we prove in this section that if (1) holds then NSN finds all correct
neighbors for y

1

with probability at least 1� 3�
1�� .

The only difference between the semi-random model and the fully random model is the statistical
dependence between subspaces. We can follow Step 3 in Section B.3 because they do not take any
statistical dependence between subspaces into account. We assert that (7) is the success condition
also for the fully random model. However, as K = kmax = d, there is no case where k > kmax in
this proof.

Now we provide a new proof of the last three steps for the fully random model.

Step 4: Lower bounds on the projection of correct points (the LHS of (7))

We again use Lemma 7. For k > d/2, we use the fact that kV >
k xj⇤

k

k
2

stochastically dominates
Pbd/2c,(k). Then it follows from Lemma 5a that

kV >
k xj⇤

k

k
2

� k

2d
+

1

d
min

(

2 log

 

n� k + 1

Ck
�

log

ne
k�

�

2

!

,↵
p

d/2

)

(17)

for all k = 1, . . . , d� 1 simultaneously with probability at least 1� �
1�� .

Step 5: Upper bounds on the projection of incorrect points (the RHS of (7))

We again use the notion of Xk 2 Rd⇥k which is defined in the proof of Theorem 2. Since
kProjV

k

yjk2 = kV >
k D>

1

yjk2, the RHS of (7) can be written as

max

j:j2[N ],w
j

6=1

kV >
k D>

1

yjk2 (18)

Since the true subspaces are independent of each other, yj with wj 6= 1 is also independent of D
1

and Vk, and its marginal distribution is uniform over Sp�1. It follows from Lemma 5b that with
probability at least 1� �/d,

(18)  kV
>
k D>

1

kFp
p

+

kV >
k D>

1

k
2p

p
·

s

2 log

n(L� 1)e

�/d



s

k

p
+

s

2

p
log

ndLe

�
. (19)

The last inequality is obtained using the facts kD
1

VkkF =

p
k and kD

1

Vkk2  1. The union bound
provides that (19) holds for every k = 1, . . . , d� 1 with probability at least 1� �.

Final Step: Proof of the main theorem

Now it suffices to show that (17) > (19) for every k = 1, 2, . . . , d� 1, i.e.,
v

u

u

t

k

2d
+

1

d
min

(

2 log

 

n� k + 1

Ck
�

log

ne
k�

�

2

!

,↵

r

d

2

)

>

s

k

p
+

s

2

p
log

ndLe

�
, 8k = 1, 2, . . . , d� 1.

(20)
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where ↵, C are the constants described in Lemma 5a. (20) is equivalent to

d

p
< min

1kd�1

k/2 + min

n

2 log

�

n�k+1

Ck

�

� 4 log

�

log

ne
k�

�

,↵
p

d/2
o

⇣p
k +

p

2 log(ndL��1e)
⌘

2

. (21)

As n is polynomial in d, the numerator can be replaced by O(k + log(n � k + 1)). The RHS is
minimized when k = O(log(ndL��1

)). Hence, the above condition is satisfied if (1) holds.

B.5 Proof of Lemma 7

We construct a generative model for two random variables that are equal in distribution to kV >
k xj⇤

k

k2
2

and P 2

k,(k). Then we show that the one corresponding to kV >
k xj⇤

k

k2
2

is greater than the other cor-
responding to P 2

k,(k). This generative model uses the fact that for any isotropic distributions the
marginal distributions of the components along any orthogonal axes are invariant.

The generative model is given as follows.

1. For k = 1, . . . , kmax, repeat 2.

2. Draw n� 1 iid random variables Y (k)
1

, . . . , Y
(k)
n�1

as follows.

Y
(k)
j =

 

1�
k�1

X

i=1

Y
(i)
j

!

· (X(k)
j1 )

2, X
(k)
j ⇠ Unif(Sd�k

), 8j = 1, . . . , n� 1.

where X
(k)
j1 is the first coordinate of X(k)

j . Define

⇡k , arg max

j:j 6=⇡
1

,...,⇡
k�1

 

k
X

i=1

Y
(i)
j

!

.

