
A Proof of Theorem 3

Proof of Theorem 3. From Theorem 3 of Kemperman [9], if the moment values vector
(
− a
n , 1
)

is
in int conv g([−1, 1]), the optimal objective value of problem (6) is equal to

sup
{
d0 −

a

n
d1 + d2 : d∗ = (d0, d1, d2) ∈ D∗

}
. (13)

From the Feasible Moments Lemma (Lemma 2 in the paper), we see that (10) corresponds to the
interior point condition.

Since we assume the interior point condition is satisfied, any d∗ ∈ D∗ provides a lower bound on the
optimal value of (6), and hence after negation provides an upper bound on the problem with same
moment constraints and the objective sup E e(η/2)X ; this is precisely what we are after.

We therefore focus on picking a good d∗ = (d0, d1, d2) ∈ R3. The inequality condition in (8) is
now

−e(η/2)x ≥ d0 + d1x+ d2e
ηx for all x ∈ [−1, 1].

In particular, this inequality must hold at x = 0, yielding the constraint −1 ≥ d0 + d2. We now
change variables to c0 = −d0, c1 = −d1/η,2 and c2 = −d2, yielding the inequality condition

uη(x) := −e(η/2)x + c0 + c2e
ηx + ηc1x ≥ 0.

Now the condition at x = 0 implies that c0 + c2 = 1, and so we make the replacement
c0 = 1− c2, (14)

in the definition of uη(x), yielding the inequality

uη(x) = 1 + c2(eηx − 1)− e(η/2)x + ηc1x ≥ 0.

Constraints from the local minimum at 0

Since uη(0) = 0, we need x = 0 to be a local minimum of u, and so we require both conditions

(a) u′(0) = 0

(b) u′′(0) ≥ 0

to hold since otherwise there exists some small ε > 0 such that either uη(ε) < 0 or uη(−ε) < 0.

For (a), we compute

u′(x) = ηc2e
ηx − η

2
e(η/2)x + ηc1.

Since we require u′(0) = 0, we pick up the constraint

η

(
c2 −

1

2
+ c1

)
= 0,

and since η > 0 by assumption, we have

c1 =
1

2
− c2. (15)

Thus, we can eliminate c1 from uη(x):

uη(x) = 1 + c2(eηx − 1)− e(η/2)x + η

(
1

2
− c2

)
x ≥ 0.

For (b), it is sufficient to have u′′(0) > 0. Observe that

u′′(x) = η2c2e
ηx − η2

4
e(η/2)x,

so that u′′(0) = η2
(
c2 − 1

4

)
, and hence for

c2 >
1

4
(16)

we have u′′(0) > 0.

Thus far, we have picked up the constraints (14), (15), and (16).
2We scale by η here because we are chasing a certain η-dependent rate.
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The other minima of uη(x)

Now, observe that u′(x) has at most two roots, because with the substitution y = e(η/2)x, we have

u′(x) = ηc2y
2 − η

2
y + η

(
1

2
− c2

)
,

which is a quadratic equation in y with two roots:

y =

{
1,

1− 2c2
2c2

}
⇒ x =

{
0,

2

η
log

1− 2c2
2c2

}
.

Now, since we take c2 > 1
4 and since the second root is negative, we know that u is increasing

on [0, 1] (and we already knew that uη(0) = 0). It remains to find conditions on c2 such that
uη(−1) ≥ 0 because that implies that uη(x) ≥ 0 for all x ∈ [−1, 0]. We consider the case η ≤ 1
and η > 1 separately.

In either case, we need to check the nonnegativity of

uη(−1) = 1 + c2(e−η − 1)− e−(η/2) − η
(

1

2
− c2

)
=
(

1− η

2

)
− e−(η/2) + c2

(
e−η − (1− η)

)
.

Case η ≤ 1: We observe that uη(−1) = 0 when η = 0. Now, we will see what constraints on c2
guarantee that d

dηuη(−1) ≥ 0 for η ∈ [0, 1]. We want

d

dη
uη(−1) = −c2e−η +

1

2
e−η/2 − 1

2
+ c2 ≥ 0

which is equivalent to the condition

c2 ≥
1

2

(
1− e−η/2

1− e−η

)
.

The RHS is increasing in η, and so we need only consider η = 1, yielding the bound

c2 ≥
1

2

e−
√
e

e− 1
= 0.3112 . . . ,

and so if c2 ≥ 0.32, then uη(−1) ≥ 0 as desired.

Case η > 1: Let c2 = 1
2 −

α
η for some α ≥ 0. With this substitution, we have

uη(−1) = 1 + c2(e−η − 1)− e−(η/2) − η
(

1

2
− c2

)
= 1 +

(
1

2
− α

η

)
(e−η − 1)− e−(η/2) − α

=

(
1 + e−η

2
− e−η/2

)
+ α

(
−1 +

1

η

(
1− e−η

))
Since we want the above to be nonnegative for all η > 1, we arrive at the condition

α ≤ inf
η≥1

{
1+e−η

2 − e−η/2

1− 1
η (1− e−η)

}
(17)

Plotting suggests that the minimum is attained at η = 1, with the value 1
2 (
√
e − 1)2. We will fix α

to this value and verify that(
1 + e−η

2
− e−η/2

)
+

(
1

2
(
√
e− 1)2

)(
−1 +

1

η

(
1− e−η

))
≥ 0. (18)
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This is true with equality at η = 0. The derivative of the LHS with respect to η is

1

2
e−η

(
eη/2 − 1− (

√
e− 1)2(eη − η − 1)

η2

)
.

The derivative is positive at η = 1, so 0 is a candidate minimum. Eventually, (
√
e−1)2(eη−η−1)

η2 grows
more quickly than eη/2 − 1 and surpasses the latter in value. The derivative is therefore negative for
all sufficiently large η, and so we need only take the minimum of the LHS of (18) evaluated at η = 1
and the limiting value as η →∞. We have

lim
η→∞

(
1 + e−η

2
− e−η/2

)
+

(
1

2
(
√
e− 1)2

)(
−1 +

1

η

(
1− e−η

))
=
√
e− e

2
≥ 0

Hence, (18) indeed holds for α = 1
2 (
√
e−1)2. We conclude that uη(−1) ≥ 0 when α ≤ 1

2 (
√
e−1)2.

Putting it all together

In the regime η ≤ 1, we have the constraints c2 > 1
4 and c2 ≥ 1

2
e−
√
e

e−1 (which exceeds 1
4 ), so we can

choose

c1 =
1

2
− c2 =

1

2
− 1

2

e−
√
e

e− 1
=

1

2

√
e− 1

e− 1
= 0.1877 . . . .

In the regime η > 1, we have the constraints c2 > 1
4 and α ≤ 1

2 (
√
e−1)2 ⇒ c2 ≥ 1

2 −
1
2η (
√
e−1)2

(which always exceeds 1
4 for η ≥ 1), so we can choose

c1 =
1

2
− c2 =

α

η
≤ (
√
e− 1)2

2η
=

0.2104 . . .

η
.

The result follows by observing that in the case of η ≤ 1, the supremum in (13) is lower bounded
by−1 + 0.18aη

n , and hence the optimal objective value of (6) is lower bounded by the same quantity.
Therefore, the problem with the same constraints and the objective supµ∈[−1,1] E e(η/2)X has its
optimal objective value upper bounded by 1 − 0.18aη

n . Repeat the same argument for the case of
η > 1.
Proof of Lemma 4. Let X be a random variable taking values in [−V, V ] with mean − a

n and
E eηX = 1, and let Y be a random variable taking values in [−1, 1] with mean −a/Vn and
E e(V η)Y = 1. Consider a random variable X̃ that is a 1

V -scaled independent copy of X; ob-
serve that E X̃ = −a/Vn and E e(V η)X̃ = 1. Let the maximal possible value of E e(η/2)X be bX , and
let the maximal possible value of E e(V η/2)Y be bY . We claim that bX = bY . Let X be a random
variable with a distribution that maximizes E e(η/2)X subject to the previously stated constraints on
X . Since X̃ satisfies E e(V η/2)X̃ = bX , setting Y = X̃ shows that in fact bY ≥ bX . A symmetric
argument (starting with Y and passing to some Ỹ = V Y ) implies that bX ≥ bY .