3. For k = kmax + 1, . . . , d� 1, repeat

⇡k , arg max

j:j 6=⇡
1

,...,⇡
k�1

 

k
max

X

i=1

Y
(i)
j

!

.

We first claim that (
Pk

i=1

Y
(i)
⇡
k

) is equal in distribution to kV >
k xj⇤

k

k2
2

. Consider the following two
sets of random variables.

Ak ,
 

k
X

i=1

Y
(i)
j : j 2 [n� 1], j 6= ⇡

1

, . . . ,⇡k�1

!

,

Bk ,
�

kV >
k xjk2

2

: wj = 1, j 6= 1, j⇤
1

, . . . , j⇤k�1

�

.

Each set contains (n� k) random variables. We prove by induction that the joint distribution of the
random variables of Ak is equal to those of Bk. Then the claim follows because (

Pk
i=1

Y
(i)
⇡
k

) and
kV >

k xj⇤
k

k2
2

are the maximums of Ak and Bk, respectively.

• Base case : As V
1

= x
1

, B
1

= (kV >
1

xjk2
2

: wj = 1, j 6= 1) is the set of squared inner
products with x

1

for the n�1 other points. Since the n�1 points are iid uniformly random
unit vectors independent of x

1

, the squared inner products with x
1

are equal in distribution
to Y

(1)

j = (X
(1)

j1 )

2. Therefore, the joint distribution of B
1

= (kV >
1

xjk2
2

: wj = 1, j 6= 1)

is equal to the joint distribution of A
1

= (Y
(1)

j : j = 1, . . . , n� 1).
• Induction : Assume that the joint distribution of Ak is equal to the joint distribution of Bk.

It is sufficient to show that given Ak ⌘ Bk the conditional joint distribution of Ak+1

=

(

Pk+1

i=1

Y
(i)
j : j 2 [n � 1], j 6= ⇡

1

, . . . ,⇡k) is equal to the conditional joint distribution of
Bk+1

= (kV >
k+1

xjk2
2

: wj = 1, j 6= 1, j⇤
1

, . . . , j⇤k). Define

vk =

xj⇤
k

� VkV
>
k xj⇤

k

kxj⇤
k

� VkV >
k xj⇤

k

k
2

.
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vk is the unit vector along the new orthogonal axis added on Vk for Vk+1

. Since we have

kV >
k+1

xjk2
2

= kV >
k xjk2

2

+ (v>k xj)
2, 8j : wj = 1,

The two terms are independent of each other because Vk ? vk, and xj is isotropically
distributed. Hence, we only need to show that ((v>k xj)

2

: wj = 1, j 6= 1, j⇤
1

, . . . , j⇤k) is
equal in distribution to (Y

(k+1)

j : j 2 [n� 1], j 6= ⇡
1

, . . . ,⇡k).

Since vk is a normalized vector on the subspace V?
k \ D

1

, and xj⇤
k

is drawn iid from an
isotropic distribution, vk is independent of V >

k xj⇤
k

. Hence, the marginal distribution of vk
given Vk is uniform over (V?

k \ D
1

) \ Sp�1. Also, vk is also independent of the points
{xj : wj = 1, j 6= 1, j⇤

1

, . . . , j⇤k}. Therefore, the random variables (v>k xj)
2 for j with

wj = 1, j 6= 1, j⇤
1

, . . . , j⇤k are iid equal in distribution to Y
(k+1)

j for any j.

Second, we can see that the k’th maximum of {
Pk

i=1

Y
(i)
j : j 2 [n � 1]} is equal in distribution

to P 2

k,(k). This is because each
Pk

i=1

Y
(i)
j can be seen as the norm of the projection of a uniformly

random unit vector in Rd onto a k-dimensional subspace.

Now we are ready to complete the proof. Since
⇣

Pk
i=1

Y
(i)
⇡
k

⌘

is the maximum of the n�k variables

of Ak, it is greater than or equal to the k’th maximum of
⇣

Pk
i=1

Y
(i)
j : j 2 [n� 1]

⌘

. Therefore,

kV >
k xj⇤

k

k2
2

stochastically dominates P 2

k,(k).

The second claim is clear because V
ˆk ✓ Vk, and hence the norm of the projection onto Vk is always

larger than the norm of the projection onto V
ˆk.