B Hyper-concentrated excess losses

Lemma 10. Let Z be a random variable with probability measure P supported on [−V, V ]. Sup-
pose that limη→∞ E exp(−ηZ) < 1 and EZ = µ > 0. Then there is a suitable modification of Z ′
for which Z ′ ≤ Z with probability 1, the mean of Z ′ is arbitrarily close to µ, and E exp(−ηZ ′) = 1
for arbitrarily large η.

Proof. First, observe that Z ≥ 0 a.s. If not, then there must be some finite η > 0 for which
E exp(−ηZ) = 1. Now, consider a random variable Z ′ with probability measure Qε, a modification
of Z (with probability measure P ) constructed in the following way. Define A := [µ, V ] and
A− := [−V,−µ]. Then for any ε > 0 we define Qε as

dQε(z) =


(1− ε)dP (z) if z ∈ A
εdP (−z) if z ∈ A−
dP (z) otherwise.
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Additionally, we couple P and Qε such that the couple (Z,Z ′) is a coupling of (P,Qε) satisfying

E(Z,Z′)∼(P,Qε) 1{Z 6=Z′} = min
(P ′,Q′ε)

E(Z,Z′)∼(P ′,Q′ε)
1Z 6=Z′ ,

where the min is over all couplings of P andQε. This coupling ensures thatZ ′ ≤ Z with probability
1; i.e. Z ′ is dominated by Z.

Now,

E exp(−ηZ ′) =

∫ V

−V
e−ηzdQε(z)

=

∫
A−

e−ηzdQε(z) +

∫
A

e−ηzdQε(z) +

∫
[0,V ]\A

e−ηzdQε(z)

= ε

∫
A−

e−ηzdP (−z) + (1− ε)
∫
A

e−ηzdP (z) +

∫
[0,V ]\A

e−ηzdP (z)

= ε

∫
A

eηzdP (z) + (1− ε)
∫
A

e−ηzdP (z) +

∫
[0,V ]\A

e−ηzdP (z)

≥ εeµηP (A) + (1− ε)
∫
A

e−ηzdP (z) +

∫
[0,V ]\A

e−ηzdP (z). (19)

Now, on the one hand, for any η > 0, the sum of the two right-most terms in (19) is strictly less
than 1 by assumption. On the other hand, η → εP (A)eµη is exponentially increasing since ε > 0
and µ > 0 (and hence P (A) > 0 as well) by assumption; thus, the first term in (19) can be made
arbitrarily large for large enough by increasing η. Consequently, we can choose ε > 0 as small as
desired and then choose η <∞ as large as desired such that the mean of Z ′ is arbitrarily close to µ
and E exp(−ηZ ′) = 1 respectively.

C Proof of VC-type results

C.1 Proof of Theorem 6

The localization result (Theorem 6) is a simple consequence of the following theorem.

Theorem 11 (Local Analysis). Let F ⊂ RX be a separable function class for which:

• the constant zero function is an element of F ;

• every function f ∈ F satisfies 0 ≤ f ≤ 1 ;

• supf∈F ‖f‖L2(P) ≤ ε := 1
n .

Further assume that for some C ≥ 1, for a constant K ≥ 1, for each u ∈ (0,K] the L2(P) covering
numbers of F are bounded as

N (u,F , L2(P)) ≤
(
K

u

)C
.

Then provided that n ≥ 4 and y > 0, with probability at least 1− e−y

sup
f∈F

Pn f ≤
1

n

(
990C log(2Kn) +

√
2y(1 + 3960C log(2Kn)) +

2y

3
+ 1

)
.