B.6 Proof of Lemma 5a

Let x be an unit vector drawn uniformly at random from Sd�1. Equivalently, x can be drawn from

x =

w

kwk
2

, w ⇠ N (0, Id⇥d).

Define A? 2 R(d�k)⇥d as a matrix with orthonormal rows such that kwk2
2

= kAwk2
2

+ kA?wk2
2

for any w 2 Rd. We have

Pr

⇢

kAxk2
2

>
k

d
(1 + ✏)

�

= Pr

⇢

kAwk2
2

kwk2
2

>
k

d
(1 + ✏)

�

= Pr

⇢

kAwk2
2

kAwk2
2

+ kA?wk2
2

>
k

d
(1 + ✏)

�

� Pr

�

kAwk2
2

> k(1 + ✏), kA?wk2
2

< (d� k)� k✏
 

= Pr

�

kAwk2
2

> k(1 + ✏)
 

· Pr
�

kA?wk2
2

< (d� k)� k✏
 

, (22)

where the last equality follows from that kAwk
2

and kA?wk
2

are independent of each other because
w ⇠ N (0, Id⇥d). Note that kAwk2

2

and kA?wk2
2

are Chi-square random variables with degrees of
freedom k and d� k, respectively.

Now we use the following lemma.

Lemma 8 (Chi-square upper-tail lower-bound) For any k 2 N and any ✏ � 0, we have

Pr{�2

k � k(1 + ✏)} � 1

3

p
k✏+ 6

exp

✓

�k✏

2

◆

.

where �2

k is the chi-square random variable with k degrees of freedom.
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Suppose 0  ✏  ↵ (d�k)
1

2

k for some ↵ 2 (0, 1). It follows from Lemma 8 and the central limit
theorem that

(22) � Pr

�

kAwk2
2

> k(1 + ✏)
 

· Pr
n

kA?wk2
2

� (d� k) < �↵(d� k)
1

2

o

� f(↵)

3k✏+ 6

exp

✓

�k✏

2

◆

where f(↵) 2 (0, 1) is some constant depending only on ↵.

Then it follows that

Pr

⇢

z2
(n�m+1)

<
k

d
(1 + ✏)

�

= Pr

⇢

9I ⇢ [n], |I| = n�m+ 1 : z2i <
k

d
(1 + ✏), 8i 2 I

�


✓

n

m� 1

◆

· Pr
⇢

z2
1

<
k

d
(1 + ✏)

�n�m+1


⇣ne

m

⌘m

·
✓

1� f(↵)

3k✏+ 6

exp

✓

�k✏

2

◆◆n�m+1

 exp

⇢

m log

ne

m
� f(↵) · (n�m+ 1)

3k✏+ 6

exp

✓

�k✏

2

◆�

(23)

where we use the facts
�

n
m

�


�

ne
m

�m and 1 + x  ex, 8x.

Set C =

6

f(↵) , and choose ✏ such that

✏ =
1

k
min

(

2 log

 

n�m+ 1

Cm
�

log

ne
m�

�

2

!

,↵
p
d� k

)

.

This ✏ is valid because 0  ✏  ↵ (d�k)
1

2

k . Then we obtain

(23)  exp

8

>

>

<

>

>

:

m log

ne

m
� f(↵) · (n�m+ 1)

6 log

✓

n�m+1

Cm
(

log

ne

m�

)

2

◆

+ 6

·
Cm

�

log

ne
m�

�

2

n�m+ 1

9

>

>

=

>

>

;

= exp

8

<

:

m log

ne

m
�

6 log

ne
m�

6

⇣

1 + log

⇣

f(↵)
6

· n�m+1

m · (log ne
m� )

�2

⌘⌘ ·m log

ne

m�

9

=

;

 exp

(

m log

ne

m
�

6(1 + log

n
m )

6(1 + log

f(↵)
6

+ log

n
m )

m log

ne

m�

)

 exp

n

m log

ne

m
�m log

ne

m�

o

 �m.

This completes the proof.

B.7 Proof of Lemma 5b

We use a special case of Levy’s lemma for this proof.