REMARKS

(i) The class F is contained in an L2(P)-ball of radius ε, and if interpreted as a loss class it is
assumed that the losses are bounded.
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(ii) Suppose the function class F is constructed by selecting from a larger class an ε-ball in the
L2(P) pseudometric around some function f0 from the same larger class and taking for each
function the absolute difference with f0. Then the zero function trivially is in F since |f0−f0|
is in the class. In this setup, the theorem states that with high probability there is no function
in the class whose empirical risk will be “much” smaller/larger than the empirical risk of f0.

Proof of Theorem 11. For the proof, we introduce the random variables Z = supf∈F Pn f and
Z̄ = supf∈F (Pn −P)f . The proof is in three steps.

Step 1: Centering approximation

It is easy to see that Z ≤ Z̄ + ε, since

Z = sup
f∈F

Pn f = sup
f∈F

(Pn −P)f + P f

≤ sup
f∈F

(Pn −P)f + sup
f∈F

P f

≤ Z̄ + sup
f∈F
‖f0 − f‖L1(P)

≤ Z̄ + sup
f∈F
‖f0 − f‖L2(P)

≤ Z̄ + ε,

where the penultimate inequality follows from Jensen’s inequality.

Step 2: Concentration of Z̄ arounds its expectation

We will apply Bousquet’s version of Talagrand’s inequality, appearing as equation (18) of [16] and
reproduced below for convenience:

If G is a countable family of measurable functions such that, for some positive
constants v and b, one has, for every g ∈ G, P g2 ≤ v and ‖g‖∞ ≤ b, then, for
every positive y, the following inequality holds for W = supg∈G(Pn −P)g:

Pr

{
W − EW ≥

√
2(v + 4bEW )y

n
+

2by

3n

}
≤ e−y.

We take G to be F itself; since F is separable and hence admits a countable dense subset, the
countability assumption in Talagrand’s inequality is not an issue. Observe that for every f ∈ F we
have

• ‖f‖∞ ≤ 1 (from the range constraints on f )

• P f2 ≤ ‖f‖L2(P) ≤ ε (by the small L2(P)-ball assumption on F) .

Thus, taking b = 1 and v = ε, we have

Pr

{
Z̄ − E Z̄ ≥

√
2(ε+ 4 E Z̄)y

n
+

2y

3n

}
≤ e−y. (20)

It remains to bound E Z̄. If it can be shown to be Õ( 1
n ) then we will have the desired result after

taking ε = O( 1
n ).

Step 3: Controlling the size of E Z̄

Controlling E Z̄ can be done through chaining after passing to a symmetrized empirical process.
This control is shown in Lemma 12, stated after the current proof, yielding the result

E Z̄ ≤ 990C log(2Kn)

n
. (21)
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Putting it all together

The desired result follows by plugging (21) into the concentration result (20), incorporating the ε
approximation term from Step 1, and setting ε = 1

n .
Lemma 12. Take the same conditions as Theorem 11 (Local Analysis Theorem), but instead allow
that all f ∈ F need only satisfy 0 ≤ f ≤ V for some V ≥ 1. Then provided that n ≥ 4,

E sup
f∈F

(Pn −P)f ≤ 990CV log(2Kn)

n

Proof. To avoid measurability issues, we operate under the assumption that F is countable and in
the final step of the proof apply an approximation argument.

Let ε1, . . . , εn be iid Rademacher random variables. We write Eε for the expected value with re-
spect to the random variables ε1, . . . , εn. That is, if A is a random variable depending only on
ε1, . . . , εn, X1, . . . , Xn, then EεA = E [A | X1, . . . , Xn]. Also, let F|X be the coordinate projec-
tion of F onto the sample X = (X1, . . . , Xn):

F|X :=
{

(f(X1), . . . , f(Xn) : f ∈ F
}
.

Finally, for a set G ⊂ Rn let D(G) be half of the `2-radius of G, defined as

D(G) :=
1

2
sup
g∈G
‖g‖2;

it makes sense to refer to this as a (half) radius since we will consider D(F) and the zero function
is in F . Our life will be made easier if we use the lower bounded quantity D(G)∨σ, for some
deterministic σ ≤ 1 to be chosen later.

The first step is symmetrization. The second step is based on a chaining argument, the result of
which is Corollary 13.2 of Boucheron et al. [5], restated here3 we state the result in terms of in a
specialization to Rademacher processes for convenience:

Let (T , d) be a finite pseudometric space and (Xt)t∈T be a collection of sub-
Gaussian random variables. Then for any t0 ∈ T ,

E sup
t∈T

Xt −Xt0 ≤ 12

∫ δ/2

0

√
logN (u, T , d)du,

where δ = supt∈T d(t, t0).

By pushing the cardinality of T to infinity, the above result also applies to countable classes. As
noted by Boucheron et al. [5] in the paragraph concluding the statement of their Corollary 13.2, this
result applies to Rademacher processes. In our case, t0 will correspond to the zero function element
of F .

Define P̄n := Pn −P. Now, from symmetrization and the above chaining-based result applied to
the resulting Rademacher process, we have

nE sup
f∈F

P̄n f ≤ 2 E

Eε sup
f∈F

n∑
j=1

εjf(Xj)


≤ 24 E

∫ D(F|X )∨σ

0

√
logN (u,F|X , ‖ · ‖2)du,

which (since if f|X is the obvious coordinate projection of f ∈ F , then ‖f|X‖2 =
√
n‖f‖L2(Pn)) is

at most

24 E

∫ D(F|X )∨σ

0

√
H2

(
u√
n
,F|X

)
du

≤ 24
√
C E

∫ D(F|X )∨σ

0

√
log

K
√
n

u
du,

3Boucheron et al. [5] stated this result in terms of packing numbers, but careful inspection of their proof
reveals that the argument works for covering numbers as well. Moreover, other proofs generally use covering
numbers.
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whereH2(u, T ) := supQ logN (u, T , L2(Q)) is the universal metric entropy of T , and in the above

display we have H2

(
u√
n
,F|X

)
rather than H2(u,F|X) because we work with the L2(Pn)-norm

scaled by
√
n.

Making the substitution t = u/(D(F|X)∨σ), the above is equal to

24
√
C E

((
D(F|X)∨σ

) ∫ 1

0

√
log

K
√
n

t
(
D(F|X)∨σ

)dt)

≤ 24
√
C E

((
D(F|X)∨σ

)(√
log

K
√
n

D(F|X)∨σ
+

√
π

2

))

≤ 24
√
C

(√
log

K
√
n

σ
+

√
π

2

)(
σ + ED(F|X)

)
.

Now, we focus on ED(F|X). Observe that

ED(F|X) =

√
n

2
E sup
f∈F

√
Pn f2

=

√
n

2
E sup
f∈F

√
P̄n f2 + P f2

≤
√
n

2

[
E sup
f∈F

√
P̄n f2 + sup

f∈F

√
P f2

]

≤
√
n

2

[√
E sup
f∈F

P̄n f2 + ε

]
.

where the first part of the last step follows from Jensen’s inequality and the second part follows from
the small L2(P)-ball assumption on F . The above is at most

√
V n

2

[√
E sup
f∈F

P̄n f + ε

]
.

Thus, putting everything together and making the replacement ε = 1
n , we have

E sup
f∈F

P̄n f ≤
24
√
C

n

(√
log

K
√
n

σ
+

√
π

2

)(
σ +

√
V n

2

[√
E sup
f∈F

P̄n f +
1

n

])
.

Finding the minimal value of E supf∈F P̄n just amounts to solving a quadratic equation, yielding
the solution set √

E sup
f∈F

P̄n f ≤
ψ
√
V n

2
+

√√√√ψ

(
σ +

√
V/n

2

)

for ψ = 24
√
C

n

(√
log K

√
n

σ +
√
π

2

)
.

Making the replacement σ = 1
n , squaring, and some coarse bounding yields

E sup
f∈F

P̄n f ≤
990CV log(Kn)

n

for n ≥ 4, V ≥ 1, and C ≥ 1.