Lemma 9 ([12]) For x ⇠ Unif(Sd�1

),

Pr{kAxk
2

> mkAxk
2

+ t}  exp

✓

� dt2

2kAk2
2

◆

,

Pr{kAxk
2

< mkAxk
2

� t}  exp

✓

� dt2

2kAk2
2

◆

.

for any matrix A 2 Rp⇥d and t > 0. mkAxk
2

is the median of kAxk
2

.

19



It follows from the lemma that

|EkAxk
2

�mkAxk
2

|  E [|kAxk
2

�mkAxk
2

|] 
Z 1

0

2e
� dt

2

2kAk2
2 dt =

r

2⇡

d
kAk

2

.

Then we have

Pr

(

kAxik2 >

r

kAk2F
d

+

r

2⇡

d
kAk

2

+ t

)

= Pr

(

kAxik2 >
q

EkAxik2
2

+

r

2⇡

d
kAk

2

+ t

)

 Pr

(

kAxik2 > EkAxik2 +
r

2⇡

d
kAk

2

+ t

)

 Pr {kAxik2 > mkAxik2 + t}

 exp

✓

� dt2

2kAk2
2

◆

.

It follows that

Pr

(

z
(n�m+1)

>

r

kAk2F
d

+

r

2⇡

d
kAk

2

+ t

)

 Pr

(

9I ⇢ [n], |I| = m : kAxik2 >

r

kAk2F
d

+

r

2⇡

d
kAk

2

+ t, 8i 2 I

)


✓

n

m

◆

· Pr
(

kAx
1

k
2

>

r

kAk2F
d

+

r

2⇡

d
kAk

2

+ t

)m


⇣ne

m

⌘m

· exp
✓

� mdt2

2kAk2
2

◆

= exp

⇢

m log

ne

m
� mdt2

2kAk2
2

�

.

Replacing t with
q

2kAk2

2

d log

ne
m� , we obtain the desired result.

B.8 Proof of Lemma 6a

Let A = U⌃V > be the singular value decomposition of A. Then we have

E[kAXk2F ] = E[kU⌃V >Xk2F ] = E[k⌃Xk2F ] =
min(p,d)
X

i=1

�2

i ·

0

@

k
X

j=1

E[X2

ij ]

1

A

=

min(p,d)
X

i=1

�2

i ·
k

d
=

k

d
kAk2F .

where the second last equality follows from that Xij is a coordinate of a uniformly random unit
vector, and thus

E[X2

ij ] =
1

d
, 8i, j.

B.9 Proof of Lemma 6b

Consider the Stiefel manifold Vk(Rd
) equipped with the Euclidean metric. We see that X is drawn

from Vk(Rd
) with the normalized Harr probability measure. We have

kAXkF � kAY kF  kAX �AY kF = kA(X � Y )kF  kAk2kX � Y kF
for any X,Y 2 Rd⇥k. Since kAk

2

 1, kAXkF is a 1-Lipschitz function of X . Then it follows
from [15, 12] that

Pr{kAXkF > mkAXkF + t}  e�
(d�1)t

2

8 ,
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where mkAXkF is the median of kAXkF . Also, we have

Pr{|kAXkF �mkAXkF | > t}  2e�
(d�1)t

2

8 ,

and then it follows that

|EkAXkF �mkAXkF |  E [|kAXkF �mkAXkF |] 
Z 1

0

2e�
(d�1)t

2

8 dt =

r

8⇡

d� 1

.

It follows from Jensen’s inequality and Lemma 6a that

EkAXkF 
q

EkAXk2F =

r

k

d
kAkF

Putting the above inequalities together using the triangle inequality, we obtain the desired result.

B.10 Proof of Lemma 8

For k � 2, it follows from [9, Proposition 3.1] that

Pr{�2

k � k(1 + ✏)} � 1� e�2

2

k(1 + ✏)

k✏+ 2

p
k
exp

✓

�1

2

(k✏� (k � 2) log(1 + ✏) + log k)

◆

� 1

3

p
k✏+ 6

exp

✓

�k

2

(✏� log(1 + ✏))

◆

� 1

3

p
k✏+ 6

exp

✓

�k✏

2

◆

.

For k = 1, we can see numerically that the inequality holds.
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