We now present the approximation argument to handle separable F . Since F is separable, it suffices
to consider a countable dense subsetF ′ ⊂ F ; however, a little more work is required as the covering
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numbers of F ′ may differ slightly from the covering numbers of F . We now control the covering
numbers of F ′ in terms of the covering numbers of F . Observe that if there is an ε-net of F of
cardinalityN , then there is a (2ε)-net of someF ′ ⊂ F of cardinalityN . Hence, if there is an optimal
ε-net of F of cardinality N , then an optimal (2ε)-net of F ′ has cardinality at most N . That is, for
any probability measure Q on X , for any u > 0 we have N (2u,F ′, L2(Q)) ≤ N (u,F , L2(Q)).
Thus, the result for separable F holds by replacing the constant K with 2K.

We now prove the localization result.

Proof of Theorem 6. First, so that we can just handle the case of functions with range [0, 1], we
(crudely) apply our analysis to the function class after scaling all functions by the factor 1

V , and
scale the approximation term in the last step by the factor V .4

For any f0 ∈ Fε, observe that π−1(f0) is the set of those functions that are covered by f0 in the
L2(P)-norm. We apply the Local Analysis Theorem (Theorem 11) to each element of the set of
localized absolute difference function classes

{Gf0 : f0 ∈ Fε} ,

for Gf0 :=
{
|f0 − f | : f ∈ π−1(f0)

}
. Consider an arbitrary f0 ∈ Fε and its corresponding class

Gf0 . Since G̃f0 :=
{
f0 − f : f ∈ π−1(f0)

}
is isomorphic to a subset of F , and since any ε-net for

G̃f0 trivially gives rise to an ε-net for Gf0 by taking the absolute value of each function from the
original ε-net, it follows the L2(P) covering numbers of Gf0 are bounded just as in (11).

Taking the union bound over Fε with Theorem 11 implies that with probability at least 1− δ

max
f0∈Fε

sup
f∈π−1(f0)

Pn |f0 − f |

≤ 1

n

(
990C log(2Kn) +

√
2

(
log

1

δ
+ C log(Kn)

)
(1 + 3960C log(2Kn))

)

+
1

n

(
2
(
log 1

δ + C log(Kn)
)

3
+ 1

)
.

Ignoring the 1
n factor, the RHS is at most

990C log(2Kn) +

√
2

(
log

1

δ
+ C log(Kn)

)
(1 + 3960C log(2Kn)) + log

e

δ
+ C log(Kn),

which is at most

991C log(2Kn)

+

√
2 log

1

δ
+ 2C log(Kn) + 7920

(
log

1

δ

)
C log(2Kn) + 7920(C log(2Kn))2 + log

e

δ

≤ 1080C log(2Kn) +

√
2 log

1

δ
+ 2C log(Kn) + 7920

(
log

1

δ

)
C log(2Kn) + log

e

δ

≤ 1080C log(2Kn) + 90

√(
log

1

δ

)
C log(2Kn) + log

e

δ
,

where the last inequality holds provided that δ is not too large; it suffices to assume δ ≤ 1
2 .

Finally, we prove the fast rates exact oracle inequality for VC-type classes.

4It may be possible to get a weaker dependence on V with a more careful argument that depends on V
throughout; in particular, Talagrand’s inequality can handle the parameter V .
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C.2 Proof of Theorem 7

Proof of Theorem 7. For convenience, we begin by abusing notation and redefiningF asF := `◦F ;
the abuse includes f∗ being redefined as `(·, f∗). With these abuses, for any f ∈ F we redefine Zf
as Zf := f − f∗.
Next, we introduce a few subclasses that we will use. Recall that for any γn > 0, F�γn is the
subclass of F for which the excess risk is at least γn. Also, for any γn > 0, let F�γn,ε be a
proper cover of F�γn with respect to the L2(Pn) norm, with ε = 1

n . For each η > 0 and F�γn,ε,
let F (η)

�γn,ε ⊂ F�γn,ε correspond to those functions for which η is the largest constant such that
E exp(−ηZf ) = 1. After making the same implicit change to F�γn,ε for “hyper-concentrated”
excess loss random variables (i.e. those Zf for which limη→∞ E exp(−ηZf ) < 1) as was made to
F�γn in the proof of Theorem 5, we have F�γn,ε =

⋃
η∈[η∗,∞) F

(η)
�γn,ε.

Let γn = a
n for some constant a > 1 to be fixed later. Consider an arbitrary η ∈ [η∗,∞) for which

|F (η)
�γn,ε| > 0, and recall that all functions f in this class satisfy EZf ≥ a

n . Individually for each
such function f , we will apply the Cramér-Chernoff Theorem (Theorem 1) as follows. From the
Bounded Losses Lemma (Lemma 4), we have Λ−Zf (η/2) = Λ− 1

V Zf
(V η/2). From the Stochastic

Mixability Concentration Theorem (Theorem 3), the latter is at most

−0.18(V η ∧ 1)(a/V )

n
= − 0.18ηa

(V η ∨ 1)n
.

Hence, the Cramér-Chernoff Theorem (Theorem 1) with t = a
2n and the η from that Theorem taken

to be η/2 implies that the probability of the event Pn f ≤ Pn f
∗ + a

2n is at most

exp

(
−0.18

η

V η ∨ 1
a+

aη

4n

)
= exp

(
−ηa

(
0.18

V η ∨ 1
− 1

4n

))
.

Applying the union bound over all of F�γn,ε, we conclude that

Pr
{
∃f ∈ F�γn,ε : Pn f ≤ Pn f

∗ +
a

2n

}
≤
(
K

ε

)C
exp

(
−η∗a

(
0.18

V η∗ ∨ 1
− 1

4n

))
.

Now, observe that if we consider some fixed failure probability δ
2 and invert to obtain the corre-

sponding a, we have

a =
C log K

ε + log 2
δ

η∗
(

0.18
V η∗ ∨ 1 −

1
4n

) =
C log K

ε + log 2
δ

η∗
(

0.18−(V η∗ ∨ 1)/(4n)
V η∗ ∨ 1

)
≤

(V η∗ ∨ 1)
(
C log K

ε + log 2
δ

)
η∗
(
0.18− 1

4n

)
≤ 8

(
V ∨

(
1

η∗

))(
C log

K

ε
+ log

2

δ

)
=: λ, (22)

for γ(1)
n := λ

n , where the last inequality holds since n ≥ 5. Note that by instead setting a
n = γ

(1)
n

(defined in (22)) the failure probability can only decrease. Thus, for any γn ≥ γ(1)
n , we have

Pr
{
∃f ∈ F�γn,ε : Pn f ≤ Pn f

∗ +
γn
2

}
≤ δ

2
.

Next, we control the behavior of the subclass F�γn \ F�γn,ε. From Theorem 6, if δ ≤ 1
2

Pr
{
∃f ∈ F�γn : Pn f < Pn π(f)− γ(2)

n

}
≤ δ

2
.

for γ(2)
n = V

n

(
1080C log(2Kn) + 90

√(
log 2

δ

)
C log(2Kn) + log 2e

δ

)
.
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Now, combining the above two high probability guarantees, with probability at least 1 − δ both
statements below hold for all f ∈ F�γn :

Pn f ≥ Pn π(f)− γ(2)
n

Pn π(f) ≥ Pn f
∗ +

γn
2
.

Thus, with the same probability, for all f ∈ F�γn :

Pn f ≥ Pn f
∗ +

γn
2
− γ(2)

n .

Setting γn = (γ
(1)
n ∨ 2γ

(2)
n ) + 1

n , and recalling that ERM selects hypotheses purely based on their
empirical risk, we see that with probability at least 1− δ, ERM will not select any hypothesis whose
excess risk is at least

(γ(1)
n ∨(2γ(2)

n )) +
1

n
.
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